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To calculate correctly the scattering of light by phonons or impurities in a crystal, the true asymptotic
scattering states of the coupled system of crystal plus light (polaritons) should be used. When the light
frequency is close to one exciton or optical-phonon frequency, the polariton is entirely excitonlike, and the
polariton scattering can, in the Born approximation, be related to exciton scattering properties. If the exciton
itself interacts strongly with an imperfection in the crystal, it is not permissible to treat either the exciton
scattering or the exciton-photon interaction as perturbations. This problem of resonant scattering of polari-
tons is solved for short-range exciton-impurity interactions. Radiative damping and spatial dispersion
appear in this solution in a natural fashion. Giant oscillator strengths of bound-exciton transitions are like-
wise automatically obtained. The proper inclusion of radiative damping and spatial dispersion keeps all cross
sections finite. The relation between the theory and experiments is brieAy discussed.

I. INTRODUCTION

IGHT whose frequency is very near a strong ab-
~ sorption band in a solid (e.g. , near an exciton or

optical-phonon resonance energy) couples strongly with
a crystal. The polariton, a mixed mode of light and
crystal polarization, is the true eigenmode of propaga-
tion in the crystal. The Rayleigh, Raman, or Brillouin
scattering of light in a crystal is most physically de-
scribed as a scattering of a polariton by an impurity,
optical phonon, or acoustic phonon and is often so
described in theory. ' For photon frequencies far away
from any resonance, polaritons chieQy resemble renor-
malized photons, and elementary points of view about
photon are useful. For photon frequencies near an
exciton resonance (for example) polaritons are chiefly
excitionlike, and it should be possible to use this feature
of polaritons to express polariton scattering in terms
of parameters relevant to the scattering of bare excitons
from impurities or phonons.

This study is motivated by the growing number of
experiments on the scattering of light near the funda-
mental exciton absorption resonance in semiconductors
and insulators. '4 Our results provide a simple method
of estimating cross sections and understanding energy
dependences in that energy region where the strong
coupling between light and matter makes the problem
appear most difficult. In the present work, spatial dis-
persion and radiative damping each enter the theory
in an elementary fashion. While the results of this
paper can be (and some have been) obtained from more
conventional points of view when the scattering is
weak, ' the conceptual simplification provided by the
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composite particle approach is considerable even in this
case, and is essential for resonant scattering near exciton
transitions.

In Sec. II, a model for the polariton with light very
near an exciton frequency is set up, and its application
is reviewed in a case in which the scattering can be
treated in the Born approximation. In Sec. III, the
model is applied to the case in which an impurity pro-
duces a resonant scattering (bound-exciton state). A
giant oscillator strength and a complicated energy de-
pendence of the cross section emerge. The results are
discussed in comparison with experiments and other
theories in Sec IV.

II. POLARITON SCATTERING IN THE
BORN APPROXIMATION

The dielectric medium in which the polariton propa-
gates is presumed to be characterized by a background
dielectric constant ep and a single resonant freuqency
cop. For light frequencies close to cop, the precise origin
of the background dielectric response is immaterial.
If the dielectric resonance frequency ~p(k) is also al-
lowed to be wave-vector-dependent, the dielectric re-
sponse of the medium in the absence of a scattering
center is assumed to be of the form

47rP
e(k,M) = ep+

& —~s/~p'(k)

It will further be assumed that, for small k,

ppp'(k) =cops+Akscop/m. (2)

This is not the most general form of small-k single-
resonance dielectric response, even for a cubic crystal.
For Gnite h, ~p could have been a nondiagonal tensor,
and the degeneracy in ~p(k) could be split for k/0. To
preserve algebraic and -conceptual simplicity, such un-
necessary complications will be ignored. The dielectric
response then represents that due to an exciton or other
quasiparticle having a dispersion relation (in the absence
of a coupling to light)

Es ——Ago)(k) (3)
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i(~PI—«)"'(1+~/~o)
C12 =

(/o/oo )&/oL(1 ooo/oo o)o/4~P/oo]&/o

c13 c11(cA/coo —o///oo)/(cA/o/o+/d/&o),

cq4 =cxo(1—&u/&oo)/(1+o//coo),

(4)

where O.kt is a creation operator for a polariton wave
vector k. The frequency co of such a polariton is given
by a solution of

c'k2 4n.p/oo

1—coo/&eo'

In these equations, c is the renormalized velocity of
light 3&(10"/Qoo cm/sec.

Let E~& be the splitting between a longitudinal exciton
and its corresponding transverse exciton. This energy
can be expressed in terms of the already de6ned param-
eters by

E[(=Aco/g=
f (1+41IP/o—o)'/o —1]ho/o= (2srP/oo)Aooo, (6)

and is often directly measurable. In CdS, a typical
seimconductor, this energy is about 0.002 eV for the
lowest-energy exciton. For NaC1, the corresponding
number is about 0.1 eV. De6ne a coupling energy

Aoo, —=E,= (Aooo@~)"'. (7)

For photon energies Ao/ such that
f

Ao/ —Ao/o
f

is some-
what less than E„ the transformation (4) becomes

and mass m. Such a model has been successfully used
for treating problems involving spatial dispersion. 5

The polariton normal modes of wave propagation in
such a medium can be treated either quantum-mechani-
cally or classically. If we denote the quantum-mechani-
cal exciton creation (annihilation) operators by b/, t (b/, ),
and the photon operators by a/, t (a&), then the trans-
formation from exciton and photon operators to polari-
ton operators is'

Gk =C118k +cloktt+c1oo —t+c14f/

(1—oo/~o) (cA/ooo+oo/o/o) (1+co/o/o)
C11

2(cAo//o/o ) / L(1 oo //do ) +4~P/oo] l

nated by the exciton. Yet the group velocity, approxi-
mately

1 c 1 o),
no= = 1+—

dk/d v', 2,—) (10)

where the matrix element of V is taken between initial
and final states normalized to unit volume, and the
conservation of energy demands

f
k

f
=

f
k' f. The veloc-

ity of the exciton is o, =Ah/s/o, and its energy is
E=h'k'/2s/o Consi. der now the scattering of a polariton
for which f&o

—
~of (/o. from the same impurity po-

tential. Because the polariton wave function is essen-
tially excitonlike, the matrix element is simply

(polariton k
f V(r) f

polariton k') = (k f U(r) f
k') . (12)

In the Born approximation (i.e., using Fermi s transi-
tion-rate "Golden rule" ),' the differential scattering
cross section for polariton k scattering to k' is

do) 1
=—f(kf V(r) fk') f'

n),.g 7l 5 dE

k' dk

k2 1
= f(kf V(r) fk')

f
—,(13)

7th vg

is dominated by the ce.' term for all f/o —ooo f
(oo., show-

ing that the polariton is chief excitonlike. If is often
not appreciated that the energy at which it becomes
excitonlike (i.e., E,) is far enough from that of the
exciton resonance to be experimentally important.

Suppose some new perturbation is introduced into
the Hamiltonian. The simplest such perturbation might
be a weak, short-range electrostatic potential V(r). If
we ignore exciton-photon interactions, the differential
scattering cross section for an exciton (of isotropic mass)
scattering from state

f k) to state
f
k'& can be evaluated

in the Born approximation, ' and is given by

do 1 k' dk—=—I( Iv(r)lk'&I—
dQ v, xk dE

k'
=f(kf V(r)k'&f', (ll)

7l h Sex

c11=0, c13—0 ) c14—0 ) c12—~ ~ &k —~k
where E is the polariton energy and v, is the polariton
group velocity. Thus

c242 2o.P cong

=oo+ =oo 1+.. .)
For f/oo —oo

f )2ou&, the index of refraction is not domi-

In short, the polariton waoe fN/octioN in this energy
region is virtually all excitonlike, although its dispersior/
relcA'oe need not be. We call this case the exciton limit.

A classical indication of why this is so is seen from
an examination of the polariton dispersion relation.
Letting the exciton mass be infinite for the moment,
one can write the polariton dispersion relation approxi-
mately as

(14)

where all cross sections and velocities are evaluated for
the same k. This gives an immediate method of evaluat-
ing the polariton scattering cross section (i.e., the
Rayleigh scattering of the impurity) for energies near
the excition resonance, in terms of the bare-exciton
scattering. Such a result is particularly useful when the
bare-exciton scattering cross section can be estimated

' J. J. Hopaeld and D. G. Thomas, Phys. Rev. 132, 563 {1963).



from the appropriate magnitude and range of V(r), the
internal structure of the exciton, and the wave vector.

When o) is not too near o)o, Eq. (10) is an adequate
expression for e~, and the dominant frequency depen-
dence of the cross section is proportional to (o)—o)o) '.
When ~ is very near ~0, however, the k dependence of
the exciton energy must be taken into account in evalu-
ating the group velocity. Inspection of the polariton
dispersion relation including a 6nite positive exciton
mass (Fig. 1) shows that the group velocity of the
polariton is always greater than that of the exciton of
the same wave vector. When ao approaches very close
to the exciton energy, (v,„/v,)' only goes to a limit of
1.0, not in6nity. In this description there is no non-
physical divergence4 in the polariton scattering cross
section near the k=o exciton energy.

Inelastic scattering cross sections for polaritons —for
example, near-resonance Raman scattering cross sec-
tions —can again be calculated in the Born approxima-
tion from the matrix elements for a similar pure exciton
scattering process. In this case, the pure exciton inelastic
process may often fail to conserve energy and therefore
occur only as a virtual process. The matrix element for
the the virtual process will still be well de6ned. If
((kiMik', ph)i is the Born-approximation matrix ele-
ment for scattering a pure exciton from state k to state
k' with the excitation of a phonon of frequency ~~h
(assumed ¹independent) and wave vector k' —k, the
inelastic polariton di6erential scattering cross section is

spatial dispersion only drops to the exciton velocity for
the same k, and there is no divergence of the calculated
cross section.

%hen two exciton transitions lie close together, en-
tirely similar methods can be applied once the polariton
wave function has been written down. %hile in principle
the general method can be extended to arbitrarily
complicated situations and to energies far from res-
onances, such extensions yield little understanding
beyond that available in terms of conventional nonlinear
polarizabilities.

III. RESONANT POLARITON SCATTERING

Consider the same single-exciton model of a polariton
for io) —o)oi &o),. In this strong-coupling case, thepolari-
ton is the particle whose scattering must be calculated,
as was done in the Born approximation in Sec. II. In
the present section we consider the Rayleigh scattering
of such a polariton from a strong, short-range potential.
Such a potential cannot, of course, be treated in the
Born approximation. - Of particular interest is the case
in which the potential is so strong that the exciton, if
it were not coupled to light, would bind to the potential.
The fundamental theoretical problem is that two kinds
of coupling are simultaneously strong. Neither can be
calculated as a perturbation.

The most direct method of attacking this problem is
to construct a set of classica1 electromagnetic equations
which have all the desired properties, and to examine
their solution. Consider the classical 6eld equations4

where e, and e,' are the group velocities of the polaritons
of wave vector k and k', respectively. Conservation of
energy requires oo(k')+o)oi, =oo(k). For this inelastic
(Raman Stokes) scattering, the dominant frequency
dependence is (ooo —oo) '(o)o —o)&—o)) '. Again, if oo is
too near a singularity, the group velocity including

1 O' AV' 2U(r) EP=K,
Mo 81 tN'do hMO

where U(r) is a "potential" of short range. If P =0, there
is no coupling between the electromagnetic 6eld and the
polarization 6eld. The polarization field equation with
a harmonic time dependence e'"' then becomes

If U(r) has a form such that, as a potential in the
Schrodinger equation, it yields a binding energy E~, i.e.,

k

FrG. 1. Dispersion relation for bare excitons and bare light
(dashed lines) and for polaritons (solid lines). The right-hand
polarization curve has a greater slope for a given k than the bare-
exciton curve.

~L. I. SchiB, QeemÃ@m Mechewi~s (McGraw-Hill Book Co.,
New York, 1955), pp. 199-201 and 205-206.

and if Es(&ho)o, then Kq. (1"/) will have the same solu-
tion ps for o) =ooo —&&ik. Thus a,n appropriate choice of
U(r) wig produce a shallow hound-state Schrodinger
equation for the exciton in the absence of coupling
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(grad div —P)E= —co'LE+4~Pj, (19a)

h' 2V(r)
&'+ 1+ P-PP. (19b)

Mo tPSCOO hMO

between the exciton and light. (In the classical theory,
P plays a role rather like an exciton c.m. wave function. )
Once again, we have not inserted all the tensorial com-
plications possible, but have chosen the simplest set of .

equations consistent with the objective of examining
a resonance situation. . Because the photon and phonon
"particles" of these classical 6elds are bosons and the
basic equation is linear, second quantization of these
equations is unnecessary.

8, I, and 9 can be immediately eliminated, and a
solution harmonic in time presumed, yielding

V(r) = —Vo, for r&u (V0)0)
=0, for r& u.

This latter is an arbitrary but simple form for V(r).
Strong, short-range potentials norInally exhibit long-
wavelength scattering which is characterized by a po-
tential depth and range, 8 and. is independent of details
of the potential. The desired solution to (20) gives the
scattering cross section for an incoming polariton. If the
scattering center is suf6ciently small, only the 5-wave
scattering will be important. The 5-wave part of the
angular momentum decomposition of (20) is

I d GE M—rm —= (E+4—7'),

aP O'V' 2 V(r)
+ I+ P=pE

.4o ~o . ~NO

(20)

If light could be longitudinal as well as transverse, (19a)
would lack the "grad div" term. If the "grad div" term
were absent, the vector nature of Eq. (19) would be ir-
relevant, because both P and K would be constant
vectors times a scalar function of position. Because there
is much less algebra without the "grad div" term, we

shaB omit it.
Since this appears extremely arbitrary, a digression to

explain the nature of the approximation is in order.
The basic physics problem under investigation is simple.
Two 6clds, A, and 8 are linearly coupled, and have a
"level-crossing" form of dispersion relation like Fig. j.

for their composite normal mode. If, in the absence of
coupling between 6elds, the 6eld 2 ha, d a bound state
near the level-crossing energy, what will be the behavior
of the scattering of the composite particle near this

energy' This question is very similar whether the 6eMs
A and 8 are vector 6elds or scalar fields. The algebra is
easier for the scalar-6eld case, awhile the exciton-photon
problem is thc vector case. Tllc impoI'tant basic physics
is preserved on substituting the scalar problem for the
vector one.

A few obvious minor differences result from this sub-
stitution. First, the scattering cross section for the
simplest scalar problem is isotropic, while it is not for
the simplest vector case. Second, the total cross section
is too large by a factor of -', for our approximation adds
a nonexistent longitudinal photon mode to the two
transverse ones. Third, the approximation eliminates
the energy difference between longitudinal and trans-
verse excitons. It cannot, then, be expected to be useful
fol (00—(@+(dig. (Tile usual models of excltons binding
to impurities also neglect this difference. )

The equations which will be used are

(21)
cu' k' 1 d d 2V(r)——&'—+ 1+- ——& p&.

coo 5$MO t' lt' AMO

appropriate to the external region where V(r) vanishes.
The function n(k, co) is defined by

n(k, io) —=

1 —co'/a)02+5k'/meso
(24)

In order that the wave function represent a scattering
wave function, 8 must be chosen zero. The asymptotic
solution for E for large r is then

r '(cosh sinkr —sin8 coskr) . (25)

This asymptotic form corresponds to the scattering of
the polariton wave from the impurity, and 8 is the 5-
wave phase shift. If all other phase shifts are negligible,
the differential cross section will be isotropic, and the
total cross section will be

ot,,t = (4s sin'5)/k'.

The simplicity of the form (25) is due to the fact that
co is below coo, and only one mode of real wave number
exists for such ~.

The general solution to (21) for &o&a&0 but r&a is

8 See, e.g., M. I. Goldherger and K. M. Watson, CoII'Isgori,

Theory (Vhley-Interscience, Ing. , New York, 1964), pp. )86—294,

The general solution to (21) for co &coo and r) a is

E=r 'L(cosh sinkr —sinbcoskr)+(Ae "'+Be"")],
P =r '(n(k, co)(cosh sinkr —sinb coskr)

+ (ni~, &o)(Ae ""+B—e"")j, (22)

where k' and (ia)' are the positive and negative roots,
respectively, for k' in the dispersion relation
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given by

E=t' Pci sinkir+co coskir+co slnkor+c4 coskor],

P =r-'Ln, (ki,4o) (ci sinkir+co coskir)

+n, (ko,oo) (co slnkor+co coskor)],

where now k~ and k2 are the roots of

co' Ak' 2 Vo
=oo+4«P 1— +

coo fÃQ)o Acro

It is convenient (but not essential) to use a short-range
and. deep potential, and. to take pa&&1. In this case, the
~ dependence of y can be neglected in the energy range
of interest. The binding energy of the exciton to the

(27) impurity in the absence of coupling to light is then
Ee ——k'p'j2tl. The mode (2) is essentially lightlike, and.

dominates the left-hand side of (30a) and (30b). When
setting cy to zero and eliminating c2 in these equations,

(28) it is convenient to realize that kin(ki, oo)))kon(ko, oo).

Thus

and n„(k,4o) is defined by

(o' hk2 2Vo.(4, )=4(&— +
oro2 ~o ho

The boundary condition that E,, I' and their erst deriva-
tives are continuous at the origin necessitates setting
c3 and c4 equal to zero. For Vo large enough to bind a
particle, the two wave-number roots of (28) will both
be real.

The over-all solution to the problem (within a multi-
plicative constant) is found by picking ci, co, A, and h

such that E, E, and their 6rst derivatives are continuous
at r=u. The four simultaneous equations which must
be solved for these variables (of which we are interested.
only in h) are

ci slnkiu+co slnkoa

=cosh sinka —sinh coska+Ae "', (30a)

ciki coskiu+coko coskou
=k cosh coska+k sinh sinku —A«e «, (30b)

1 k cosh coska+k sinh sinku —A«e "'

u cosh sinku —sinh cosku+Ae "

Equations (31) and (32) can be solved for coth. Since
ek&aa&&1, it is consistent to omit all higher powers of
ke and ~a in expanding the solution. The result is

or

n, (t«,4o) « —y
cotk =

n(k, 4o) k
(33)

4x 4x
r =—sin%= (34)

k' k'+(« y)'fn. -(t«,oo)/n(k 4o)]'

The approximate scattering cross section of Eq. (34)
can be more directly obtained in the exciton limit by
directly constructing the asymptotic scattering wave
function. When all waves have 100%exciton component,
a polariton wave function for an 5 wave of energy E
can be written

cin, (ki, oo) sinkia+con. (ko,4o) sinkta

=n(k, oo)(cosh sinka —sink coska)+An(4«, 4o)e «, —

(30c)

dok eA& 1 ~
krak(eight e Ar)-

(35)
E(k) —E t'r „E(k)—E

O'It(r) =

cikin~(ki&4o) coska+cokon„(ko, oo)coskon

=n(k, 4o)(k cosh cosku+k sinh sinku) «An(i«, ot)e—«. -
(30d)

where E(k) is the (isotropic) polariton dispersion re-
lation. This wave function will satisfy the polariton
Schrodinger equation for r)u, where V(r) vanishes.
The solution obtained. depends upon the path of
lntegl ation.

For a free particle, or an exciton not interacting with
light, having the dispersion relation

The reader may write down the general solution for
sin'8 if he wishes. The author restricts himself to a solu-
tion of (30) in the exciton limit for a short-range
potential.

The effect of the deep short-rs, nge potential in (28)
is to virtually decouple the electric and polarization
fields within the potential well. This decoupling leads
to n, (ki,(o)«n, (ko,oo) on the left-hand side of (30c) and
(30d). (For definiteness, we presume ki corresponds to
the excitonlike mode, and ko to the lightlike mode. )
co can now be neglected in (30c) and (30d), and ci
eliminated between them, yielding

ky coskyc

(36)E'(k) =Eo'+Eok'k' jttt,

there are two roots to the dispersion rela, tion, at

k =&ko=—& —— =~ E—A'o

The path of integration in Fig. 2(a) can be evaluated by
residues; this is done by closing the contour in the
upper- and lower-half plane for the factors e'~" and
e '~", respectively. This integration then yields

s1nkpc

k(r) = (37a,)

n(k, oo) (k cosh cosku+k sinh sinku) «An, (t'«,oo)e—
n(k, oo)(cosh sinka —sinh cosku)+An, (i«,4o)e "'"

(31)
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Fzo. 2. Paths of integration (dashed lines) for the toro solutions
to the free-polariton or free-exciton equation.

The corresponding integration along path (b) yields

4xko d
~i@or (37b)

the other solution to the free-particle wave equation.
The same procedure can be followed for the case in

which Z(k) is the polariton dispersion relation. There
are now, however, two pairs of solutions to the dis-
persion relation, one being real, at &ko, and one being
imagniary, at ~ig. The same integration can be carried
out, the residues now yield for path (a)

A long distance from the origin, the wave function
becomes

r 'sin(kor —5),

and the polariton scattering cross section will be the
usual 4m.k 2 sln25.

As before, let a deep, short-range potential be capable
of binding an exciton in the absence of exciton-photon
coupling. In the presence of such coupling, the deep
potential decouples the exciton and photon parts within
the potential. within the potential well, the wave func-
tion begins excitonhke; it reaches the boundary of
thc potential with R slope/value IRtlo —7r wlllc11 Rs

before is only weakly energy-dependent. The general
solution can be joined to this slope/value ratio for only
one value of cotb, namely,

COSku —k Sinka+(Ir2222/kk) e "'(y —rI)
cot8 = (41)

7 sinka+k coskII

where we have replaced ko by the symbol k. Hy supposi-
tion, ka&xu« i. In this approximation,

kr sinmb

and for path (b)

lE+--(+ r ( )dk +sg-

4rr dE'I
~()=—"'"(+k.)

'f dk/+„

4w
~1(r)—= ~ '""(—ko)

r 8k jcp-

k' k2+(22222/hk) (y —x) 2
(42)

n(2a, or) = —(1/4rr)o2rI2/c02. (43)

Since, for the mode k, if spatial dispersion is not yet
a major effect, 0. can be written

Using the approximation (39) for the dispersion rela-
tions, I2(2x,or) can be evaluated from its dehnition

(3») L(24) and (23)j. For this complex wave vector, a is
huge. 22 in (23) can then be neglected, leaving

+ e""(+ -)2x~ . (38b)
dk +,„-

sc Ax~

n(k, or) =
kl MVg 1S

(44)

For energies closer to the exciton energy than the cou-
pling energy but farther away from the exciton energy
than E~f,, the solutions for the two polariton modes
factor into the approximate dispersion relations

the result (42) is equivalent to (34) in the vicinity of
the resonance. The requirements that au and ku be
small are not essential to the method, but greatly
shorten the algebra.

=22+
or2 1 or2/~ 2

rI: L(k) =horo+f22k2/22r2.

The derivative evaluated at ko can be written in terms
of the group velocity of conventional "light. "The two
solutions are then

r I(e '"2"+e "'-Ir,222/kok-) =$2,
(40)

r '(e'22"+e "'2,m/kok) =$2.

The exterior solution to rlr in the presence of a potential
near the origin is

lrt'zz2 =COBB (i/2 rrt'2) SInB ($2+$2) ~

IV. DISCUSSION

A. "TheoreticaP' and "ExyerimentaV'
Cross Sections

The cross sections which have been computed in Secs.
II and III have been calculated for a crystal of infinite
extent. The cross section is conceptually defined by
beginning with a propagating polariton wave packet in
the crystal, letting it scatter oG an impurity, and
examining the asymptotic form of the outgoing wave
packet in the crystal. For frequencies below the first
excition energy in a direct band-gap insulator) there is
only one propagating (real wave-vector) polariton for
a given polarization, and the relations between incoming
and outgoing asymptotic forms are de6ned by a set of



phase shifts. At higher energies, where several propagat-
ing polaritons can exist for a given energy, the relation
between the outgoing waves and an incoming wave is
much more complicated.

When light whose quantum energy is less than that of
the lowest-energy exciton is incident on a crystal, a re-
Qected wave is produced outside the crystal, and surface
polaritons (which decay exponentially in space) and
a unique propagating polariton are produced inside
the crystal. When there is no damping, the energy which
goes into the one propagating polariton is the energy of
the externally incident light minus the energy of the re-
Qected light. In a non-birefringent crystal, an externally
incident light beam of low frequency produces a unique
polariton beam. No complicated boundary problem need
be solved to obtain this correspondence. Similarly, R

polarlton intcrnRlly incident on a surface ploduccs R

unique internally reQected polariton, surface polari-
tons, and a transmitted wave. Again, the reQectivity
determines the relation between the magnitudes of the
incident and transmitted beams.

When a few impurities are randomly placed in a
crystal whose dimensions are large compared with the
wavelength of light, most of the impurities will be
located in the interior of the crystal, where the surface
polaritons have neglibigle amplitude. These will scatter
the polaritons as described in Secs. II and III, and the
polaritons will reconvert to external photons at the
boundary. A few impurities wi11 be in the thin surface
layer in which surface polaritons exist. These will have
diferent scattering properties, and will produce a sur-
face scattering. Since in typica1 scattering experiments
the surface-exciton penetration depth is perhaps 100 A
and the crystals are 104-10r A in thickness, the surface-
impurity scattering is generally unimportant compared
to the volume scattering. For volume-scattering con-
siderations, it is unnecessary to solve the problem of
impurity scattering in a crystal of unite volume.

For photon energies above the lowest exciton energies,
the general considerations are more complicated because
of the existence of several propagating polariton Inodes.
Even in this case, for the consideration of volume-
scattering CGects the theory of the reQectivity connec-
tion relations (boundary condition) and the internal
scattering problem can be separately solved. For this
higher-energy case, it is usually true in experimental
situations that one polariton is most nearly lightlik-—
propagates fastest and has the longest mean free path-
and dominates the relation between internal and ex-
ternal waves for volume scattering.

S. Comyarison with One-Level Model

The form of the scattering cross section in Eq. (34)
resulting from the (approximate) solution to the square-
well model has a scattering resonance at Ace„,=&0—Eg.
Very near this resonance, the cu dependence of y and k
can be neglected, and the ou dependence of x is ade-

quatcly described by

K P ~gKO{N Cl7p44)/40p44 y (45)

~0—=(2m'/A') "'. (46)

The scattering cross section as a function of frequency is

v4n4) '1 A(u —A44...) '
4~ k'+rp

E, )

and has a resonance-energy half-width at half-maximum
of

At l csonance~

so that

F= i'4'k'140/n42v~.

wg ncE——s'/2m pA'40p',

F=4n pnha)4/c'~',

(48)

where e is the index of refraction at the resonant energy.
The physical interpretation of a resonant Rayleigh
cross section like (47) having such a width is that there
is a "state" of electronic excitation at co„, having an
optical decay rate of 2I'/h. Small level shifts have been
ncglcctedi the lcsonRnce fIcqucncy Ares ln oui approxl
mation is at the energy at which a real bound-exciton
state would occur if exciton-photon coupling were ne-
glected. The integrated absorption of the resonance is
proportional to fT multiplied by density of scatterers.

De6ne the oscillator strength pcr an intrinsic exciton
transition by

(Xo
f =i — 2 4;(44)de,

Ev
(50)

where A is a normalizing constant, iV / 0Vis the number
of unit cells divided by the crystal volume, 4;(44) is the
imaginary part of the dielectric function (neglecting
spatial dispersion), and the integration is carried out
over a single exciton line. The oscillator strength for a
weak impurity absorption line (due to Rayleigh scat-
tering) is

t'Ã)

&v) impurity lie
4;(40)de =A— cr(40)d40, (51)

where E/V is the number of impurities divided by the
volume. The method of de6ning A depends somewhat
on how the local 6elds are de6ncd, but it is irrelevant
for present purposes. Using (50) and (51), one obtains
the relation

f=f. 8~(1Vp/V)/14'. (52)

This result is equivalent to the gaint oscillator
strength result of Rashba and Gurgenishvili. 9 These
workers calculated, this same ratio in the case in which
the photon-exciton coupling is weak. In the short-range-

9E. I. Rashba and G. E. Gurgenishvili, Fiz. Tverd. Tela 4,
1029 (1962) /English transl. : Soviet Phys. —Solid State 4, 759
(&962)j,
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potential approximation, the bound-state wave func-
tion can, for the calculation of oscillator strength, be
approximated by

g = (2a/4m )'~'e-'"/r. (53)

C. Comyarison anth Exyeriment

There is at present one experiment which can be
compared with the theory of Sec. III. Rayleigh scatter-
ing from spinless impurities in insulators has not been
experimentaBy observed. Spin-Qip Raman scattering
from neutral donors in CdS has been observed. 4 If
valence bands other than the top valance band in CdS
are ignored, the spin-Qip scattering is directly- related
to the Rayleigh cross section. By this means it is possi-
ble to obtain experimental results related to theory.

The binding energy of the exciton to a neutral donor
impurity is about 0.007 eV. If the exciton total mass is
presumed to be about one electron mass, '0 the decay
constant ~ for such a bound exciton is 4.5& j.0' cm '.
Since the exciton Bohr radius is 27 A, the idealizations
of the exciton as a point particle and the well as a very-
short-range potential are not very good. Solving the
algebra of Kq. (41) for a well of 6nite width would better
describe this experiment. The exciton-photon coupling
strength for this lowest-energy exciton is 0.06 eV. The
two photon energies used in the experiment lay 0.012

'0 J.J. Hopfield and D. G. Thomas, Phys. Rev. 123, 35 I'1961).

The fraction of k=0 exciton in this wave function is
Sz/~'V, in agreement with (52). The strong- and weak-
coupling models give the same result for the relation
between the exciton and the impurity integrated ab-
sorptions. The relation between the decay rate and the
integrated absorption contains in our solution the exci-
ton contribution to the index of refraction, which is
lacking in the weak-coupling model.

The most important diGerence between a one-level
model, in which only the bound-exciton excited state
is kept, and the present calculation occurs away from
the resonant frequency. At a general energy, the con-
tribution from continuum exciton intermediate states
is as important as the contribution from the bound state.
The method of Sec. III is equivalent to summing per-
turbation theory over all continuum states. The greatest
di6erence between the one-excited-state model and the
model assumed in Sec. III is that the former leads to a
cross section of the form 0 ~ (E—E„.) ' away from
resonance, while the latter leads to.a form

& ~ P(Etes+Ea E) (Ea)

away from resonance. There is a large difference between
these two forms for energies such that ~E—E„.

~
Ee.

and 0.057 eV from the k =0 exciton energy. The exciton
limit should be good for the former energy, but less so
for the latter. Since the spin-orbit splitting of the
valence band i.s only about 0.07 eV, the neglect of the
other two nearby valence bands is an important omission
for the lower-energy one of the two Raman-scattering
experiments.

The absolute oscillator strength of the bound-exciton
transition should be 12.5 if the value of ~ calculated
above and the value of the osciHator strength are sub-
stituted into (52). The agreement with the experimental
value of 9, in view of the scale of the exciton, is fortui-
tous. The experimental absolute Raman-scattering cross
section is an order of magnitude larger than the theoreti-
cal one. Experimental error may be a major source of
this discrepancy error. Finally, the ratio between the
Raman cross sections for light 0.005 and 0.050 eV below
the bound-exciton transition is 1/130 in experiment,
1/100 for a one-level approximation, and 1/37 in Eq.
(34). A correction to include a compensating spin-orbit-
split band 0.070 eV to higher energies raises the esti-
mate for Eq. (34) to 1/85.

The available comparisons between theory and ex-
periment are not adequately precise. They could be
considerably sharpened experimentally by doing experi-
ments in a (preferably cubic) material of larger spin-
orbit coupling (e.g. , CdTe) and at more laser frequencies.
On the theoretical side, it is possible to solve Eq. (30)
without the short-range approximation and without
the complete-exciton limit. The addition of a second
exciton Inode would still represent a feasible amount
of algebra. "

D. Approach through Equation (35)

The approach to resonant scattering through Eq.
(35) has the advantage of parametrizing an extrapola-
tion away from the resonance when the nature of the
binding of the exciton is'complicated. Kven when the
potential is not of zero range, the asymptotic form (40)
for the exciton wave function is valid well outside the
potential region. Other forms of disturbance will fall
o8 faster than e "".Thus, if an appropriate radius u is
chosen, (41) is valid when the potential is not of short
range, and even when the exciton may be distorted in
a complicated fashion inside the potential well. The only
additional complication is that when a is 6nite, y also
depends on the energy. The general problem of the
variation of y with energy is well understood in con-
ventional scattering theory, and the problem here is
completely analogous.

"See K. Burstein, D. L. Mills, A. Pinczuk, and S. Ushioda,
Phys. Rev. Letters 22, 348 (1969).


