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dependent parameters is able to reproduce the differ-
ential cross sections and polarizations of elastically-
scattered. protons and neutrons from ip-shell nuclei.
The set of parameters has characteristics similar to the
sets of parameters that 6t elastic scattering data for
heavier nuclei. The numerical systematics of the model
differ somewhat between light and. heavy nuclei. The
Thomas form of the spin-orbit potential has a peculia, r
beha. vior for light nuclei which is compounded by the
fact that at low energies the calcula, tions are particu-
larly sensitive to its strength. Over a large energy range,
the radius parameter must be energy-dependent; and
this dependence cannot be compensated by an in-
creased energy dependence in the real potential. These
differences, while small, seem to be signi6cant.

It should be pointed out that the parameters of the

present analysis are not necessarily the best set of
parameters since they were not determined by a rigorous
parameter search. The analysis does indicate that such
an analysis would be meaningful. While the data used
in the present analysis cover a wide range of energies,
the measurements were not spaced at regular intervals
over this energy range. When a more complete set of
data becomes a,vailable, a, more rigorous analysis can
be undertaken.
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A new approach to the treatment of three-body channels in nuclear-reaction theory is proposed. . The
method is based on the R-matrix formalism. Instead of introducing three-particle final states as a new
class of channels, it is suggested that they be described in terms of incoherent contributions from the various
two-body channels having scattering-state residual-nucleus wave functions instead of the customary
bound-state ones. The method is (a) illustrated with a simple one-dimensional three-body system, (b)
applied to a general three-body system, and finally (c) used to set up a distor ted-wave Born-approximation
analysis of the general three-body system.

I. INTRODUCTION

1OR the most part, theoretical treatments of scatter-
.. ing and reactions have been restricted to the regime
of two-body channels. While some eBorts have been
made to find the appropriate three-body channel gen-
eralizations, ' useful methods of general applicability
have not been forthcoming.

In this paper, we outline a new approach to the
description of three-body channels which appears to be
at once practical and completely rigorous. We propose
to describe three-particle final states in terms of in-
coherent contributions from two-body channels for
which the internal motion of one of the residual nuclei
is a scattering state rather than a bound state. Thus,
we do not 6nd it necessary to introduce into the E.-
matrix formalism' a new class of three-particle chan-
nels to supplement the usual two-particle ones.
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~ E. Gerjuoy, Ann. Phys. (N.Y.) 5, 58 (1958); M, Danos and
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A preview sketch of our method is presented in
Sec. II. In Sec. III, we demonstrate the method on a
simple one-dimensional three-body system. A general
three-particle system is treated in Sec. IV. In Sec. V,
we show how our analysis of the three-particle scatter-
ing problem can provide the basis for a distorte;d-wave
Born-approximation (DWBA) calculation.

G. PREVIEW OF METHOD

The basis of our analysis is the conventional E-matrix
theory scheme for defining channels. The (3E—3)-
dimensional relative-motion configuration space of a
given X nucleon system is sepa, rated into an "inside
region" and an "asymptotic region" by a large closecl.
(3X—4)-dimensional hypersurface, the boundary hy-
persurface, centered at the center of mass. For the
purposes of this analysis, this surface will be taken to
be arbitrarily large. When the energy of the system is
sufficiently small, the wave function will be found to be
negligible everywhere on this boundary surface except
at certain sma, ll patches. Each such patch corresponds
to a partition of the E nucleons into two widely sepa-
rated clusters. Take the boundary hypersurface to be
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a polyhedron with a face centered on each such patch.
Each face of this polyhedron will then be called the
channel entrance for a particular class of channels.

Thus, a partition of the X nucleons into two clusters
. de6nes a class of channels and an associated channel

entrance on the boundary hypersurface. Individual
channels belonging to a particular class are each associ-
ated with a "total channel wave function" dered on
the corresponding channel entrance. The total channel
wave function is an eigenfunction of the total angular
momentum resulting from vector coupling together the
internal-motion wave functions for particular bound
states of each of the two clusters of a given class with
a spherical harmonic for the angular part of their
relative motion.

When the energy is small, the asymptotic behavior
of the system is adequately described in terms of just
a few channels in each class. Since each of the two
clusters of nucleons is in a bound state, the total
channel wave function will vanish exponentially in
approaching the outer limits of the channel entrance.
This is consistent with the patch where the wave func-
tion is non-negligible being small in comparison to the
size of the channel entrance. As the energy of the sys-
tem is increased, these patches will grow in size as it
becomes necessary to include additional channels cor-
responding to more highly excited states of the indi-
vidual nucleon clusters.

As the energy of the system approaches the threshold
for three-body reactions, the description of the asymp-
totic behavior of the wave function outlined above
seems to become inadequate. The patches of non-
negligible wave function expand to 611 their respective
channel entrances as it becomes possible for one of the
two nucleon clusters to be in an unbound state. Previous
attempts to describe this situation' have sought to
supplement the 6nite set of two-body channels with
a continuum of three-body channels. This approach
has difhculties arising from the lack of orthogonality
of the two-body and three-body channel wave functions.

The method. we suggest is based. on the idea that the
framework set up to describe two-body channels can
continue to provide a valid charactel ization of the
asymptotic wave function even for energies above the
three-body reaction threshold. For each class of two-

body channels, we require that the total channel wave
functions form a complete orthogonal set normalized

,over the channel entrance. The total channel wave
functions belonging to a given set mill thus ful611

homogeneous boundary conditions at the outer edge of
their channel entrance. In this way, a complete ortho-
normal set of wave functions is created which can
provide a true representation of the system wave func-
tion over the entire boundary polyhedron.

Being defined over a finite (but arbitrarily large)
region, the channel wave functions belonging to a,

given class will form a denumerable set. This set mill

have a low-energy sparse-in-energy part corresponding

to each of the two nucleon clusters being in bound
states. It will also have a high-energy dense-in-energy
part corresponding to at least one of the two nucleon
clusters being in an unbound state. Ke distinguish
between these two types of total channel wave functions
by calling the former "bound-state channels" and the
latter "scattering-state channels. "

In this paper, we show that it is possible to give a
natural interpretation of the collision matrix elements
associated with scattering-state channels. We hand that
each open scattering-state channel makes an incoherent
(wltll 1'cspcct to tllc contllbutlons of otllcl scR't'tcllllg-
sta'tc cllallllcls) con trlbutlon to 8, three-bocly reaction.
We also show that the calculation of the collision
matrix elements for scattering-state channels does not
present any special problems.

HL ONE-DIMENSIONAL THREE-BODY SYSTEM

To illustrate our method, we apply it to a very
simple three-body system. Suppose we have two par-
ticles, X and I', of equal mass and having but one
degree of freedom. Let these particles interact with
each other and with an inhnite mass scattering center
by means of short-range potentials. Then in appro-
priate units (5'/2m= 1) the Hamiltonian will be
given by

II.= —(B'/Brpr') (B'/Brl ')—+a~(r~) +III (&I)

+2m~I (~ rPr r~ j). (1)—
Both eN and. e~ become in6nite at the origin. All the
potentials vanish beyond certain 6nite ranges. Let E2
be the energy of the system. The Shrodinger equation
will be

I&'+ (B'/Br~')+ (B'/Brr') ~z (r~) ~~(rr—)—
—»~I (~&~—&I ~)}fr(re, rI) =0 (2a)

or, equivalently,

IX'+ ', (B'/BE')+2(-B'/Br') —I~(E+-',r) IIr (E —,'r)—
—2e~I (~ r ~) }xr(E,r) =0, (2b)

E= ,'(r~+rp), -

The two-dimensional con6guration space of the sys-
etm is plotted in Fig. j.. The cross-hatched regions
contain those points of con6guration space where e~,
v~, and v~~ are not all zero. A boundary, separating
con6guration space into an asymptotic region and an
inside region, is formed by the three line segments
rp=u~, r~=u~, and E=e~. It is understood that .

(3a)

is positive and much greater than the range of i~.
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It is also understood that
Ii/1 neutron

eronNg channel

gpss

a ~
Dg

b. ~

X/7

proton
channel

bp ap ap

(3b)bg = 28zp Qp

is positive and much greater than the range of v~.
Finally, it is understood that deut

(3c)P~=2(uN-aD),

pp= 2(esp oD) (3d)

are both positive and much greater than the range of
v~p. The three segments of this boundary will be called
the neutron, proton, and deuteron channel entrances,
corresponding to the three classes of two-body chan-
nels available to the system.

For each channel entrance, we introduce a complete
set of channel wave functions. For the neutron channel
entrance, the channel wave functions will be the solu-
tions of the equation

(Cp-'+ (d'/«p') »)4P-(rp) —=o,

0&rp&bp, 0.=1, 2, 3, ~ ~ ~ . (4a) Fzo. 1. Coniiguration-space diagram for a system consistmg of
two particles, X and I', each having one degree of freedom.

For the proton channel entrance the channel w'ave

functions will be the solutions of

(g~ +ps(d'/«'a) —o'er)gap(r~) =0,

0&rrr(b~, /=1, 2, 3, ~ ~ ~ . (4b)

For the sake of definiteness w'e will consider the
case of ground-state deuterons incident on the target.
The asymptotic boundary conditions for this case are
specified by

And anally, for the deuteron channel entrance the
channel wave functions will be

4»'+(d'/«') 2~P)4D (r) =o,—

Np, D1(a~) = —(ft/2PP ) '~' exP(2Pp a1r) UP, D„

NNp, D1(t2P) = (&/2pxp) "' exp—(sprrprsp) Urrp, D1,

ND, ,D1(oD) = (&/PD, )"IexP( —2PD~D) b, .t

(6a)

(6b)

—p~&r& pp, y=1, 2, 3, ~ ~ ~ (4c) —exP(AD&GD) UD&D1), (6c)

Np. ,r(rx) = «p Qp (rp) *1'(r~, rp), (Sa)

+arp, r(rp) = «~ y~p(r~)*fr(re, rp), (Sb)

22D2,r(R) = «QD, (r) Xr(R, r). (Sc)

The radial wave functions will refIect free-particle
behavior at the channel entrances. The specification of
this behavior constitutes the specification of the asymp-
totic boundary conditions fulfilled by the system wave
function fr (or Xr).

Being orthogonal and defined over finite regions, the
channel wave functions have discrete spectra of energy
eigenvalues q'. Each spectrum will be sparse at its low-

energy end and dense at its high-energy portion, w'ith

a sharp demarcation between the two parts. We will
refer to the sparse low-energy spectrum as the bound-
state spectrum and to the dense higher-energy spec-
trum as the scattering-state spectrum.

We regard each channel wave function as being iden-
tified with a distinct channel having an associated
radial wave function N.

where the wave numbers p are defmed by

pp 2+@.s=&'

pNps+garp'= &2,

2 pD 2+ 2qD
2 Q2

(7b)

(7c)

The parameters that specify the asymptotic boundary
conditions are seen to be the elements of the collision
matrix U. This matrix is required to,be symmetric
and "unitary" in the sense described below. It must be
possible to express the transition probabilities for all
physical processes in terms of the collision matrix.

Strictly speaking, the collision matrix is infinite-
dimensional since there are infinitely many channel
wave functions. However, there will only be a Qnite
number of open channels, i.e., channels for which
p2)0. The conservation of flux requirement leads to
the "unitarity condition"

~r.z= Q Ua.re, z", (8)

where U is regarded as a finite matrix through the
exclusion of all closed channels.

If X' is sufFiciently small, then all the open channels
will be contained in the bound-state part of the channel-
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wave-function spectrum. This situation corresponds to
having only two-body channels open. We are interested
in trying to understand how to interpret the collision
matrix for higher values of E' such that a range of
scattering-state channels ss included in the set of open
channels.

The quantity
I UP~, nI )' is to be interpreted as the

outward Aux of neutrons associated with protons cap-
tured into the Pn state when there is unit incident Aux
in channel D1. Thus, the cross section for the (D, 1V)

reaction to the ground state of the residual nucleus is
proportional to

I
UPI, III I'. If ItPa is a scattering state,

then
I
UpIII I' ,must simPly be the flux of neutrons

associated with protons that subsequently emerge with

eriergy y '.
Suppose we set up an experiment with an incident

unit Rux of ground-state deuterons. What will be the
emergent flux of neutrons of energy k' in the energy
interval dE, = 2khkP One might say that the Aux is

FPAE=
I

UP, DI I'pp tsE,

to the three pa-rticle reaction when the energy becomes

great enough so that the scattering-state tmo-body charnels
begin to open up. Each class of two bo-dy channels con
tributes Incoherently to the three Par-ticle flux.

The density of states p depends on the two-body
interaction v, and it also depends on the extent of the
channel entrance. Consider @~p. At the far channel
entrance boundary, P~p will have the form

QVp(bN) ~sill(qÃpbN+bNp) ~ (13)

The precise values of the energy q&p' and the phase
shift b~p will depend on the homogeneous boundary
conditions we choose to impose on the P~p at b~. In
any case, the change of phase of the argument of the
sine function in Eq. (13) must be Ir when p changes
by one.

(qN p+, —qN p) bN+bN p~I bN p=n—. (14)

We can tal~e b& very large so that the level spacing

8E= g~,p+y
—g~,p ls ver/ small. Then

q
'= E'—k') 0, (9b) Ir= j (BttN/ttqN2)+(bN/2qN) }bE. (15)

g
2 k2 (10b)

which is the Aux of protons of energy E'—k' which
are followed by neutrons of energy k'. p&p is the density
of states in the Q&p spectrum at energy q&p'= k'. Finally,
there is the contribution from the deuteron channel.

F~~E=
I Un, nI I'oo, ~E, , (11a)

2 I fk (lt2 k2)1/2}2

= -IE2—-'k(E2 —k') '" (11b)

This must be interpreted as the Qux of neutrons of
energy k' that emerge in the company of protons of
energy E2—k'. pn„ is the density of states in the It122„

spectrum at energy qn22=~E2 —-'k(E2 —k') '"
The total emerging Aux of neutrons is seen to be

FhE= (FN+Fp+Fn) hE

—jI UP, III I'tIP + I UNp, n1 I'pNp

+ I Un, ,nI I2p»}», (»)
when these neutrons are associated with unbound
protons. Ke can summarize the description of three-
particle channels provided by the formalism in the
following manner. The asymptotic behavior of the scatter

ing wave function is described by a collision matrix that
is formulated in terms of two body channel-s only. Each
class of two body channels begi-ns to make a contribution

where pp is the density of states in the g& spectrum
at energy qp '= E'—k'. I'pAE is the Aux of neu'trons of
energy k which are followed by protons of energy
E'—k'. But there are additional contributions to be
included when E' —k'&0. We must include

FNtsE=
I UNpIII I'pNpts, E, (10a)

It follows that the level density is

pN 1/bE= Ir ——'j (ill/I7qN2) +—(bN/2qN) } . (16)

The presence of the energy derivative of the two-body
phase shift constitutes an effect of 6nal-state inter-
actions. '

The collision matrix elements Uq, q can be calculated
numerically from expressions provided by E-matrix
theory. ' In certain cases, values for the Uq p provided
by DWBA calculations may be adequate.

lV. GENERAL CASE OF THREE-BODY SYSTEM

We consider a system consisting of three distin-
guishable particles which we will label X (neutron),
F (proton), and A (I2 particle). Labels will also be
used to identify pairs of particles; lll+F =D (deuteron),
S+A=H(He —5), and 8+A=I.(Li—5). Let M2I be
the mass of particle 8 and let 3fgg be the reduced mass
of particles I3 and C. Let VIIo= (fP/2Mno)vtIo be the
(finite-range) potential energy of interaction between
particles 8 and C. %e suppose the relative-motion
Hamiltonian for our system to be

(17a)

VNP+ VNA+ VPA

= (&'/2) j 2f NP 'vNP+~NA-'vNA+ %PA-'vPA }, (17b)

2'= —(&'/2) jIrIz A 'VnA'+~Np 'VNp'}

(I22/2) jMP IV~N2+llIIN—A IVNA2 j

(g2/2) jIrINL I VNL22+IrIPA I VPA j (17c)

Here V~~' is the I.aplacian with respect to the coordi-

. M. Watson, Phys. Rev. 88, Ij.63 (1952); G. C. Phillips,
T. A. Gri8y, and L. C. Siedenharn, Nucl. Phys. 21, 327 {1960).
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nate r&z ——r& —rz. The Schrodinger equation for the
system is

(E—H)%'r =0. (18)

We introduce a five-dimensional hypersurface in
our six-dimensional configuration space separating the
asymptotic region from the inside region. This hyper-
surface will be made up of the three segments which
will serve as channel entrances for the three classes of
two-body channels. These hypersurface segments are

(proton ch ent) (19a)

The asymptotic boundary conditions are given by

NA, r(aA) =tA& (as)4,r f—A+ (IIA) UA, r, (23)

where the |'A1 '(f'A&+&) are the incoming (outgoing)
unit current radial wave functions which have the
following forms in the asymptotic region:

t L.&+& (aNL) ~(MNL/fikL. ) 'I'i+' exp(+ipz aNL), (24a) ~

t HS
' (AH) ~(MpH/kkHS) i exp (+~PHSIzpH)

(24b)

(neutron ch ent) (19b)

rDA aD —— (deuteron ch ent) . (19c)
pD (aDA)~(MDA/flkD ) i exp(~ipD aDA)

(24c)
In each channel entrance, we construct a complete

set of two-body eigenstates

(qLa +~PA ~PA)xza( rPA)

(qHS +DNA &NA)XHS(rNA)

(qDy +VNP re)xDp(1NP) —=0

(neutron ch ent)

(20a)

(proton ch ent)

(20b)

(deuteron ch ent) .
(20c)

These functions will fulfill homogeneous boundary con-
ditions at the boundaries of their respective channel
entrances. The angular momentum of the two-body
eigenstate is then coupled to the spin of the third
particle and to the relative orbital angular momentum
to form the total channel wave function.

Q(Slsm——
{ JM) (jL jNIIL IzN

~
Ss)

X2Y( (rNL) XL ".I"L.XN'»N (21a)

/assi'H= g (Slsm
~
JM) (jHjpplAIIsjzp { Ss)

Xi'Yt"(rPH) xHs'"'»'xP ~, (21b)

QD St "= g (S»m { JM) (jD~j Al D"il A I
Ss)

Xi'Y& (rDA)XD~' '" ~xA' . (21c)

With the help of the total channel wave functions
we can define the radial wave functions. To make the
notation more compact we will omit the angular mo-
mentum indices when they are not needed. Thus, the
radial wave functions are defined by

NL, r (IINL) = (ALA(rNL IINL)
~
+r ), (2—2a)

'1IHs, r(aPH) = (QHs8(rPH aPH) I +r), —(22b)

NDqr(ISA) = QDy,&(rDA —aDA)
~
+r). (22c)

The configuration-space integrations in the matrix ele-
ments that appear in Eq. (22) are understood to be
confined to the appropriate channel entrance region of
the hypersurface separating the inside and asymptotic
regions.

and U is the collision matrix. The wave numbers {PAj
are defined by

E= (5'/2) {MNI, 'pza'+MPA 'qza'j =ENL+EPA (25a)

= (&'/2) {MPH 'pHs'+MNA 'qHs'j =EPH+ENA

(25b)

(fi /2) {MDApDy +MN.P qDy j EDA+ENPp

(25c)

where E is the total energy of the system.
As before, we 'interpret

~
Uz, ,r {2 as the Aux of emer-

gent neutrons associated with I'+A complexes left in
the state I.a when there is unit flux incident in chan-
nel F. If the incident beam is a plane wave in channel
H1 (protons incident on ground-state He —5's), then
the Aux of neutrons emerging in channel I.n will be

FL = p (2jP+1) '(2jH&+1) '
~ p UzsiHisl, ,

X (Slsm {JM) Y&"(pH&)
* I'(4H'a/MPHpH, ), (26)

where p~~ is a unit vector pointing in the same direc-
tion as the wave number p~~ for the relative motion
of the incident particle and the target. This expression
includes an average over the various possible initial
spin states and a sum over final states.

FL is the fiux of neutron+Li pairs which emerge
with orbital angular momentum tVi coupled together
to form a state of angular momentum JA,. This quantity
is not as useful as the Aux of neutron+Li pairs emerg-
ing per unit solid angle with relative linear momentum

pl. A,. To construct such a quantity we need to find
the transition rate to a final state which is the appro-
priate coherent sum of states of the same energy but
different values of J, 3f, l', and S'. The required weight-
ing factor for such a sum is just

Q Y(."'(pL ) (S'l's'm'
{ JM) .
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+La,al (pI aIlpal)

SisiSs lmllm~

Thus, the Aux of neutrons per unit solid angle emerging
in the direction pz,„ is given by

II(P, XP)A reaction via the neutron channel is

~&La; Hl (qLaIlpLay pLa~pa1) /llflqba~flvLallENL

(4qr/Pal )PLa,al(qLaltPLay PLaltPH1)PLaq (31a)

+La,al(qLaItpLal pLaIlpal)

Z (2jp+1) '(2jal+1) 1
I Z F&"(qLa)

lmlf ml')Ev

X(SV 's m'I JM) fILas l,alsl

X(Slsm I JM) Fl (pal) I {4ll%/M'papa, )

= (4qr Ib/MPHPH1) PLa,al(PLaI1PH1) 1 (27)

X(&~0'v I1L&L) (jLj~rILpN I
S's')

X l'& '(pL ) (S'l's'm
I JM) &Lambs v,alsl

x I'1"(pal) ~(slsm
I
J'M) I'. (31b)

so-that the differential cross section for the (P, Itl)
reaction is just

dOLa, al(pLIlpal)/zlflNL (MPH/Ibpal)@La, al(pLaIlpal)

(4qr /pal )PLa,al (pLaIlprzl) ~

This diGerential cross section is not yet in the form
we need for comparison with experiment. The solid
angle dQ, L refers to a counter in the center-of-mass
frame of the P+A=I system rather than to the
center-of-mass frame for the three-body system. In
the three-body center-of-mass frame,

PLa (32R)

(2S)

The (P, X) differential cross section given above is

appropriate for the situation where the state of the
residual nucleus xl, belongs to the bound-state part
of the spectrum. If xL, belongs to the continuum, then
we must recognize that there will be many states that
are nearby in energy and cannot be distinguished by
counters with 6nite resolution in energy. Thus, the
sum over Gnal states in F must have a factor

pL.rlENI, =pL-d(&'PL '/2MNI. )

= qr '{(88L/BEpg) +bLMpg/fPqLafj

Xd(5'PL '/2MNL) (29)

included to account for this. The quantity p~ is the
density of states at energy Ib'qL '/2MP& in the Xz,

energy spectrum. In addition, each energy level of the
states X~ will be highly degenerate. Each state X~

1'L»

has the form

1LaPLa —X& &~1LaPLa

= Q (»& v Ijr. IIL )&"&b"(rp~)fj,z(rpa)re

X (j~jrzppirrl I ~0)X ' " X '"" (30)

for a suKciently simple choice of V+II. There will be
many values of g'&a, Z, and X which have very nearly
the same energy.

For our 6nal state, we form a superposition of such
states Xz„q),&L~L which wBl correspond to constraining
the P+A relative motion to take place in a given
direction. Thus, the differential cross section for the

is the wave number of the emerging neutrons discussed
above. The associated protons emerge with a three-
body center-of-mass-frame wave number of

Rp =qL.—(Mp/ML) pL. . (32b)

To transform the cross section into a form which refers
to solid angles with respect to the directions of k~ and
kz instead of those of pz, and g&, we need only multiply
the cross section by a factor zv.

d0'L, H1(frPIlpal lrNItpal) /d~P~fladEN

(4qz /pal )PLa,al(qLaltpLas pLaIlpal) PLarsL& (33a)

EN 5'kN'/2MN. —— (33b)

The explicit expression for the weight factor m'J. is
given in the Appendix.

Equation (33) is just the neutron channel contribu-
tion to the H(P, PÃ)A cross section. There will be
contributions from the proton channel and deuteron
channel as well. These three contributions are simply
additive; there is no interference since there is no
overlap of total channel wave functions.

The proton channel contribution to the II(P, PItI) A
differential cross section is

drab, al(~PIlpalr lqNIlpal) /dQPdQNdEN

= (4 '/Pal') Pab, al(qa pit pal, pap&pal) papwa, (34a)

Pab, al(qapIt pal) pap Jtpal)

{jp+1) '{2j»+1) 'I Z 1'1"(qap)
lmVmhv

SisiJM1'~p~

X (Zlb av
Ijalza) (jaj Ppapp I

S's')

X +V (pIIp) (SVs m
I JM) fIHbsbs'l', Hlsl

X Fl (pal) ~(Slsm I JM) I'. {34b)



The expression for III is found in the Appendix. The
wave numbers are de6ned by

yap=&r, (34c)

IMP =kH+ JIEHMH 'kP.-(34d)
The deuteron channel contribution to the H(I', I'E)2
diGerential cross section is

doD, ,H1(kpApH1, kHApH1)/dQpdQ~dEH

{4'/pIIl ) ~Dc,Hl(gDy~pHlg pDVJtpH1) PDVH1D) (35a)

IID.,H1(IID,&pH1, pD,~pH1)

= Z (2&'+i)-(»-+i)-
I Z

SSXo'p,g jml~mjhv

SINAI jgppg) JM

X(&&&P I J»D) (JDj»Du& I Ss)
XFp™(pD„)(SVS'rN'

I JM) UD, z)s P,Hlal

x vp(@II,)~(slsHs
I JM) Is. (35b)

The expression for m~ is found in the Appendix. The
wave numbers are defined by

pD, =kH+kP, (35c)

gD~=MPMD 'kH —MHMD
—'kP. (35d)

The complete expression for the H(I', I'E)3 differ-
ential cross section is thus

d&IIP,H1/~Kd0PdEII

= (dna, H1+d&H1,H1+d4Da, H1)/dfil'IdfiPdEII (36)

V. COLLISION MATRIX IN DISA
We have seen how the cross section for scattering

into three-body anal states can be written in terms of
collision matrix elements for transitions between two-
body channels. These elements of the colhsion matrix
di6er from the usual sort in that they refer to channel
states which are scattering states instead of bound
states. What we have called scattering-state channel
wave functions are really discrete spectrum wave func-
tloIls which sRtlsfy homogeneous boundaly condltlons
at the boundary of the channel entrance. By scattering-
state functions we mean that these channel wave func-
tions have oscillatory behavior near the boundary of
the channel entrance. The bound-state channel wave
functions are those w'hich decay exponentially as they
approach the boundary of the channel entrance.

Let us use the representation of the collision matrix
provided by the extended E-matrix formalism. 4

Ug, r ——exp(ill) I (1+iX'+')-'(i —iX&-&) I g,r exp(Qp),

(3'/a)

x~ r&+&= (IIIIrI,-'xI, {rI,) I Ill, r I yrrr 'xr(rr) )(iwisr), -
(37b)

x~,r= Vll+ V~(E—H) 'Vr. (37c)
4L. Garsidc and W. Tobocman, Ann. Phys. (N.Y.) 53, 1I5

(19N).

Here pq is the channel wave function for channel
=I.n. Let XL be the Hamiltonian of which Qll is

eigenfunction. Let 51. be the kinetic energy operator
for the relative radial motion of the two nuclides that
constitute channel L Let 'UL ( rL ) be an optical poten-
tial for the relative motion in channel Le. Then,

is the channel Hamiltonian, and.

{38b)

is the interaction in channel Le. The radial wave
function sg ls tile rcgulRr solution of

(E—HI,)@I,rI, 'xg{rI,) =-0. (39)

The optical-model phase shift bl characterizes the
asymptotic behavior of xl

xr (r)~(2MP/fl'Pr) '~' sin(Prr —lrm/2+fr) . (40)

Finally, , the parameters sl characterize the asymptotic
behavior of the 8-matrix Green's-function operator
E= (E—H)-'.

ar(d/dar) in@Ib(aI, rI) I
(—E—H)-'

I pre(ar rr) )—
(4i)

—prarLi+sr' cot(prar —2lrlr+Sr) j
Lcot(prar —g/rg+8r) —sr]

ui is the channel radius of channel I'.
This cxRct representation fol' the colllslon mRtrix

permits us to see very explicitly how the nature of the
channel wave functions pq will affect the collision
matrix. Clearly, it is simply a question of using scat-
tering-state wave functions in place of bound-state
wave functions in the evaluation of certain matrix
elements.

To pursue the matter further, let us make the Qrst-
order approximation

Xg,l~ Vi, (42)

which might be accurate at suKciently high energy.
If we choose sl= —i, then E. becomes a scattering
Green's-function operator, and the first-order approx-
imation is essentially the DWBA. On the other hand,
if we choose sl=o, then x&+)=x becomes the E
matrix and unitarity is preserved even in the Grst-order
approximation.

To simplify discussion we assume that all two-body
interactions are channel spin and orbital angular mo-
mentum scalars. We also set sl ———i. Now let us
examine the various elements of the X matrix. Since
si = —i, Xq,l(+& =0. For the others,

XLa,II1 = 2(CI I VIIP+ VHA UIIL I @'EI1)y (43a)

XHS,HII ~=2(c'Hp
I VHP+ VPz —"UPH

I c'Hl)& (43b)

X,,
& &=2(C, I V +V —V

I C,), (43c)
where

C I, QI,rI, 'xI„(re) . —— -(43d)

Using the post-prior equivalence, we can replace Eq.
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(43c) by wh~Ch WOuld be )uSt&ljed Sf MA&&My, ;, MP. NeXt wC

( I
V V

I ) ( 3 )
approximate V&P by a zero-range potential,

Now we make the assumption that VHP= VpR'b(rH —rp). (4')

~NA 'UNL~O,

~PA —'UPH

44a
On the basis of these assumptions and Eqs. (21), (30),

(44b) and (43) we find

XIaZ'X'S 'l', H1ZX8 = 2~~LÃL, ,

&vL —— P (s'l's'm'I J~) (j LjHvLpH I
s's') (&'&'a'~' IjL-vL-) (jpj~upp" I

~'~') (sls~
I ™)

K,I,m, V ~ ~ ~

X(jHjpgHwp I
Ss) (azar IjH»Hi) (j&j~yHy~ I

Za) (A'm'r'I E&) (lkmr
I
Ek)

(46a)

Z f gh J

x(lvoo
I
Eo) (zoo

I Eo)
(4x)2(2E+ 1)2

jL S' '&' jL- &' jp jHl S ' ~ JIll ~ h jp ~ h jN ~ jp ~ jA
~IfE'l' f J l g, E l g Eg J E f J ZjH h,

X
(2jL-+1) (2jHi+ 1) (2k+ 1) (2l+ 1) (2l'+ 1) '~2

(4m) 2(2jp+ 1) (2J+ 1)'

y (1'), 00
I
EO) (ly00

I
EO) ( 1)z+x'+s+s' lN lP 2'L. 2l-H' —l v— (—46b)——

where

ML=RVp dry Xls r Piz "(r)Xls ' r Pxz"'(r)
3EL hfH

Xg(r) =xg(r) /r,

Pg(r) =fg(r)/r,

(46c)

(47a)

5'(abde; cf) =
a b c

I-(2c+1) (2f+ 1)j"' (47c)

is the Racah 8' coe%cient. '

Z, le, m, v, "~

XHt, Z'X'S'l', HlZ) Sl 2~ H~IIy

(svs'm'I JM) (j HpjPyHpyP I
s's') (z'&'a'P'IjHpwHp) (jHj ApHp/ I

&'a') (slsm
I
J3E)

x(jHjlppH»p I ss) (exes. Ii H»Hi) (iHi~H~" I
z~) (l'~'m"'

I Ek) (Amp
I
E&)

2l'+1 2l+1 2X'+1 2K+1x(l ~'00
I
Eo) (zoo IEo) (4n)'(2E+1)'

(48a)

I,f J

'A' jP jH1 S Z jH1

f, E l' f J l f Elf'(2jHp+ 1) (2jH&+1) (2l'+ 1) (2l+ 1)
(4~)'(2f+ 1)'

X(l')"00
I
E'0) (900 I Eo) ( —1)'~ '+ —'&~'&H~'lH' —'-" (48b)

CO MA MA
IVIH "2Vp dy y2Xl', Hp y Px'Z, Hp(y)XlHl y P~zHI(y)

0 ~II HAH

XDcZ'X'S'/', HlZ) l 2~D~Dp(—)J3f

' L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod. Phys. 24, 249 (1952).

(48c)

(49a)
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WD= P (5'l's'm'
I JM) (j Dvj &ii&v» I

S's') (Z')''o'v'
I jDv&. &v) (j&jpu&ii& I

Z'0. ') (Stsm
I JM)

&& (j»jPp»pI I ») (&~or
Ij»u») (j~j ~i'~» I zc) (n'~'"

I Its) (n rii.
I

&&)

2t'+ 1 2l+1 21~'+1 2K+ 1x (P~'oo
I xo) (u,oo

I xo)
(4vr) '(2E+ 1)'

jI' jFI1 i-l ~ jIF1
X' 'h j& Z' 'Il jF jF ~' jX

f K t' f J 1 g E l g E f J K g J Z jp b

(2jnv+1) (2j»+1) (2t'+1) (2l+1) (2k+1)
(«)'(2~+ 1)'(2&+1)

&&(~'z'00
I zo) (phoo

I
Ito) ( 1) s+s~+2h-vjnY-2s» —i—v (49b)

CO Mg
Mir R'V F—i—x.nv(0) dr r'Xi s nv(r)F&, ,P'(r)Xi+' r

0 M~
(49c)

X~ is the radial wave function for the relative
motion of N and the nuclide I.. Ii~ is the radial wave
function for the relative motion of I' and A in the
nuclide I.n. The normalization of the X's is fixed by
Eqs. (40) and (47a). F~' is a bound-state wave func-
tion. Its presence in the integrand justifies our treating
the integral over the inside region as an integral over
all configuration space. The other Ii's are scattering
wave functions in the sense already discussed. Their
normalization is fixed by the requirement

dr r'Fg(r)'. (50)

This requirement and the fact that b& is very large
tells us that the scattering-state Ii's have the following
asymptotic behavior:

F&(r)~(2/b&) i&2r i sjn(q~r —7ivr/2 —bg) . (51)

In the expression for the cioss section, the square of
the matrix element in which the scattering state FJ,
appears will be multiplied by the density of channel-
wave-function states factor

interaction e6ects enter the formalism by way of the
energy dependence of the scattering-state F&'s.

Since we have assumed that V~F is zero range, the
appropriate expression for Fi, x nv(0) which appears in
Kq. (49c) is

Fi.x.nv(0) = (2Mir~/FPqnv) '"R '(sinbx Dv) Bi, ,z. (54)

From the example just considered, it is seen that
for the II(F, XF)A reaction, the use of scattering-
state channel wave functions causes no special difhculty.
In particular, the radii {b~I which measure the extents
of the channel entrances and the channel radii {uqI
do not appear in the final expressions.

In the case of the A (D, EF)A reaction, we encounter
the familiar difhculty that plagues Born-approxima-
tion treatments of stripping to unbound states. All the
radial wave functions that appear in the radial integrals
Ml., MFI, and M~ are scattering wave functions. The
absence of a convergence factor in the integrand causes
some ambiguity in the value of the integral. However,
these integrals can be interpreted if we follow' the
approach of Huby and Mines. '

p~= vr '{(B4/BE~) + (-bj Ms/&'q~) I, (52a)

(52b)

APPENMX

Eg = fPqs, '/2Ms,

(A1a)

q= ck~+ de. (A1b)

Suppose we have two pairs of vectors related by a
linear transformation:

In the limit as b& becomes very large, the contribution
of BBJ,/BE~ becomes negligible. Since all the bq's will p ak~+=bkp,
be chosen to be very large, we can set

(53a)

Fs (r)-+(2Ms/fPqs) "'r ' sin(qqr )/2v+rb&) —. (53b)

Thus, all explicit dependence on the {bqI, which serve
to measure the extent of the channel entrances, dis-

appeal s.
We see that the final-state-interaction eQects do not

arise from the Bb/BE term in p. Instead, final-state—

We seek. a weight factor m which will serve to relate
the differentials

2nPdPdQQQq= wfPM~ 'k~dk~dQ~dQp, (A2)

where 0, is the solid angle related to the orientation
of the vector q and Q~ is similarly related to k~. To

' R. Huby and J.R. Mines, Rev. Mod. Phys. 37, 406 (1965).
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do this, start by considering the element

2P n2M~
dv =dQ,P'dPdQ, dq q'8 ( nP'+Pq' —E) ——

qp fP

=pdpdQpdQ~2M~A, '.

Next consider the proton channel.

yII =&p,

qrr =&n+M~Ma '&z,

(A10a)

(A10b)

nP'+Pq'= (fP/2) (Mx~ 'qa'+Mza 'Pa') (A10c)By requiring the transformation to be unimodular,

ad —bc=& j, (A4) Comparison with Zq. (1) and (3) gives

we force the Jacobian of the transformation to be unity
so that

2p n2M~
p= ZO~k~ (S~dQp dkpkp 8 A g

—E
qp fP

u=o)

n=fP/2Mp ,rr p = fP//2M'.

Substitution into Eq. (6) gives

(A11b)

(A12b)
zo = dkp

4npM~ kp'k~
8( P'+Pq' —E) (A6a) P=(2M»//f M ) I

qk

= (k~kp'/qP2Py) (2nPM~/fP), &( (E 35~M~ —'E~+»E~ cos'8~p)»', (A12c)

kp=P —3IIg3f~ 9'k~ cos8~p,

w =kprkp»MgMIr/2q~PM~Mp~ =war, (A12a)

Comparison of Eqs. (2), (3), and (5) shows the» M M M ~M,M M +M
weight factor to be

II p/ av x p x p x II))

sk~ cos8~p)

cos8~p (k~ kp) /—k—~kp

P= {y-'E—y 'uk~'+y 's'k~'cos'8~p}»',

y =nb'+Pd',

x=na'+pc',

s= nab+Pcd,

p = {a'k~'+ b'kp2+2abk~kp cos8g p }»',

q= {c2k&'+d'kp'+2cdk&kp cos8zp}»'.

To apply this result to specific cases, consider
neutron channel vrhere it is found that

(A6b)

(A6c)

(A6d)

(A6e)

(A6f)

(A6g)

(A6h)

(A6i)

erst the

qrr = (k~'+M~'Mrr 'kp'+2M~Mrr 'k~kp c—os8~p)»'.

Finally, consider the deuteron channel

ye=&x+&p,

qg) =Kg Mg) 'k~ —3f~3fg) 'kp,

(A12e)

(A13a)

(A13b)

nP'+Pq'= (fP/2) (MNp 'qn'+Ma~ 'Pn') (A13c)

Comparison with Eq. (1) and (3) gives

(A/a)

qI„=hp+MpMr, '1r~, (A/b)

np'+pq'= (fP/2)(Mp~ 'qr, '+M~z, 'pr, '). (A/c)

Comparison with Eqs. (1) and (3) gives

a=1, b=0, c=MpMr, ', d=1, (ASa)
n =fP/2M'„p= fP/2Mp~. (ASb)

Substitution into Eq. (6) gives

fP '» (P MpMr, 'k~ cos8~p)' —M~-
2Mp~ P(E—M~M~I, 'E~) "' M~r,

P= (fP/2M') "'
)& (E—M~M~r, 'E~—MpM~Mg 'Mr, 'E~ sin'8~p) 'I',

(A9b)

x=1+My)M~ '+M~Mp ',

kp ——P—Mj)3fg '~ 'k~ cose~p)

pg) = {kv'+kp'+2k~kp cos8~p}'~',

(A15c)

(A15d)

(A15e)

qn = {Mp'k„'+M„'k„'—2M~Mpk~kp cos8~p} '~'Mn

n= fP/23Eg)g, P=fP/2M'.

Substitution into Zq. (6) gives

rc= Mg)k~kpm//2M~pqg) pg)P =u g&,

P= (23fg)/5'a) "'

X (E—3II~Mg-'E~+Mg)MvMg-'z-'E~ cos'8~p)»',


