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dependent parameters is able to reproduce the differ-
ential cross sections and polarizations of elastically-
scattered protons and neutrons from 1p-shell nuclei.
The set of parameters has characteristics similar to the
sets of parameters that fit elastic scattering data for
heavier nuclei. The numerical systematics of the model
differ somewhat between light and heavy nuclei. The
Thomas form of the spin-orbit potential has a peculiar
behavior for light nuclei which is compounded by the
fact that at low energies the calculations are particu-
larly sensitive to its strength. Over a large energy range,
the radius parameter must be energy-dependent; and
this dependence cannot be compensated by an in-
creased energy dependence in the real potential. These
differences, while small, seem to be significant.

It should be pointed out that the parameters of the
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present analysis are not necessarily the best set of
parameters since they were not determined by a rigorous
parameter search. The analysis does indicate that such
an analysis would be meaningful. While the data used
in the present analysis cover a wide range of energies,
the measurements were not spaced at regular intervals
over this energy range. When a more complete set of
data becomes available, a more rigorous analysis can
be undertaken.
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A new approach to the treatment of three-body channels in nuclear-reaction theory is proposed. The
method is based on the R-matrix formalism. Instead of introducing three-particle final states as a new
class of channels, it is suggested that they be described in terms of incoherent contributions from the various
two-body channels having scattering-state residual-nucleus wave functions instead of the customary
bound-state ones. The method is (a) illustrated with a simple one-dimensional three-body system, (b)
applied to a general three-body system, and finally (c) used to set up a distorted-wave Born-approximation

analysis of the general three-body system.

I. INTRODUCTION

OR the most part, theoretical treatments of scatter-

ing and reactions have been restricted to the regime
of two-body channels. While some efforts have been
made to find the appropriate three-body channel gen-
eralizations,' useful methods of general applicability
have not been forthcoming.

In this paper, we outline a new approach to the
description of three-body channels which appears to be
at once practical and completely rigorous. We propose
to describe three-particle final states in terms of in-
coherent contributions from two-body channels for
which the internal motion of one of the residual nuclei
is a scattering state rather than a bound state. Thus,
we do not find it necessary to introduce into the R-
matrix formalism? a new class of three-particle chan-
nels to supplement the usual two-particle ones.

* Work supported by the U.S. Atomic Energy Commission.
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A preview sketch of our method is presented in
Sec. IIL. In Sec. IIT, we demonstrate the method on a
simple one-dimensional three-body system. A general
three-particle system is treated in Sec. IV. In Sec. V,
we show how our analysis of the three-particle scatter-
ing problem can provide the basis for a distorted-wave
Born-approximation (DWBA) calculation.

II. PREVIEW OF METHOD

The basis of our analysis is the conventional R-matrix
theory scheme for defining channels. The (3N—3)-
dimensional relative-motion configuration space of a
given N nucleon system is separated into an “inside
region”” and an ‘‘asymptotic region” by a large closed
(3N —4)-dimensional hypersurface, the boundary hy-
persurface, centered at the center of mass. For the
purposes of this analysis, this surface will be taken to
be arbitrarily large. When the energy of the system is
sufficiently small, the wave function will be found to be
negligible everywhere on this boundary surface except
at certain small patches. Each such patch corresponds
to a partition of the V nucleons into two widely sepa-
rated clusters. Take the boundary hypersurface to be
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a polyhedron with a face centered on each such patch.
Each face of this polyhedron will then be called the
channel entrance for a particular class of channels.

Thus, a partition of the N nucleons into two clusters
defines a class of channels and an associated channel
entrance on the boundary hypersurface. Individual
channels belonging to a particular class are each associ-
ated with a ““total channel wave function” defined on
the corresponding channel entrance. The total channel
wave function is an eigenfunction of the total angular
momentum resulting from vector coupling together the
internal-motion wave functions for particular bound
states of each of the two clusters of a given class with
a spherical harmonic for the angular part of their
relative motion.

When the energy is small, the asymptotic behavior
of the system is adequately described in terms of just
a few channels in each class. Since each of the two
clusters of nucleons is in a bound state, the total
channel wave function will vanish exponentially in
approaching the outer limits of the channel entrance.
This is consistent with the patch where the wave func-
tion is non-negligible being small in comparison to the
size of the channel entrance. As the energy of the sys-
tem is increased, these patches will grow in size as it
becomes necessary to include additional channels cor-
responding to more highly excited states of the indi-
vidual nucleon clusters.

As the energy of the system approaches the threshold
for three-body reactions, the description of the asymp-
totic behavior of the wave function outlined above
seems to become inadequate. The patches of non-
negligible wave function expand to fill their respective
channel entrances as it becomes possible for one of the
two nucleon clusters to be in an unbound state. Previous
attempts to describe this situation' have sought to
supplement the finite set of two-body channels with
a continuum of three-body channels. This approach
has difficulties arising from the lack of orthogonality
of the two-body and three-body channel wave functions.

The method we suggest is based on the idea that the
framework set up to describe two-body channels can
continue to provide a valid characterization of the
asymptotic wave function even for energies above the
three-body reaction threshold. For each class of two-
body channels, we require that the total channel wave
functions form a complete orthogonal set normalized
over the channel entrance. The total channel wave
functions belonging to a given set will thus fulfill
homogeneous boundary conditions at the outer edge of
their channel entrance. In this way, a complete ortho-
normal set of wave functions is created which can
provide a true representation of the system wave func-
tion over the entire boundary polyhedron.

Being defined over a finite (but arbitrarily large)
region, the channel wave functions belonging to a
given class will form a denumerable set. This set will
have a low-energy sparse-in-energy part corresponding
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to each of the two nucleon clusters being in bound
states. It will also have a high-energy dense-in-energy
part corresponding to at least one of the two nucleon
clusters being in an unbound state. We distinguish
between these two types of total channel wave functions
by calling the former ‘“bound-state channels” and the
latter “‘scattering-state channels.”

In this paper, we show that it is possible to give a
natural interpretation of the collision matrix elements
associated with scattering-state channels. We find that
each open scattering-state channel makes an incoherent
(with respect to the contributions of other scattering-
state channels) contribution to a three-body reaction.
We also show that the calculation of the collision
matrix elements for scattering-state channels does not
present any special problems.

III. ONE-DIMENSIONAL THREE-BODY SYSTEM

To illustrate our method, we apply it to a very
simple three-body system. Suppose we have two par-
ticles, N and P, of equal mass and having but one
degree of freedom. Let these particles interact with
each other and with an infinite mass scattering center
by means of short-range potentials. Then in appro-
priate units (7#%/2m=1) the Hamiltonian will be
given by

H=— (62/67N2) o (32/37’122) +‘UN(1’N) +'IJP(7P)

+271NP([ YN—Tp D.

1)

Both y and 7p become infinite at the origin. All the
potentials vanish beyond certain finite ranges. Let K2
be the energy of the system. The Shrodinger equation
will be

{ K2+ (6%/0rn?) 4 (82/0rp2) —uy (rx) —vp(7p)

—2oxp(| rv—rp |) Wr(rw, 72) =0  (2a)
or, equivalently,
(K3--4(0/0R) +2(2%/0r") — v (Ret-br) —vp(R—3r)

—2oxp(| 7 |) }xr(R, ) =0, (2b)
where '

(20)

The two-dimensional configuration space of the sys-
etm is plotted in Fig. 1. The cross-hatched regions
contain those points of configuration space where vy,
vp, and oyp are not all zero. A boundary, separating
configuration space into an asymptotic region and an
inside region, is formed by the three line segments
rp=ap, rx=ay, and R=ap. It is understood that .

R=3(rv+7p),

Y=rN—1rp.

(3a)

is positive and much greater than the range of wp.

bp= ZdD—GN
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It is also understood that
(3b)

is positive and much greater than the range of wy.
Finally, it is understood that

bN=20D'—dP

(3¢)
(3d)
are both positive and much greater than the range of
owp. The three segments of this boundary will be called
the neutron, proton, and deuteron channel entrances,
corresponding to the three classes of two-body chan-
nels available to the system.

For each channel entrance, we introduce a complete
set of channel wave functions. For the neutron channel
entrance, the channel wave functions will be the solu-
tions of the equation

(gpa®+ (8*/drp*) —vp Yppa(rp) =0,
0_<_7PSbP, oz=1, 2, 3, see, (43.)

For the proton channel entrance the channel wave
functions will be the solutions of

(g™t (@*/dry®) —vx Yong(rn) =0,
OSrN—<—bN> :321: 2; 3: . (4b)

And finally, for the deuteron channel entrance the
channel wave functions will be

(QD72+ (d2/d1’2) — NP )¢'D‘y(r) = 0:
y=1,2,3, .

pv=2(ax—ap),

pp=2(ap—ap)

(4c)

Being orthogonal and defined over finite regions, the
channel wave functions have discrete spectra of energy
eigenvalues ¢%. Each spectrum will be sparse at its low-
energy end and dense at its high-energy portion, with
a sharp demarcation between the two parts. We will
refer to the sparse low-energy spectrum as the bound-
state spectrum and to the dense higher-energy spec-
trum as the scattering-state spectrum.

We regard each channel wave function as being iden-
tified with a distinct channel having an associated
radial wave function #.

—pv<r=<pp,

bp

Upa,r(rn) = / dre ¢pa(rp) ¥ (ry, ),  (5a)
1]
b

unp,r(rp) = / dry éns(rw) *Yr(ry, rp),  (5b)
0

pp
urx(R)= [ dr dou(1)®ea(R, 7).

—pN

(5¢)

The radial wave functions will reflect free-particle
behavior at the channel entrances. The specification of
this behavior constitutes the specification of the asymp-
totic boundary conditions fulfilled by the system wave
function ¢r (or xr).
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neutron
channel
ay deuteron
channel
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by
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channel
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A
r
>'p
bp ap ap

F16. 1. Configuration-space diagram for a system consisting of
two particles, IV and P, each having one degree of freedom.

For the sake of definiteness we will consider the
case of ground-state deuterons incident on the target.
The asymptotic boundary conditions for this case are
specified by

tpa,p1(an) = — (7i/2ppa) * exp(ippatn) Upa,p1, (6a)
uxg.p1(ap) = — (h/2pnp) " exp(ipnsop) Ungpr,  (6b)
4p3,01(0p) = (7i/ pp) V2 €Xp(—1ppyap) 851

—exp(ippy0p) Upy,m}, (6¢)

where the wave numbers p are defined by
PPt grd=K?, (7a)
png*+angt=K?, (7b)
3D+ 2gp,?= K2 (7c)

The parameters that specify the asymptotic boundary
conditions are seen to be the elements of the collision
matrix U. This matrix is required to be symmetric
and “unitary” in the sense described below. It must be
possible to express the transition probabilities for all
physical processes in terms of the collision matrix.

Strictly speaking, the collision matrix is infinite-
dimensional since there are infinitely many channel
wave functions. However, there will only be a finite
number of open channels, i.e., channels for which
9°>0. The conservation of flux requirement leads to
the ““unitarity condition”

or,z= ; UarUa,s%, (8)
where U is regarded as a finite matrix through the
exclusion of all closed channels.

If K? is sufficiently small, then all the open channels
will be contained in the bound-state part of the channel-
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wave-function spectrum. This situation corresponds to
having only two-body channels open. We are interested
in trying to understand how to interpret the collision
matrix for higher values of K? such that a range of
scattering-state channels 1s included in the set of open
channels.

The quantity | Upa,p1 |* is to be interpreted as the
outward flux of neutrons associated with protons cap-
tured into the Pa state when there is unit incident flux
in channel D1. Thus, the cross section for the (D, N)
reaction to the ground state of the residual nucleus is
proportional to | Upi,pi|% If ¢ra is a scattering state,
then | Upa,p1|* must simply be the flux of neutrons
associated with protons that subsequently emerge with
energy qra’.

Suppose we set up an experiment with an incident
unit flux of ground-state deuterons. What will be the
emergent flux of neutrons of energy %% in the energy
interval AE=2kAk? One might say that the flux is

FpAE= I Ul-‘a,Dl (2PPaAE7 (93‘>
grat=K2—k2>0, (9b)

where pp. is the density of states in the ¢p, spectrum
at energy gp.’= K?—Fk% FpAE is the flux of neutrons of
energy k? which are followed by protons of energy
K2—F2, But there are additional contributions to be
included when K2—%2>0. We must include

FNAE= ] Z/"Nﬂ,Dl ]2pN,3AE, (10&)

vg'=F?, (10b)

which is the flux of protons of energy K?—£#? which
are followed by neutrons of energy &% png is the density
of states in the ¢yg spectrum at energy gyg*= k% Finally,
there is the contribution from the deuteron channel.

FpAE=| Upy,n1 |*o0,AL, (11a)
= (K2 ) e
= 1K Fh(KP— )12, (11b)

This must be interpreted as the flux of neutrons of
energy k® that emerge in the company of protons of
energy K?—Fk2 pp, is the density of states in the ¢p,
spectrum at energy ¢p,*=31K*—3k(K?—Fk?)12,

The total emerging flux of neutrons is seen to be

FAE= (FN+FP+FD) AE

={| Upa,p1 |2orat | Ung,p1 [*pns

+ | Upy,o1 [P0y} AE,  (12)

when these neutrons are associated with unbound
protons. We can summarize the description of three-
particle channels provided by the formalism in the
following manner. The asymptotic behavior of the scatter-
ing wave function is described by a collision matrix that
is formulated in terms of two-body channels only. Each
class of two-body channels begins lo make a contribution
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lo the three-particle reaction when the energy becomes
great enough so that the scattering-state two-body channels
begin to open up. Each class of two-body channels con-
tributes incoherently to the three-pariicle flux.

The density of states p depends on the two-body
interaction v, and it also depends on the extent of the
channel entrance. Consider ¢ng. At the far channel
entrance boundary, ¢xg will have the form

dwp(bw) ~sin(gngby~+6ng) . (13)

The precise values of the energy qwg® and the phase
shift 6ys will depend on the homogeneous boundary
conditions we choose to impose on the ¢ng at by. In
any case, the change of phase of the argument of the
sine function in Eq. (13) must be = when 8 changes
by one.

(gv pr1—qn.p) by+8x pr1—by p=. (14)

We can take by very large so that the level spacing

8E=qy gii*—qn .6 Is very small. Then,

™= { (asN/an2)+(bN/2qN)}5E. (15)
It follows that the level density is
py=1/8E=n"{(3dn/dqn*) + (bn/2qn)}. (16)

The presence of the energy derivative of the two-body
phase shift constitutes an effect of final-state inter-
actions.?

The collision matrix elements Uy r can be calculated
numerically from expressions provided by R-matrix
theory.? In certain cases, values for the U, r provided
by DWBA calculations may be adequate.

IV. GENERAL CASE OF THREE-BODY SYSTEM

We consider a system consisting of three distin-
guishable particles which we will label N (neutron),
P (proton), and A (« particle). Labels will also be
used to identify pairs of particles: N+ P= D (deuteron),
N+A=H(He-5), and P4+ A=L(Li—5). Let Mp be
the mass of particle B and let M pc¢ be the reduced mass
of particles B and C. Let Vpe= (#2/2Mpc)vec be the
(finite-range) potential energy of interaction between
particles B and C. We suppose the relative-motion
Hamiltonian for our system to be

H=T+V, (17a)
V=Vxp+Vya+Vpa

= (7%/2) {Myronp+Myaona+Mpa  0pa}, (17b)
T'=—(#/2) {Mps*Vpa>+MyrVyp?}

= —(7¥/2) {Mpr'Vou*+ M4 Vn4®}

= —(1/2) { My VN +Mpa™'Vpa?}. (17¢)

Here Vp¢? is the Laplacian with respect to the coordi-

3 K. M. Watson, Phys. Rev. 88, 1163 (1952); G. C. Phillips,
T. A. Griffy, and L. C. Biedenharn, Nucl. Phys. 21, 327 (1960).
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nate rge=rp—r¢. The Schrédinger equation for the
system is

(E—H)¥r=0. (18)
We introduce a five-dimensional hypersurface in
our six-dimensional configuration space separating the
asymptotic region from the inside region. This hyper-
surface will be made up of the three segments which
will serve as channel entrances for the three classes of
two-body channels. These hypersurface segments are

7Py = ap, (proton ch ent) (19a)
7NL=ay, (neutron ch ent) (19b)
7DA=0aD (deuteron ch ent). (19¢)

In each channel entrance, we construct a complete
set of two-body eigenstates

(qLﬁ—l—VpA?—va)XLa(rpA) =0, (neutron ch ent)

(20a)
(gus*+Vna®—ona)xus(tna)=0, (proton ch ent)

(20b)
(gp+*+ Vurt—vxr)xpy(Typ)=0 (deuteron ch ent).

(20c)

These functions will fulfill homogeneous boundary con-
ditions at the boundaries of their respective channel
entrances. The angular momentum of the two-body
eigenstate is then coupled to the spin of the third
particle and to the relative orbital angular momentum
to form the total channel wave function.

brast™= D (Slsm | IM) (jrajwurain | Ss)
NEL y‘lm (FN1) XLabotLay p iNEN (2 1la)
bugs’™ =, (Slsm | IM) ( jugjruugur | Ss)

XY (?P H) XH ﬂiHﬁuHﬁXPjPﬂP’ ( 2 1b)
dpysiM= D (Sism | JM) (jpyjampsia | Ss)
Xilylm(?DA)xD,yJ'D-yI-‘D'yxAJ'AFA. (21(;)

With the help of the total channel wave functions
we can define the radial wave functions. To make the
notation more compact we will omit the angular mo-
mentum indices when they are not needed. Thus, the
radial wave functions are defined by

trar(anr) = (prad(ryz—anz) | ¥r), (22a)
upg,r(apn) = ($upd (reu—arn) | ¥r), (22b)
#py,0(@pa) = (ppyd(rpa—apa) | ¥r). (22c)

The configuration-space integrations in the matrix ele-
ments that appear in Eq. (22) are understood to be
confined to the appropriate channel entrance region of
the hypersurface separating the inside and asymptotic
regions.
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The asymptotic boundary conditions are given by
s, r(an) =0 (an) 84,0 — 4P (a4) Ua r, (23)

where the {4 ({aP) are the incoming (outgoing)
unit current radial wave functions which have the
following forms in the asymptotic region:

(Lo (anr)—> (Myp/fkra) V25T exp(Sipraays), (24a) -
tup® (apy)— (Mpg/hkug) VT exp(ipuserm),

(24b)
oy @ (apa)— (Mpa/tikpy) V2Tl exp(£ipp,apa),

(24c)

and U is the collision matrix. The wave numbers {pa}
are defined by

E= (1/2) {Myr"pro’+Mpa'qra?} = Ens+Epa  (25a)
= (#%/2) {Mprpug*+My47'qus*} = Epu+Ena
(25b)
= (#2/2) {Mpa"ppy*+ Mnr'qp+*} = Epa+Enp,
(25¢)

where E is the total energy of the system.

As before, we interpret | Ura,r |2 as the flux of emer-
gent neutrons associated with P-4 complexes left in
the state La when there is unit flux incident in chan-
nel T. If the incident beam is a plane wave in channel
H1 (protons incident on ground-state He—35’s), then
the flux of neutrons emerging in channel La will be

Fra= 2 (25p+1)"1(2jm+1)"1 | > Uager s®™
Im

SsM

X (Slsm | JM) Y (pan)* [*(4n*h/Mpupm), (26)
where P is a unit vector pointing in the same direc-
tion as the wave number px; for the relative motion
of the incident particle and the target. This expression
includes an average over the various possible initial
spin states and a sum over final states.

Fi. is the flux of neutron+Li pairs which emerge
with orbital angular momentum /% coupled together
to form a state of angular momentum J#. This quantity
is not as useful as the flux of neutron+Li pairs emerg-
ing per unit solid angle with relative linear momentum
Profi. To construct such a quantity we need to find
the transition rate to a final state which is the appro-
priate coherent sum of states of the same energy but
different values of J, M, I, and .S’. The required weight-
ing factor for such a sum is just

>V (Pra) (SUs'm’ | TM).
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Thus, the flux of neutrons per unit solid angle emerging
in the direction P, is given by

Fro i (ProdApm)
= 3 @it @it )7 S ¥ )
Imllm

8’s!Ss

X (SVs'm' | TM) Urasrv, msi’™
X (Slsm | TM) Y (Pm) * |?(4n?h/ Mprpm)

= (47*1/Mpupm) Fre,m(PreApm), (27)
so-that the differential cross section for the (P, N)
reaction is just

dULa JH1 (ﬁLAﬁyl) /dQNL = (MPH/ﬁPHl) FLa,Hl (ﬁLaAﬁﬂl)
= (47%/pas®) Fram(PreApm).
(28)

The (P, N) differential cross section given above is
appropriate for the situation where the state of the
residual nucleus xz. belongs to the bound-state part
of the spectrum. If xz. belongs to the continuum, then
we must recognize that there will be many states that
are nearby in energy and cannot be distinguished by
counters with finite resolution in energy. Thus, the
sum over final states in F must have a factor

PLadEN L= PLad (h2PLa2/ 2My L)
=71 (802/0Epas) +brMpa/h*qra}

Xd(Wpra’/2Myz)  (29)
included to account for this. The quantity pz. is the
density of states at energy #%qr.?/2Mps in the Xie
energy spectrum. In addition, each energy level of the
states xzo will be highly degenerate. Each state xzq/Le#Le
has the form

XLe JLokLo = XLaZh JLokLa

= > (2N | fratira) YN (Tea) frz(rpr) rPa™

X ( ij AMPIA I Ea-)xPjPMPXAfP#A ( 30)
for a sufficiently simple choice of Vpy. There will be
many values of jza, 2, and N\ which have very nearly
the same energy.

For our final state, we form a superposition of such
states xrazaLerLe which will correspond to constraining
the P+A relative motion to take place in a given
direction. Thus, the differential cross section for the
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H(P, NP) A reaction via the neutron channel is
Ao 10;m1(QraldPra, ProaApm) /A, 00, dENL,
= (47%/ pus®) Fra,11(QraAPLay PraAPm) pLe,
Fra,m(GreAPre, PraApm)
= Z (Zjp+ 1)1 (2fm+1)72 |

SsZouny

(31a)

> (i)

Iml!m/ Ny

88! TMjLpL
X (2\ov | jrpr) (frjwuriw | S's’)
XY™ (Pra) (SUs'm’ | TM) Urasasrv ms’™
XY (Pur) *(Slsm | JM) . (31b)

This differential cross section is not yet in the form
we need for comparison with experiment. The solid
angle dQ,,, refers to a counter in the center-of-mass
frame of the P+A=L system rather than to the
center-of-mass frame for the three-body system. In
the three-body center-of-mass frame,

kN =pLa
is the wave number of the emerging neutrons discussed

above. The associated protons emerge with a three-
body center-of-mass-frame wave number of

kp=qro— (MP/ML) Pra.

To transform the cross section into a form which refers
to solid angles with respect to the directions of ky and
kp instead of those of pz, and gz, we need only multiply
the cross section by a factor w.

o L0, (kpAPrrs, en Aprn) /dQpdQnd Ex
= (47%/ pr1®) Fro,m1(GroaAPLay ProADm) prawr, (33a)
Ey=7%kx?/2My. (33b)

The explicit expression for the weight factor wy is
given in the Appendix.

Equation (33) is just the neutron channel contribu-
tion to the H(P, PN)A cross section. There will be
contributions from the proton channel and deuteron
channel as well. These three contributions are simply
additive; there is no interference since there is no
overlap of total channel wave functions.

The proton channel contribution to the H(P, PN)A
differential cross section is

domy, a1 (kpApu1, fyApm) /dQpdQnd Ey

= (47%/ pus®) F v, 11 (QupA P, PupAdm) puswn,
Fuy, 1 (QupApm, PrsApm)

= 2 (2D Q2m+ 1)

SsZopp

(32a)

(32b)

(34a)

> Yw(ins)

ImllmN\y

S!s!IM japH
X (ZNov | jupn) ( ju jrunue | S's")
XY™ (Pup) (SVUs'm’ | TM) Ugpsas v si”™

XY ™(Pus)*(Slsm | TM) 2. (34b)
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The expression for wy is found in the Appendix. The
wave numbers are defined by

prs=kr, (34c)
qup= kn+MyMygkp. (34d)

The deuteron channel contribution to the H(P, PN)A
differential cross section is

dope,m (ke AP, kv Apm) /dQpdOndEx
= (47*/ pus*) Fpe,u1(Gp-APn1, PoyAPm) poyp,
Fpe,m(GpyApr1, Po,Apm)
= 2 (2p+ 1) 2m+1)7|

SsZopd

(35a)

> "(dpy)

Imlm! Ny

815t ipupIM
X (Z\ov | jpup) (jp jauppa | S's")
XY™ (Bpy) (SVs'm' | TM) Upesasrvr misi’™
XY (D) *(Slsm | TM) 2. (35b)

The expression for wp is found in the Appendix. The
wave numbers are defined by

Poy=ky+kp, (35¢)
Apy=MpMp~ky—MyMp~kp. (35d)

The complete expression for the H(P, PN)A differ-
ential cross section is thus

do’ NP ,H1, / dQNdQPdE N
= (doge,m~+doms,m+dope 1) /dUndQUpdEy.
V. COLLISION MATRIX IN DWBA

We have seen how the cross section for scattering
into three-body final states can be written in terms of
collision matrix elements for transitions between two-
body channels. These elements of the collision matrix
differ from the usual sort in that they refer to channel
states which are scattering states instead of bound
states. What we have called scattering-state channel
wave functions are really discrete spectrum wave func-
tions which satisfy homogeneous boundary conditions
at the boundary of the channel entrance. By scattering-
state functions we mean that these channel wave func-
tions have oscillatory behavior near the boundary of
the channel entrance. The bound-state channel wave
functions are those which decay exponentially as they
approach the boundary of the channel entrance.

Let us use the representation of the collision matrix
provided by the extended R-matrix formalism.*

Upr=exp(a) { 1+iXP)1(1—iK)} o ,r exp(edr),

(36)

(37a)

3ar® = (para~%s(ra) | Xar | brriiar (rr) Y(1Fisr),
(37b)
Xar=Va+Vs(E—H)Vr. (37¢)

( ‘L.) Garside and W. Tobocman, Ann. Phys. (N.Y.) 53, 115
1969).
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Here ¢, is the channel wave function for channel
A=La. Let 3¢, be the Hamiltonian of which ¢, is
eigenfunction. Let 3z, be the kinetic energy operator
for the relative radial motion of the two nuclides that
constitute channel L. Let Uz (1s) be an optical poten-
tial for the relative motion in channel La. Then,

Hyo=3C1+31+ Ve (38a)
is the channel Hamiltonian, and
Vie=H—H;, (38b)

is the interaction in channel La. The radial wave
function x4 is the regular solution of

(E—Hy) pars % (7) =0. (39)

The optical-model phase shift §r characterizes the
asymptotic behavior of xp

2r(r)—(2M /TP pr) V2 sin(prr—lrw/2+6r).  (40)

Finally,. the parameters sr characterize the asymptotic
behavior of the R-matrix Green’s-function operator
R=(E—H)™.

ar(d/dar) In{psd(ar—rs) | (E—H)| ¢rd(ar—rr) )
— — prar[ 1+4-sp cot(prap—Elhm+or) ] @
[cot(prap—slrm+or) —sr]

ar is the channel radius of channel T'.

This exact representation for the collision matrix
permits us to see very explicitly how the nature of the
channel wave functions ¢, will affect the collision
matrix. Clearly, it is simply a question of using scat-
tering-state wave functions in place of bound-state
wave functions in the evaluation of certain matrix
elements.

To pursue the matter further, let us make the first-
order approximation

X2V, (42)

which might be accurate at sufficiently high energy.
If we choose sp=—4%, then R becomes a scattering
Green’s-function operator, and the first-order approx-
imation is essentially the DWBA. On the other hand,
if we choose spr=0, then X*®=X becomes the K
matrix and unitarity is preserved even in the first-order
approximation.

To simplify discussion we assume that all two-body
interactions are channel spin and orbital angular mo-
mentum scalars. We also set sp=—¢. Now let us
examine the various elements of the K matrix. Since
sp=—1, Xa,rP=0. For the others,

KiauiTD=2{(®ra | Vap+Vya—Ons | ®m), (43a)
Rap,m T =2(Pgg | Vr+Vpa—Oru | ®m), (43b)
KpymT=2(®py | Vua+Vra—Upa | ®m), (43c)

where
By=dara~ % (74). (43d)

Using the post-prior equivalence, we can replace Eq.
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(43¢) by which would be justified if M, >My, Mp. Next we
Kpy1©=2(®p, | Vart Vea—Upn | &), (43¢)) approximate Vyp by a zero-range potential,
Now we make the assumption that Vap=V, R} (ty—1p). (45)
Via =00, (44a) On the basis of these assumptions and Egs. (21), (30),
Vea—Vpu0, (44b) and (43) we find
Krasns v, mas™IM=2W L M, (46a)

Wi= 2. (SUs'm' |TM)(jojvucin | S's") (N6 | jrabra) (jp jappua | Z'a") (Slsm | JM)

K., k,m,p,

X (jn jeumpr | Ss) (ZNov | juwpus) (Jn japnpa | Za) (UN'm'v' | Kk) (Ikmw | Kk)
(2U'+1) (2N+1) (2i+1) (2>\+1)]”2

X ('N00 | K0) (200 | KO) [

(4m)2(2K+1)?
> v Jia S| [Z jre N jp Jm S} [2 Jm h ojp Z\ [k jx 2V [jp 2 ja
Krok \J UV fIIK UV fl\J 1 g)lK | gJ|\K g JJ|\K f J|I|Z jx h
x [(sza+1) (2jm+1) (2h+-1) (20+1) (2l'+1)]”2
(4m)2(2ja+1) (27+1)2
X (I'N00 | KO) (INOO | KO) (—1) ZH+2/+8+8/—iN=jP=2iLa=2t1—~1=V  (46D)
© M
ML=R3V0/ dr 7’2X115'La< 4 )F)\leLa(f>XlsH1 (—A‘{é 7’> F)‘zyl(f), (46C)
0 ML MH
where
Xa(r)=an(r) /7, (47a)
Fy(r) —fA(f)/r (47b)
and '
e b ¢
W (abde; of) = / [(2e4+1) 2f+1) T2 (47¢)
is the Racah W coefficient.’
RKuvznsv mons O M=2WyMy, (48a)
WH= Z (S’l’s’m’ I JM) (j]{ﬂjPMHﬂ#P ] S,S,) (2')'0"1/ ijg)uyﬁ) (jN]'A,U,NyA [ E'o") (Slsm | JM)
K b mp,ee
X (jH1jpﬂH1pP l SX) (2)\0’11 Ij]ﬂ,U.}u) (ijﬂNﬂA l 20’) (l')\’m’v’ [ Kk) (l)\mv t Kk)
(2U4+1) (2141) (20 +1) (2)\-|-1):l1/2
"\00 | KO) (IN
X (I'N'00 | KO) (IN0O | KO) [ (A 2K+1)?
o dm S| g N e SR g M [(Qjﬂe+1) (2jme+1) (2+1) (2l+1)]1/2
ilgov filk v ofllvo1 osllk 1o (4m)?(2f+1)*
X (IN00 | KO) (INOO | KO) (—1)22+8/+8-2ip—2iup—2im—1=V (48b)
MH'—'RaVo/ dr 7’2Xp.lHﬁ (E{f 7’) F)\/w ﬂ(?’)Xl H1 (y—— 7’) F)\E’“(r) (48C)
0 M M
Ko znesir mea™ M =2WpMp, (49a)

5 L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod. Phys. 24, 249 (1952).
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Wp= 3,

K k,m,p, -
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(SUs'm" | IM) (joyjauppa | S's") (EN'V' | jpywpy) (jn jeuvur | 2'a”) (Slsm | TM)

X (jm jeempp | S5) (2hov | jupm) ( jv japsea | Za) UN'm'v' | Kk) (Imv | KE)

X (I'N00 | KO) (IN0O | KO) [

2 jpy N|[jp jm S

jA jDv S’
K.fgh|] 4 f

K 1 fllJ 1 g

(2U4-1) (2041) (2N 1) (224 1)]1/2

(4m)? 2K+ 1)?
2 jm Nk ja 2k jp Z)[jp Z' jn
Lok 5Tk ¢ TlE g o

N [<2jDV+1> (2mt1) (U+1) (21 <2h+1)]1/2
(4m)2 (2T +1)2(2jy+1) |
X (UN00 | K0) (IN0O | KO) (—1) S+5M42-2ipy-2im=1-1/ (49})

oo M
MH=R3V0F)\r2/D7(O) / dr 7’2Xlrs/D7(1’)F)‘2Hl(1’) X sHt (]l?é r) .

0

XTI is the radial wave function for the relative
motion of N and the nuclide L. F« is the radial wave
function for the relative motion of P and 4 in the
nuclide La. The normalization of the X’s is fixed by
Eqgs. (40) and (47a). FH! is a bound-state wave func-
tion. Its presence in the integrand justifies our treating
the integral over the inside region as an integral over
all configuration space. The other F’s are scattering
wave functions in the sense already discussed. Their
normalization is fixed by the requirement

bA
1= / dr PFA(r)2. (50)
0
This requirement and the fact that b, is very large
tells us that the scattering-state F’s have the following

asymptotic behavior:
Fy(r)—(2/bp)2rLsin(gar—Mr/2—84). (S1)

In the expression for the cross section, the square of
the matrix element in which the scattering state Fy
appears will be multiplied by the density of channel-
wave-function states factor

pa=n"1{(88/OEL) + (baM n/2qa) },
Ey=1%2q\/2M .

(52a)
(52b)

In the limit as b, becomes very large, the contribution
of 36,/0Ex becomes negligible. Since all the bd)’s will
be chosen to be very large, we can set

(53a)
(53b)

pa=m1
Fu(r)—(2M s /h2qs) V21 sin(gar —Nr/2-84) .

Thus, all explicit dependence on the {by}, which serve
to measure the extent of the channel entrances, dis-
appears.

We see that the final-state-interaction effects do not
arise from the 03/0E term in p. Instead, final-state—

(49c)

H

interaction effects enter the formalism by way of the
energy dependence of the scattering-state F’s.

Since we have assumed that Vyp is zero range, the
appropriate expression for Fy 3?7(0) which appears in
Eq. (49¢) is

FrizP7(0) = (2Myp/hPqpy) V2R (sIndz P ) 6y 0. (54)

From the example just considered, it is seen that
for the H(P, NP)A reaction, the use of scattering-
state channel wave functions causes no special difficulty.
In particular, the radii {55} which measure the extents
of the channel entrances and the channel radii {a,}
do not appear in the final expressions.

In the case of the 4 (D, NP) 4 reaction, we encounter
the familiar difficulty that plagues Born-approxima-
tion treatments of stripping to unbound states. All the
radial wave functions that appear in the radial integrals
My, My, and My are scattering wave functions. The
absence of a convergence factor in the integrand causes
some ambiguity in the value of the integral. However,
these integrals can be interpreted if we follow the
approach of Huby and Mines.®

APPENDIX

Suppose we have two pairs of vectors related by a
linear transformation:

p=aky+bkp, (Ala)
q=cky+dkp. (A1b)

We seek a weight factor w which will serve to relate
the differentials

20pdpdQ,dQ=wh* M y~kydkydQydQp,  (A2)

where Q, is the solid angle related to the orientation
of the vector q and Qy is similarly related to ky. To

¢ R. Huby and J. R. Mines, Rev. Mod. Phys. 37, 406 (1965).
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do this, start by considering the element
28 a2My
g W

dv=dQpdpdQ, / dq ¢6(ap+Be—E) =
= pdpdQ,dQe2 M T2 (A3)
By requiring the transformation to be unimodular,
ad—bec==1, (A4)
we force the Jacobian of the transformation to be unity
so that

28 a2M
dv=dQkx*dbydSp f dkplp®8(ap+Be—E) 5 2 mN'
(AS)

(2), (3), and (5) shows the

Comparison of Egs.
weight factor to be

4aBMy kp'k
w= [ e =T sap ) (AGw)
= (knkp/ qjﬂPy) (ZaBMN/ ),
where
kp=P—y_IZkN cosfnp, (A6b)
cosfyp= (kN'kp) /kap, (A6C)

P={ylE—y aky+y25%y? cos®yp} 2,  (A6d)
y=ab’++pd?, (AGe)
x=ad’4Bc%, (A6f)
2= aab+Bcd, (A6g)
p=1{akx>+b%p*+ 2abknke cosyr}?, (A6h)
q= {kx?+d%kp*+2cdkykp cosOnp} 2. (A6i)

To apply this result to specific cases, consider first the
neutron channel where it is found that

p.=Kku, (A7a)

q.=kpt+MpM;ky, (A7Db)

ap*+Bg= (12/2) (Mps'qr’*+ My 'p1?). (Alc)
Comparison with Egs. (1) and (3) gives

a=1, =0, c¢=MpM;, d=1, (A8a)

a=1/2Myz, B=1/2Mpa. (A8b)

Substitution into Eq. (6) gives
72 \V2 (P—MpMr Ry cosfyp)? My
“T (ZMPA) PE—MxMyi E)" My, 7
(A9a)

P= (ﬁz/ZMpA) -1z
X(E—MyMyr ' En—MpMyM M Ex sin?fyp) 12,
(A9b)

=7itky?/2M . (A9)
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Next consider the proton channel.

pu=kp, (A10a)
Qu=ky+MyMu'kp, (A10b)
ap®+Be*= (1?/2) (Mya'gn*+Mpeu'pn*). (A10c)
Comparison with Eq. (1) and (3) gives
a=0, b=1, «c¢=1, d=MyMy, (Alla)
a=7*/2Mpg, B=H/2Mya. (A11b)
Substitution into Eq. (6) gives
w=knkpNMaiMp/2qe PMyMpy=ws, (A12a)

N=MyMuMp/Mas(MyMp+MsMp+MsMy),

(A12b)

P=(2M 2N/ R M) 12
X (E—MHMA'—IEN-'-)\ZEN COSzﬁNp) 1/2, (AIZC)
kp=P—MaMy~Nky cosfye, (A12d)

Q= (sz-i- MM yg=2kp* - 2M Mg kxkp C050Np) 172,

(A12e)
Finally, consider the deuteron channel
=ky+kp, (A13a)
Ap=MpMp~Ry—MyMpkp, (A13b)
ap*+Bg*= (1/2) (Myr~Yqp*+Mpa~pp?). (Al3c)
Comparison with Eq. (1) and (3) gives
a=1, b=1, c=MpMp™, d=MyMp=,
(Al4a)
a=1*/2Mps,  B=H*/2Myp. (A14b)
Substitution into Eq. (6) gives
w= Mpkyke?*/2MnpgpppP=wp, (A15a)

P=(2Mp/#*)"?
X(E—MpM s Ex+MpMyM 4% Ey cos®0yp) 12,

(A15b)

k=1+MpM s+ My Mz, (A15¢)
kp=P—MpM s~y cosbyp, (A15d)
pp={kn>+kp?+2knkp cosOyp}'?, (A15e)

gp= { Mp?kn®+ My?ky?— 2MyMpkykp cosfyp} V2Mp,
(A15f)



