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Theory of Pion-Nucleus Scattering Lengths~
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The impulse or single-scattering approximation for zero-energy pion-nucleus scattering gives results in
disagreement with the experimental scattering lengths obtained from pionic atoms. %e calculate multiple-
scattering corrections in a simple nuclear model, and shower that double scattering of the pion can account
for a major portion of the disagreement. The largest contributions involve incoherent excitation of the
nucleus and are not included in most optical models. These contributions include the effect of nuclear
binding on the scattering.

I. INTRODUCTION

"N this paper, we apply the theory of multiple scatter-
. . ing to the problem of thc scattering of zero-energy
pions by light nuclei. This problem has previously been
approached in several ways. Descr et el.' used the singlc-
scattering (impulse) approximation to relate the pion-
nucleus scattering length to the pion-nucleon scattering
length. In Sec. III, we review the single-scattering
approximation, and show that it does not lead to good
agreement with experiment.

Ericson and Ericson2 have computed a pion-nucleus
optical potential for 1ow-energy scattering, based on
coherent multiple scattering of the pion in which the
nuc1eus is not excited. Incoherent scattering CGects
were estimated by using a correlated Fermi-gas model.
The Ericsons have also included an CGcct induced by
nuclear absorption of pions, as suggested by Brueckncr. '
The size of this cGect is not well known.

Ke shall demonstrate that multiple-scattering CGects,
not previously included, make a large contribution to
thc scattering length at low energies, because of the
particular isospin structure of low-energy pion-nucleon
scattering. The agreement with experiment is very much
improved when these cftccts are included. The CGccts
of interest Rrc double scattering with excitation of thc
nudeus. This includes the correction to the impulse
approximation due to nuclear binding. The theory and
calculations of these CGects are in Secs. IV and V.

The best data on low-energy pion-nucleus scattering
come from measurements of level shifts in the pionic
atoms. In Scc, II, we discuss the theory of the extrac-
tion of scattering lengths from these measurements.

II. RELATION OF SHIFTS TO
SCATTERING LENGTHS

The work of Descr e$ al.' 6rst made thc connection
between the 5-level energy shift for a pion-atom and
the zero-energy (non-Coulomb) scattering of a pion
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from the same nucleus. They found that

hE= —(2s./ir) p(0) a(Z, Ã), (2.1)

(Zires) '))R. (2.2)

This requirement is well obeyed for light nuclei (Z& 10) .
We have used. (2.1) to produce scattering lengths

a(Z, E) from the measured level shifts of Jenlons
et ul.4 and Harris et a/. for 6&3&23. These are shown
in I"ig. 1, and are listed in column 5 of Table I.

Seki and Cromer' have attempted to calculate a
more exact relation between hZ and a(Z, X), using
a complex square-well potential for the pion-nucleus
interaction. The pion-atomic scattering lengths are
calculated in this potential with the Coulomb field
floIl1 a unite chax'gc d1st11butlon. Thc scattering lengths
they obtained by this method using the level shifts of
Jenkins er al.' are listed in Table I and shown in Fig. 1
(open triangles) .

The radii of the square well were chosen in the work
of Seki and Cromer to agree with the electron scatter-
ing radii. More recently, Seki has used, instead, a
simple A dependence for this xadius, 8=1.3A ~' fm, and
has shown that the correction to (2.1) can be expressed

4 D. A. Jenkins, R. Kunselman, M. K. Simmons, and T. Yama-
zaki, Phys. Rev. Letters 1V, 1 (1966).'R. J. Harris, Jr., %. 3. Shuler, M. Eckhouse, R. T. Siegel,
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where p(0) is the probabihty density (unperturbed by
scattering) for the atomic pion to be at the nucleus,
that is, for a hydrogenlike atom, p is the pion-nucleus
reduced mass, and a(Z, E) is the scattering length
for a pion on the nucleus with Z protons and E neu-
trons after removing the effects of the Coulomb inter-
action. Equation (2.1) is approximate, requiring that
the pion density p(r) be essentially constant over the
range of energy over which the pion-nucleus scattering
amplitude varies signiicantly. Both conditions essen-
tially rcqu1rc that the nucleal. xad1us 8, Rnd thcxcfolc
the pion-nucleus interaction range, be smaller than the
average pion (Bohr) radius:
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Note that there is no form factor since the momentum
transfer is zero.

It is useful to write t(j) in terms of an isoscalar
and isovector component:

where the angular brackets are understood to mean
expectation value in the nuclear ground state and zero
pion momentum state. The approximation can be put
in terms of the pion —jth-nucleon scattering amplitudes
t( j); for A =Z+N,

0,0 i I i 1 r l ~ l i l & l

4 8 l2 l6 20 24.

FIG. 1. Reduced experimental data from Table I. Q, Seki and
Cromer (Ref. 6) potential reduction using a varying radius for
the potential from electron scattering. +, Seki (Ref. 7) potential
reduction using an A'» dependence for the radius of the potential
and plotted only vrhere it divers from the Seki and Cromer results.
Q, linear approximation according to Deser et ul. LEq. (2.1)j.
All of these calculations used the data of Jenkins et al. (Ref. 4) .
0, linear approximation using the data of Harris et al. (Ref. 5)
for A &12.

approximately by a simple empirical relationship,

asekl= (1—o 02~) "alla, (2.3)

where A is the number of nucleons and a&; is given by
(2.1).For the data of Jenkins et aL.,

4 (2.3) gives essen-
tially the same value of u as in the Seki-Cromer calcula-
tion, except for A =10, 11, and 14. We show these three
points as dark triangles in Fig. 1.

We have selected the "best" values of the scatter-
ing lengths as follows: We use the data of Harris et alP
for 6(A(12 and of Jenkins et aL.4 for 12(A. We use
(2.1) and (2.3) to obtain the scattering lengths, which
are displayed, with bars for experimental uncertainties,
in Fig. 5.

Note added im proof. The difference between (2.3)
and the calculations of Seki-Cromer applied to the
data of Jenkins et aL. can be traced to our use of the
Jenkins et aL. Coulomb correction. Seki (private com-
muncation) has not used the very large values of the
charge radii quoted by Jenkins et aL for A=. 10, 11,
and 14, and therefore there is no difference in the two
approaches of Seki.

a(Z, 1V) = —(p/2 ) (0 i T
i 0), (3.1)

III. SINGLE-SCATTERING APPROXIMATION
AND CORRECTIONS

The single-scattering (or impulse) approximation for
a(Z, N) was considered by Deser et aL.' LEq. (2.1)j.
We shall restate it in terms of scattering matrices,
using

t(j) =Lto+t&i ~( j)jb(k +k —k ' —k') (3.3)

ao =—(a/2~) to =k (as~2+ 2asp),

al= (p/2K) tl = k(a1l2 aa/2) .

(3.4a)

(3.4b)

Then Eq. (3.2) may be written in terms of the total
nuclear isospin operator

(0
~

T'~ 0)=at,+(2i I)t,

=&tow (Z N) ti, —(3.5)

where the & are for m+ scattering.
The most precise experimental determination of the

scattering lengths come frown measurements by Bier-
man' and by Fisher and Jenkins'.

giving

agf2 =0.182+0.006' '

u3]2 = —0.103+0.006' ',

ap ———0.008&0.003@ ',

g~ 0 09/~0 003

(3.6a)

(3.6b)

(3.7a)

(3 7b)

The scattering lengths for several light nuclei, obtained
by substituting these values into Eqs. (3.1) and (3.5),
are listed in column 1 of Table II. One sees immediately
that these results are too small when compared to the

8 E. Hierman, Phys. Rev. 122', 599 (1962).
9 G. E. Fisher and E. W.&Jenkins, Phys. Rev. 116, 749 (1959).

where we use i for the isospin operator of the pion, and
~(j) is the usual (Pauli) isospin operator for the jth
nucleon; k is the pion momentum before the scatter-
ing, while k ' is the pion momentum after scattering,
and similarly for the nucleon momenta k, and k . The
momentum 5 function is just the expression of conser-
vation of total momentum of the two interacting par-
ticles. For zero relative momentum between the pion
and jth nucleon, the coefficients in (3.3) may be ob-
tained from the pion-nucleon scattering lengths for
isospin —,

' and & ..
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TABJ E I. Scattering lengths from experimental level shifts. All scattering-length terms should be multiplied by —— &.

Nucleus
AE1,

(keV)
Seki-Cromer

(fm)
Seki
(fm)

Linear approx.
(fmg

48e'

+10

C12

801G

F19

11Na"

0.60~0.20.

0.35~0.06b

0.80&0.20

0.57&0.06b

1.75w0. 20~

1.63a0.08b

2.60a0.60.

2.96&0.12b

2.90&0.70

3.85&0.12b

5.80a0. 50'

5.96%0.12b

9.80a1.10.

14.2a1.20'

25. 8w1. 10.

49.8+1.40.

0.370+0. inn

0.490+0.100

0.460&0.280

0.530a0.030

0.580&0.070

0.470&0.040

0.590%0.040

0.560~0.020

0.730~0.020

0.920a0.010

0.345&0.115

0.201&0.034

0.467a0. 116

0.333&0.035

0.450&0.051

0.419~0.021

0.349~0.079

0.397+0.014

0.398&0.096

0.528&0.017

0.471&0.471

0.484~0.009

0.528~0.060

0.542%0.046

0.756~0.032

0.914~0.026

0.304+0.101

0.177%0.025

0.402&0. 100

0.286&0. 151

0.368&0.042

0.343a0.017

0.279~0.064

0.318~0.011

0.310&0.075

0.412a0.013

0.358&0.031

0.368&0.007

0.380a0.043

0.368%0.031

0.468~0.020

0.494%0.014

a Reference 4. b Reference 5.

experimental results in Table I, particularly for Z=E
nuclei, which are given by the isoscalar component
alone. Therefore, we are led to consider possible cor-
rections to the zero-energy first-order theory we have
just presented.

As pointed out by Ericson and Kricson, although
the pion is essentially at rest with respect to the nu-
cleus in the pion-atom, the nucleons are moving with
respect to the pion. One must correct Eq. (3.3) to
include low, but nonzero, momentum effects which
come from P-wave scattering. We write, for Ip,

to —(2ir/p) Lao+ bo——k k'+coo ( j) k &k'7, (3.8)

with a similar equation for I&, where k and k' are the
initial and final relative momenta of the pion and the
jth nucleon. For a pion at rest with respect to the
nucleus,

k=k'=L —5/(1+8 jP( j), (3 9)

where P( j) is the nucleon momentum and $=p/M is
the ratio of the pion and nucleon masses. The recoil
effect is then. (for spin-zero nuclei)

&2', = —(2ir/p) t $/(1+ $) ]'Lb,+bii ~( j)](P'(j) ).
(3.10)

Using the values for the coefficients

bp =0.208&0.008p, ',

bg =0.180&0.008'

(3.11a)

(3.11b)

Multiple Scattering

In general, at low energy, Inultiple scattering is a
small correction to single scatterin. g if A (a/l)((1, where
A is the number of scatters, u is the scattering length,
and / is the distance between scatters. In the case of
Z=X nuclei, for which only the isoscalar length con-
tributes in first order, we have ao/i~10 ', with l
so that this correction might appear to be small for
light nuclei, e.g., A&20. However, as will be shown
in the following sections, the double scattering in fact
also contains a contribution from the isovector length,
of order ai2/l, which is the same order of magnitude as
the single scattering, aim/l

t ao ~. Multiple scattering

and an average (P'( j) ); calculated with harmonic-
oscillator ground-state wave functions, we calculate
the recoil eGect. This correction is of the order of, but
of opposite sign to, the single scattering. %e list the
recoil contributions in Table II.
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T~LE II. Theoretical scattering lengths (fm). All scattering-length terms should be multiplied by —1.

Nucleus TBB (fm ')
Tea+~Ta+~TIS

Total series Recoil Sum

gHe4 0.04IW0. 015 0.860 0.097a0.007 0.128W0.025 0.044a0. 022 —0.031aO.OO1 0.141~0.048

0.061a0.023 0.598 0.099a0.007 0.150a0.033 0.066a0.033 —0.050a0.005 0.166~0.070

0.186%0.029 0.770 0.126%0.007 0.278&0.040 0.078&0.039 —0.059~0.005 0.297~0.085

0.206~0.037 0.710 0.173~0.011 0.311&0.050 0.100%0.050 —0.069&0.003 0.342~0. 103

0.100~0.038 0.672 0.181a0.015 0.246a0. 055 0.110a0.055 —0.076a0.006 0.280~0.115

0.225~0.041 0.660 0.194~0.017 0.342~0.060 0.122~0.061 —0.092a0.003 0.372~0.124

0, 120&0.045 0.616 0.197&0.018 0.276&0.065 0.132+0.066 —0.084+0.003 O. 324~0. 135

N14 0.139&0.053 0.589 O. 218+0.021 0.307&0.077 0.154+0.077 —0.096+0.004

0.159~0.060 0.542 0.227~0.023 0.333~0.085 0.176~0.088 —0.101+0.004

0.365a0.157

0.408wO. 177

11Na"

0.304~0.074 0.470 0.200a0. 026 0.444a0. 105 0.210a0. 105 —0.115W0.007 0.539~0.217

0.344&0.088 0.430 0.223&0.042 0.494&0. 135 0.254&0. 127 —0.127&0.010 0.621~0.272

therefore provides a major correction to single scatter-
ing. This contribution from the isovector part of the
pion-nucleon scattering is not included in coherent
(ground-state) multiple-scattering theories.

The evaluation of the double-scattering term is
broken into two parts. The first part is the usual
double-scattering eGect and is evaluated in Sec. IV,
while the second part is called the binding correction
and is evaluated in Sec. V. The binding correction is
due to the scatter'ing amplitude for a pion on a single
nucleon, when the nucleon is not free, but bound to
a nucleus. This may be thought of as a double-scattering
effect, in which the bound particle is excited by colli-
sion with the pion and then is deexcited by further
scattering. The lowest-order contribution (in powers
of the scattering length) will be of order aP//', where
l' is some distance of the order of the nuclear size, and
may be thought of as the distance the struck nucleon
moves between two collisions with the pion. We calcu-
late the binding correction with a simple model for
the nuclear binding in Sec. V.

IV. MULTIPLE SCATTERING

Now we need a brief review of the multiple-scattering
formalism. We de6ne T to be the scattering matrix for
a pion scattering on an A-nucleon system (target nu-
cleus) (this satiates the usual integral equation of
Lippmann and Schwinger" for scattering):

T= V+ VGT, (4 &)

with the many-body propagator

G=(E H+ig) ', — (4.2)

&=o +Eo., &=K +Ho (4 3)

E; is the kinetic energy operator of the pion and Ho
is the Hamiltonian for the A-body system. e is the
energy of the pion in the center of mass of the 2-
nucleon system and Eg, is the binding energy of the
ground state of the A-nucleon system. V is the poten-
tial interaction of the pion-A system and is taken in
the usual manner to be the sum of the interaction
potentials between the pion and each nucleon:

V= Z s(j)Absorytion Effect (4.4)
Brueckner pointed out that virtual absorption and

reemission of pions by the target nucleus contributes
to the elastic scattering amplitude. The contribution
of absorption plus reemission by a single nucleon is
presumably already included in the pion-nucleon am-
plitude t( j) LEq. (3.8)j. However, a virtual absorp-
tion involving two or more nucleons would contribute
separately from the multiple-scattering terms already
considered. The contribution of this correction has been
crudely estimated to be of the same order as ao, by
Brueckner, 3 by Thouless, '0 and by Ericson and Eric-
son. 'We do not treat this process in this paper.

where s( j) is the potential interaction between the
pion and the jth nucleon. Taking the matrix element
of Eq. (4.1) in any state of the target, gives

(2 i T/A)=(A f V/2)

+ g (A (
V j X)(E f G

/ r)(Ã /
r / A), (4.5'j

where
~ 2) is antis~nmetric in all particles. The com-

plete set of intermediate eigenfunction states
~
X) need

not be restricted only to the antisymmetric states of

"See, e.g., M. L. Goldberger and K. M. Watson, Coll~sion
'0 D. J. Thouless, Proc. Phys. Soc. (London) 69, 280 (1956). Theory (Wiley-Interscience, Inc. , New York, 1964).
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where
t(j ) = r&(j ) +r&(j )g(j ) t(j ), (4 7)

g( j) =PEo K —K(j—)+irt] ' (4.g)

is the propagator of the pion, scattering on a free nu-
cleon and is a one-body operator. For the energy we
have Ee=e +Err(&&with E«,&

t'he initial kinetic energy
of the nucleon.

An equation for T in terms of t(j) is obtained for-
mally by solving Eq. (4.7) for e( j) and then, with
the help of Eq. (4.4), substituting for V into Eq. (4.1).
This relationship can be written

T= T„+AT2+8Te+hT, . (4.9)

T',. is the part of the scattering due to a single scatter-
ing, and has been seen earlier in Eq. (3.2) as

T„=Qt(j). (4.10)

~T'2 and hTq are both to second order in t and so are
double-scattering terms:

the A-body system. This follows from the fact that
V is a symmetric sum in the particles and therefore
does not change the symmetry of the initial state

I A).
Therefore, we choose the set

I N) to include all sym-
metries and to form a complete set, so that

(4.6)
N

although only the antisylnmetric states actually con-
tribute in (4.5). For example, if we consider a single-
particle model for the target, then each

I X) may be
chosen as a product of single-particle wave functions.

The two-body scattering matrix t( j) for the pion
and the jth nucleon satisles an integral equation simi-
lar to Eq. (4.1):

FIG. 3. Representation of the
integral equation (5.5) for
the binding-energy correction

where 'Q is the binding
potential. The pion (dashed
upgoing line) scatters twice
on the same nucleon (solid
upgoing line), while the nu-
cleon interacts with the rest
of the nuclear system through
'U any number of times between
the two pion scatterings.

)i
/

R
K~ i ~nrem =

I
i

I

)i
/

V——-x+ f
V

II

It is treated approximately in the Appendix.
Let us look more closely at the second-order term

AT2. In general, in order to evaluate the terms to
second order in t( j), one expands in a complete set of
intermediate states:

» = g g Q &o I t(j ) I &&&& I G
I
&&O' I t(l) I o&.

N

(4.13)

If it is assumed that we have a single-particle model,
then

I X) can be chosen to be product states of the
single-particle wave functions. As shown earlier, only
the antisymmetric part of

I E& will contribute. Now
t(l) excites the lth particle, so that

I E& would have
the form, ordered by the particle number,

I
~ &=

I -.& I -.&
~ ~ ~

I -;&~ ~ ~
I .&

~ ~ ~
I -.&, « 14)

where the 0.'s are the same quantum numbers as in
the ground-state wave functions. Similarly, t(j ) de-
excites the jth particle so that the intermediate state
that it comes from has quantum numbers:

AT, is the remaining correction due to the pion scatter-
ing more than. twice, or multiple scattering:

ALT, = g g g t( j)Gt(l) Gt(nt) y. ~ ~ . (4.12)

».= Z Z t(j)«(i), (4.11a) I&,&= I~i&I~2&" lait&" I«&" I~~& (4'5&

~T~= Z t( j)LG—g( j)jt(j) (411b)

FIG. 2. Double-scattering term in the
multiple-scattering series. The dashed line
represents the pion line and the solid lines
are the two nucleons.

III
/

/IIIir
jr

/
/

/
/

/
/
/

is a conventional double-scattering term in the
sense that it involves two nucleons, while hTq involves
two scatterings of the pion on the same nucleon. We
call hTq the binding correction, because it is induced
by the potential which binds the nucleon to the rest
of the target. Figure 2 illustrates AT2, and Fig. 3
illustrates ET'. This latter term is treated in Sec. V. P I

G I X)=(.. K.+E E,.+z~—) i--
= (e —K +t»)-' (4.16)

so that &X I G I X) is independent of E. Using closure,
we get

(4.17)

in order for I Ei) and
I E;& to be the same in the

intermediate state, we must have Xg=E;, but this
violates the conditions on the sum in Eq. (4.13) that
j&l, so we see that no excited states contribute to the
matrix element (4.13). The only states that contribute
are the states that have the same quantum numbers
as the ground state. Because of this, the matrix ele-
ment of the propagator is
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This can be written

DTp= Q P d'rb ~ dorp/*(1, ~ ~, A)

X(k.
~
M(r, ; r, ) ~

k.')P(1, , A),
where

(k
~
M(r, ; r~)

~
k ') = ——exp/i(k r, —lr '

r4) 7
p

2~

exp(ikp
~

1''—r4
~ )X Pp g, l,

scattering. Most of the double-scattering contribution
comes from the isovector term tbp in (4.21b).

In the Appendix, it is shown that if one makes the
assumption that an effective (r ') can be factored out

(4.1g) for each G in (4.12), then the complete multiple-
scattering series without binding can be summed. in
closed form. This summation shows that terms above
second order in t are about 10% of the first two terms
in the multiple-scattering series, and so are not im-

portant. However, these terms have been included in
(4.19) Table II in the partial sum (column 4) and total sum

(column 7) for completeness.

Pp(j, tl =Lto+tbi ~( j)7Lto+t&i ~ ~(t)7,

kpo = (2tb/ti') p..

Define r, t = ~
r, —r4 ~. Then in the limit k, k ', and 4

go to0, we get

V. BINDING EFFECT

We have called the term Lin Eq. (4.11b)7

&&b= g t( j)pG —g( j)7t( j) (5 1)

4T = ——g Q f d'r, 4'r 4"(1, ~ ~ ~, 4)p

2' jy l

$(1, ~ ~ ~, A). (4.20)

If an average (r-') can be used for the matrix element
of (r, b) ', we get the separation of coordinate space
and isospin space. Then

ATp= —(t4/2pr) (r—') f A (A —1)tp'+2(A —1)tote(21 I)

+L(2i I)'—Ai'7tbo J. (4.21b)

In this order (second) the average (r ') can be found
exactly for each term. For instance, the to' term just
takes the average of all of the pairs of particles, while
the tj2 term takes the average only between the space-
symmetric pairs of particles. In order to evaluate (r '),
we choose the single-particle wave functions to be har-
monic oscillators, since they can be separated into
relative and center-of-mass coordinates using the Mo-
shinsky tables. " (r ') should not change much for
other choices of single-particle wave functions if the
value of (r') is fitted for these wave functions. We
have used electron scattering values of (r') for the
different targets. " Because the tP term is the largest
part of AT2 for light nuclei, we calculate the space-
symmetric average for (r '). The calculation was done
exactly for He4 and 0" and then the (r ') for nuclei
between these two was interpolated. This procedure
should be accurate enough for an estimate of (r ')
since it is a very slowly varying function of nucleon
number A. Values of (r ') and ATp for some light
nuclei are listed in Table II. Clearly, in the case Z=S,
the double scattering is more important than the single

"T. A. Brody and M. Moshinsky, Tables of Transformation
Brackets (Monografras del Instituto de Fisica, Mexico, 1960) ."R.Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957),

the binding correction. Estimates of Eq. (5.1) were
made by Breit' and by Lippmann" for neutron scatter-
ing on the hydrogen molecule. These approaches sufFer
from the difhculty in calculating the difFerence of two
approximately equal terms, one involving a sum over
the excited states of the nucleus (in G), and the other
the integral over the recoil states of the nucleon (in g) .
We shall not use this separation.

We treat the nucleus in a single-particle model. This
implies that the nuclear Hamiltonian Ho, which ap-
pears in G LEq. (4.2) 7, is of the form

&.= Z &(j)+~(j). (52)

R ='U+'UgR. (5.5)

R is of the form of a reaction matrix for the scattering
of the nucleon by the potential 'U. Since we shall
calculate R exactly in a model, we have avoided the
cancellation problem discussed following Eq. (5.1). The
integral equation (5.5) is shown diagramatically in
Fig. 3, and, for comparison, Fig. 2 shows the diagram
for the second-order scattering discussed in Sec. IV.
Note that both diagrams are to second order in t, but

"G.Breit, Phys. Rev. 71, 232 (1947)."B.Lippmann, Phys. gev. 79, 469 (1950'j,

Then it is clear that (5.1) separates into a sum of
terms, each involving only one nucleon. We shall there-
fore consider each nucleon separately. Note that the
Pauli principle does not enter, because we are treating
the correction as a one-body problem. Consider the
nucleon as bound to the rest of the nuclear system by
a potential 'U (we drop the label j). Define an R such
that

(5.3)

then 8, the matrix element in the ground state, is

8,= (0 ~ t(j ) PG —g( j)7t(j ) ~
0) = (0

~
tgRgt

~
0), (5.4)

and R satisfies the integral equation
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hT& only deals with one nucleon while AT2 involves
two nucleons.

The binding correction problem has now been re-
duced to a modified three-body problem involving the
pion, the nucleon, and a fixed heavy "particle" which

gives the potential 'U and which represents the rest
of the nucleus. This three-body problem is soluble for
the case where the interactions are all separable. " In
our problem, the pion-nucleon interaction is separable
since we use a scattering length approximation. %e
now choose a separable form for the binding potenti, 1.l
'U, following Yamaguchi'~:

(k i V i
k') =Au(k) u(k'), (5.6)

with
u(k) =(q'+k') '. (5 7)

We solve explicitly for R of Eq. (5.3), where lI, has
been chosen to give a bound state E= —

~
E2 ~, and a

wave function, which is given below (in momentum-

space representation) in Eq. (5.13). The expectation
value (5.4) is taken in this bound state. We obtain
nuclear matrix elements of R of the form

16;0—

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Fto. 4. Graph of integral equation (5.16), D(p), and two conveni-
ent functional forms as a function of p I (Eq. 5.11)j.

(k i
R.

i
k')=y(P)u(k)u(k'), (5.8)

In the zero-energy limit, the value of 8 is
where k is the momentum of the nucleon in the inter-
mediate state of Kq. (5.4), and where

v(P) =(&'q/2~~')[(q+P) '—(q+p) 'j ', (59)
with

p'= (2M/fi') i E2 i, (5.10a)

where
(2/~') —p(1+ p)'D(p),

P2(p, x)dx
D(p) =

(1—q)'[x'+2&(21 —p) j '

(5.15)

(5.16)

P2 —
$
—lk 2+p2 (5.10b)

in which

Note that R is diagonal in k; only the nucleon is scat-
tered by 'U. In this model, the sign of 8 is always
negative, as can be seen from Kq. (5.9). This is the
same sign as the first and second terms (T,. and ET2)
in t'ie multiple-scattering series, and hence adds to
them.

We now reduce Eq. (5.4) to calculable form. We
define the following unitless quantities:

p =p/q, g =P/q, x =k,/q, y =k/q, (5.11)

where y is the normalized momentum of the inter-
mediate nucleon and x is the normalized momentum
of the intermediate pion. Then we have

&'&q' (1+p)'(1+v)'
2M2r2 x'+ 2$(g —p)

In these formulas the mass M is the nucleon mass.
The wave function for the potential we have used is

(y I O) =~[("+y') (1+y') I-', (5 13)

with the normalization

Ã2=2r 'q'p(1+ p)'. (5.14)

"See, e.g. , J. Hetherington and L. Schick, Phys. Rev. 137',
8935 (1965); 139, 81164 (1965).

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).

CO

P(p, .) =
(1+y') (p'+y')

Xln
[1+(y *)'j[n'+ (y+—x)'3

L1+ (y+*)2][n'+ (y—x) '] (5.17)

Integrals (5.16) and (5.17) were computed numeri-

cally, and D(p) is given in graphical form in Fig. 4.
It is clear from Fig. 4 that if p is kept constant while

p goes to 0 (q must also go to 0), then we have 8
also going to 0, so that in this zero-energy and zero-
range limit there is no binding eGect.

Two pieces of data are heeded to fit the constants
in the binding effect. Equation (5.10a) relates the
binding energy directly to p. We shall choose p [or,
equivalently, the range q in (5.11)j to give a fixed
value of (r'), for 6xed binding energy.

For example, for He4 we choose the value E~ ——20
MeV, which gives p =0.982 F ', and (r') =2.6 fm', which

gives p=0.3j.. For these values, 8,= —0.46. This is
the e6'ect per particle without the isospin. To get the
whole eGect we sum over the individual particles. This
gives

+2'2 = Q g,[22+&22.g( j)]2= —0.0438 u-' (5 18)

For He4 this is the same order of magnitude as T„.
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Fze. 5. Comparison of experimental and theoretical results.
Bars represent Seki's smoothed radius function using Harris
et el. (Ref. 5) data where available (3&12) and Jerduns et al.
(Ref. 4) for the rest of the energy shift data. Q is the single-
scattering theory or impulse approximation LEq. (3.5)j. O is
the present theory with all of the corrections discussed, in the text
included. (See Table II.)

For all other light nuclei we choose p= —0.46, which
is a good average value, for El, ——8 MeV and (r') =7 fm'.
This value was not refitted for each nucleus, since (a)
the average single-particle binding E~ is not accurately
known and. (b) this separable model was calculated
for 8-state particles. The summed result (BTI,) is
shown in column 5 of Table II.

VL RESULTS AND CONCLUSIONS

Our multiple-scattering calculations for nuclei 4&
3&23 are summarized in Table II, where we show
all the individual contributions to the scattering lengths.
Column 1 gives the results of the single-scattering ap-
proximation (3.7), which is also displayed in Fig. 5
(open boxes). In Fig. 5, we also show (bars) the
experimental scattering lengths as obtained by Seki
(Table I, column 3) using the data of Harris ei al.,
where available, and data of Jenkins et al. for A) 12.
In Table II, column 7, and also in Fig. 5 (open circles),
the total scattering length from our calculations is
shown. From Table II, we see that the multiple-
scattering corrections are considerably larger than the
single-scattering contributions for the T=0 systems,
and not a negligible contribution for the T/0 cases.
The total multiple-scattering lengths are much closer
to those extracted from experiment than are the single-
scattering approximations.

For the T=O systems the binding effect alone is
comparable to the single scattering, while double scat-
tering (AT2) is even larger. Both of these terms con-
tribute largely because of the large isovector x-X
scattering /see Eq. (3.8) $. It is interesting that both
of these isovector contributions are "incoherent" in
that they involve excitations of the target out of the

ground state. They therefore depend linearly on the
nucleon number 2 rather than as A(A —1), as in the
case for coherent double scattering (isoscalar) .

It should be pointed out that the separation of the
double-scattering and binding terms in (4.11) is some-
what arbitrary, although the sum of the two is well
de6ned. For example, both the forms and numerical
values of the two terms would change if we used only
antisymmetric states in 6, but the total contribution
would not change. Our choice of product states leads
to the closure result (4.17) for b,T, (in a single-particle
model), and to the reduction. of ETq to a single-nucleon
problem. All excited states are allowed.

It is possible that the remaining disagreement with
experiment is in part due to the omission of the absorp-
tion-reemission effect of Brueckner. This effect depends
on correlations in the target, which we have not treated.
A theoretical question which remains is to what extent
we may use the scattering-length approximation (3.5)
for +-E amplitude in the multiple-scattering series, for
which nonzero intermediate pion energies appear.
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Equation (4.9) was written

In Sec. V, it was shown that hTq was small but not
negligible. Make the assumption that the particles are
weakly bound so that hTg and all terms like hTg in
AT, al'e Ilegllglble. Tllell Eq. (A1) becomes

7'= Z &(i)+ Z Z i(i )«(1)
j j&l

+ Z Z Z i(g) «(&)Gi(m) (A~ ~2~)

It was shown, following Eq. (4.13), that closure was
good for the complete product set of states. For higher
order in t this is not correct, but we shall assume it
here for purposes of estimation. Because of the closure
approximation we can factor out an effective (r ')
from each term. This leaves Eq. (A1) in the form

Z P (p 1)e—1 (A3)

&-= ZZ "Zi(J)i(f)" i(P), (A4)

where there are e i's in I'„. Strictly speaking (r ') is
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not the same for each term; however, since the second-
order term is the largest term in the multiple-scattering
series, we will use the (r-') calculated for second order.
If we 6nally assume that only the S-wave part of t
contributes, then the series can be summed in closed
form.

The erst term in the series is just T„and is given

Pg ——T„=Q t(j) =Atp+(2i I)tg, (AS)

where A is the number of nucleons, i is the isospin of
the pion, and I is the isospin of the A-nucleon system.
The double-scattering term is then

p, ggt(—j)t(l)

=A (A —1)tp'+2(A —1)tpt)(2i I)+f(2i I)'—Ai')tP.

(A6)

Note that the two-nucleon term P~ for the case I=O is

Pp' ——
A L (A —1)tp' —i'tg']

The tq part dominates P2 for small nuclei; thus, we
observe that P2 is almost proportional to the number
of nuclei for small nucleus.

For higher P„, a recursive relationship can be found
between P„, P„~, and P„2.This relationship is

P~=[(A —2) tp+(2i'I)tyjP„y+ (A —1) (tp p t—s )P„p.
(AS)

Using Eqs. (A3) and (AS) —(A7), the series for T can
be summed in closed form. For the case I=O, the
result of this summation is

t +.(r i) (t p iptp)
T=A

1—(A —2) tp(r ')—(A —1)(tp' —i'tP) (r-')'

(A9)

As an example, substitute tp, tt, A, and (r ') for Hes
into Eq. (A9). We And that the rest of the series

P„&pP„(r ')" ' is approximately 10% of P~+(r-')Pp
for this case and is of the opposite sign of these first
two terms. Results for other light nuclei are shown in.

Table II.
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The cross sections for the reactions Li'(P, y)Bes* (16.63 and 16.90 MeV} -+2n have been measured
over the range of bombarding energies 0.441-2.45 MeV. The nonresonant portion of the cross section for
the population of the 16.63-MeV level has been compared successfully with cross sections calculated on
the assumption of an extranuclear direct-capture process. Resonant cross sections populating the 16.63-
and 16.90-MeV levels of Be8 were measured at incident energies of 0.441, 1.03, and 1.89 MeV, corresponding
to levels at 17.64, 18.15, and 18.9 MeV in Be . Partial widths and reduced matrix elements were calculated
for the resonant contributions to the cross sections. The experimental results are consistent with
the hypothesis of nearly maximal isobaric-spin mixing in the Jw=2+ levels of Be8 (16.63 and 16.90 MeV).
There is no evidence for transitions from the J~=3+ levels near 19 MeV to either of the 16-MeV states,
but decay to these states was observed from a level (probably J~=2 ) at 18.9 MeV.

I. INTRODUCTION

r lHE occurrence of isobaric-spin mixing in the J =2+
.Be' levels at T6.63 and 16.90 MeV has been firmly

established by a review' of the experimental evidence.
A vital exp'erimental result which led to the proposal
of isobaric-spin mixing in these levels2 was the strong

*Present address: Institute for Exploratory Research, U.S.
Army Electronics Command, Fort Monmouth, ¹J.

t Research supported in part by the U.S. Atomic Energy Com-
mission under Contract No. AT-(40-1) -2098.' J. B. Marion and M. Wilson, NucL Phys. 77, 129 (1966).

2 J. B. Marion, Phys. Letters 14, 315 (1965).

7-ray transition' ' between the J =1+ Be' level al
17.64 MeV (which is predominantly T=1) and 16.63-
MeV level (which must contain appreciable T=1
strength analog to the Li' and BP ground states). This
strong transition, later shown to be primarily an Ml
transition, '~ cannot connect two states of the same

~ P. Paul, S. L. Blatt, and D. Kohler, Phys. Letters 10, 201
(1964).

4 M. Wilson and J. B. Marion, Phys. Letters 14, 313 {1965).
~ D. Kohler and P. Paul, Phys. Letters 15, 157 (1965).
~ W. E. Sweeney, Jr., and J. B. Marion, Phys. Letters 19, 243

(1965).
~%. E. Sweeney, Jr., following paper, Phys. Rev. 182, 1022,

(1969).


