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Fundamentals of surface-state theory, such as analytic continuation and limitations of the Bloch theorem
in a 6nite lattice, are critically discussed. For illustrative purposes, a speci6c and simple surface-state prob-
lem is then solved by diferent methods: the coeScient method, the scattering method, the determinant
method, and the integral method. Many novel points of view and interconnections are introduced. The
advantages and disadvantages of each method are stressed, especially vrith respect to more complicated
problems such as three-dimensional surface states on zinc blende.

L INTRODUCTION

LTHOUGH theoretical interest in electronic
surface states has existed since the 1930's, this

interest was negligible because there was negligible
technological motivation or experimental con6rmation.
The erst major technological impetus for surface states
was the advent of transistor technology during the late
1940's. Subsequent to this, further motivation has
rapidly developed in a variety of solid-state tech-
nologies, such as microdectronics, electrophotography,
catalysis, powders, thin 6lms, and interfaces, where

large surface-to-volume ratios emphasize the importance
of surface-controlled phenomena.

In the last few years, several monographs describing
the electrical properties of surfaces have appeared.
Some of these monographs' ' emphasize experimental
techniques and results, and include only token chapters
an surface-state theory. These chapters primarily
catalog the results of a few surface-state calculations
and do not consider the validity or scope of computa-
tional procedures. No over-RB viewpoint is given and
consequently the information is fragmentary. Some-

times it is even erroneous, as will be shown later. The
theoreti( aHy oriented monographs' ' and individual

papers, on the other hand, are speciahzcd in that they
consider one theoretical approach to the exclusion of all

the others. Furthermore, it will be shown that the
fashionable approaches are not necessarily the best.

%hat appears to be missing is a timely and critical
appraisal of the assumptions and the various quantum-
mechanical techniques that can be used for computing
surface states. The purpose of this paper is to accolnplish

~ Supported by the Once of Naval Research under contract
No. N0014-67-A-0151-0014.

«A. Many, Y. Goldstein, and N. B. Grover, Semiconductor
Surfaces (North-Holland Publishing Co., Amsterdam, 1965).

~ D. R. Frankl, E/ectricu/Properties of Semiconductor Surfaces
(Pergamon Press, Inc. , ¹wYork, 1967}.

'F. F. Vol'kenshtein, The E/ectronic Theory of Catalysis on
Semiconductors (The Macmillan Co., New York, 1963).

J. Koutecky, in Advances in Chemicu/ Physics, edited by I.
Prigogine (Wiley-Interscience, Inc., New York, 1965), Vol. 9,
pp. 85-168.There is an extensive bibliography included.

~ T. B. Grimley, Advan. Catalysis 12, 1 (1960).

S. G. Davison and J. D. Levine, in Solid-Stute Physscs, edited
by F. Seitz and D. Turnbull (Academic Press Inc., Net York,
to be published).

926

this in a way acceptable to both expcrimentahsts and
theoreticians.

In particular, certain fundamentals, such as analytic
continuation and limitations of the Bloch theorem in a
finite lattice, are critically evaluated. For illustrative
purposes, a specidc and simple surface-state problem is
then solved by four related methods: the coefhcient
method, the scattering method, the determinant method,
and the integral method. Many novel. points of view
Rrc lntl oduccd) Rnd thc advantRgcs and disadvan-

tages of each method are stressed, especially with respect
to more complicated problems, such as three-dimen-
slonRl sul fRcc stRtcs on zinc blcndc. Thc Implica-
tions of bulk band structure are considered separately
ln Scc. V.

It is not possible, or necessary, to consider every
aspect of surface-state theory in this short paper. In-
stead, only the highlights, in the opinion of the authors,
will be emphasized. Dynamic surface-state properties
(scattering, trapping, mobility, optical absorption, re-

combination, etc.) will not be considered here, since
static surface-state properties (energies, density-of-

states, band-bending, etc.) are themselves in a formative

stage. For simplicity, the one-electron scheme wiB be
used throughout, although it is probable that surface
polarons and many-body interactions between surface
states can occur; these complicate matters. FinRBy, only
surface states on the free surface of a crystal will be
treated; since interface states have similar, but more
intricate, properties.

Another study' of surface-state methods wi11 appear
soon. More attention will be given to the resolvent

technique, the Mathieu-potential problem, the Green's-

function technique, and certain semiclassical methods,

such as the Madelung-potential approach and the
dangling-bond approach. The approach will be encyclo-

pedic rather than editorial. It will stress historical ac-



curacy rather than criticism. In these respects, the new

study wiB be complern. entary to the one presented here.

II. FINITE-LATTICE POTENTIAL

Any real crystal is 6nitc. The potential representing
the lattice V(z) is periodic over the confined region of
space occupied by the lattice, and it becomes the con-
stant value (zero) of free space far away from the lattice.
This is illustrated schematically in Fig. 1(a) by the
potential profile drawn through a purticglur row of
atoms of a three-dimensional binary (MX-type) lattice.
To be precise, the potential in Fig. 1(a) is more nearly a
pseudopotential; it is an appropriate smoothed poten-
tial which omits the Coulomb potential of the nucleii,
since the valence electrons must have wave functions
orthogonal to those of the core electrons. In region I,
the interior of the lattice, V(z), is periodic, V(z)
= V(z+ne), where z is the one-dimensional position co-
ordinate, a is the periodic interval of the lattice (twice
the nearest-neighbor distance in the present case), and
n is an integer. In the vacuum, region II, Y(z) =0. In
regions III and III', V(z) describes the transition be-

tween the interior and the vacuum. Regions III and,

III' need. not be the same, since opposite faces of a
lattice may terminate in different ways, viz. , the polar
faces, (111) and (111),of zinc blende.

Clearly, if V(z) is exactly specified over all space, one

can, in principle, solve the Schrodinger equation
rigorously for aQ the eigenfunctions and eigenvalues.

These are the delocalized wave functions and eigen-

values of the "bulk" band structure (similar to that of
the infinite lattice), and the localized wave functions
and energies of the surface states. Since V(z) is a con-

fining potential, one automatically obtains quantiza-
tion, without resorting to artificial cyclic boundary
conditions frequently employed to quantize the
infinite-lattice problem.

In practice, however, V(z) is not well specified over

all space. It can be approximated by the equivalent

FIG. 1. Schematic 1-D crystal potentials for 6nite lattices,
showing the nature of the termination. A binary lattice is shown
in (a). A monatomic lattice is shown in {b) and (c), where the
crystal termination is idealized for mathematical purposes as a
step. The steps in (b) and (c) occur at the potential maximum and
mj tumum, respectively.

infinite-lattice potential in region I and completely
speci6ed by de6nition in region II. But there is no
knowledge of V(z) in regions III and 1111, nor is the
extent of these transitional regions generally known.
The problem is even more complicated by the fact that
the potential profile in Fig. 1(a) is generally different
for diferent rows of atoms. Generally, in three dimen-
sions, thc surface potential of region III has ripples in
the surface plane, because of the atomic "graininess"
of the surface. That is, the locus of constant-energy
points is not a plane, but is more like an egg crate. Not
surprisingly, therefore, the solution of the 6nite-lattice
problem invariably necessitates describing the surface
region by some approximation.

In the earliest one-dimensional theoretical treat-
ment, ~ region III was replaced by a potential dis-
continuity separating regions I and II, a mathematically
simple but approximate concept which requires only a
simple boundary condition, namely, the continuity of
the wave function 0 and its gradient across the potential
discontinuity. The exact point of termination is
arbitrary and its effect on the surface-state energies
may be obtained. in certain simple cases. For a general
lattice potential expanded as a Fourier series, it is
convenient to terminate the lattice either at a relative
maximum /Fig. 1(b)g or minimum t Fig. 1(c)J of the
potential. Shockley' considered termination at a maxi-
mum to be the correct one-dimensional representation
of a covalent lattice. Surface states (Shockley states)
appeared if there was negligible surface perturbation
and if the band. s werc "crossed. " Despite the figurc in
Shocke1y's paper which shows a smooth termination of
the lattice, as in Fig. 1(a), his mathematics actually cor-
responds to the potential discontinuity shown in Fig.
1(b). This point has been overlooked. ' (Note added ie
proof. Further, a more appropriate representation of a
covalent lattice in one dimension would be Fig. 1(c),
in accordance with the OPW calculations of Kleinman
and Philips, Phys. Rev. 125, 819 (1962). They com-
puted R cI'ystal-potentlRl minimum Rnd R valence-
electron-charge-density maximum between the nearest-
neighbor atoms in diamond. Accordingly, Fig. 1(b)
would represent termination at the nucleii, while Fig.
1(c) would represent termination midway between
nucleii. g Whether Fig. 1(b) or 1(c) is the best representa-
tion of the termination of a covalent crystal is acudenwc
because of the cleaved {111}surfaces of diamond-like
lattices have exIreme surface perturbations, since they
are violently reconstructed. The reconstruction is, in
fact, suggested by Fig. 1(c), where the extra half-cell
at the surface would represent a chemically unsaturated
or "dangling" bond. Reconstruction is practically
negligible for partiaBy ionic crystals whose surfaces are

7 I. Tamm, Z. Physik 76, 849 (1932); Physik Z. Sowj. I, "/33
(1932).

8 W. Shockley, Phys. Rev. 56, 317 (1939).
9 P. W. Palmberg, J. Surface Sci. 11, 153 (1968);J. J. Lander,

&be, i, 125 (1964).
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electrostatically stabilized, '~" such as zinc blende
(110), wurtzite (1120), and NaCl (100). To be precise,
their surface mesh is identical with that of the bulk,
according to low-energy electron diffraction (LEED).

An alternate description of the lattice termination is
possible with the variety of tight-binding schemes that
have appeared in the literature. "Here region III may
be represented by Coulomb and exchange integrals
having values different from those of region I. However,
to achieve quantitative computational results from these
techniques, a detailed knowledge of the potential in
region III is required. In Sec. IV, the various descrip-
tions of the lattice termination are described in some
detail.

III. LIMITATION OF THE BLOCH FUNCTION

A universal and powerful simplification of band-
structure problems for infinite lattices is aQordcd by the
exploitation of the symmetry properties of the lattice
potential. Consequently, in attempting to solve the
finite-lattice problem, symmetry properties should

be invoked if they are applicable. Generally, indnite
lattices display a variety of rotational symmetries, but
the symmetry properly common to all. infinite lattice
potentials V(r) is translational symmetry, written here
in one-dimensional notation for simplicity: V(s)
= l (s+na). Here s is the position vector and g is an

appropriate lattice constant. It then follows from
Floquet's theorem" that. the solutions of the Schrod-
inger equation have the following forms:

+(s+na) =e'"'+(s) (1)
O(s) =I (s)e" ui, (s+na) = Ni, (s)

where the propagation constant ) may be complex

X=k+iE (k, K real). (2)

It will be convenient in Sec. IV to dedne a dimension-

less complex propagation constant

8=ha= $+ip.

A second requirement, in addition to (1), ™posedon +
by its physical interpretation according to quantum
mechanics, is that 4' must be bounded:

4 "(s)@(s)Cefinite.

This constraint dictates that X=0, since otherwise, foi-

an infinite lattice, 4'(s) would diverge at +~ or —~,
'0 J.D. Levine and P. Mark, Phys. Rev. 144, 751 (1966).
"J,D. Levine, Phys. Rev. 171, 701 (1968).
1' J. D. Levine and S. G. Davison, Phys. Rev. 174, 911 (].968).
"See, e.g., E. T. Goodwin, Proc. Caxnbridge Phil. Soc. 35, 221

(1939);35, 232 (1939);K. Artmann, Z. Physik 131, 244 (1952);
S. G. Davison and J. Koutecky, Proc. Phys. Soc. (London) 59,
237 (1966); and Refs. 5 and 12.

j4 R. A. Smith, 8'use 3Achunics of Crysfagjge go$Q's (Chapman
and Hall Ltd. , London, 1961),p. 133;A. H. VA'lson, The Theory of
~@gQ (Cambridge University Press, Cambridge, 1953), p. 22.

depending on whether E is negative or positive. Thus
(1) becomes

+(s)=up(s)e*'* up(s)=up(s+mu) (5)

which is the well-known Bloch function. The purely
imaginary exponent (k purely real) in (5) follows from
(4), not from any symmetry argument.

Perhaps the most expedient approach in the deriva-
tion of surface-state wave functions of a bounded.
lattice would be to start with the Bloch function (5),
and then to reintroduce the functions (1) by analytic
continuation (k real —+k complex) in (5). The tacit
rationale for accepting the Sloch function with com-
plex k is that it can satisfy (4) for the bounded lattice.
The exponentially decaying wave function outside the
lattice is matched on to an attenuated wave function (1)
inside the lattice through an appropriate continuity
condition chosen to represent region III. However, the
]ustl6catlon for th&s proccdul"c may t$03 bc Floquct s
theorem or group theory since the translational sym-
metry condition upon which they are based is not
satisfied by the bounded lattice potential. That is, near
the surface, V(s+nu)W V(s). At best, the Bloch func-
tion with k complex may be introduced as an ad Aoc
assumption which may or may not yield a stationary
state.

There is a novel analogy in this regard between sur-
face states and extrinsic bulk states, such as hydrogenic
donors and acceptors in Si. Analytic continuation of a
Si Bloch function 4=u(r) e'~' with an imaginary radial
vector lr=ipr yields 4=I(r)e &". This is the correct
wave function for a hydrogenic donor ground state (is)
but it is not correct for the higher states, nor is it correct
for-nonhydrogenic impurities such as deep centers in
semiconductors or P-centers in ionic crystals.

IV. SURFACE-STATE APPROACHES

Two basic approaches have been widely used for
solving the Schrodinger equation of a finite crystal.

Suppose one could idealize the crystal termination as
a potential step, as shown in Fig. 1(b). Then one could
solve for the wave functions both inside and outside
the crystal, and require a wave function matching condi-
tion at the potentia1 step. This procedure has been
carried out in detail for one-dimensional crystals using
8-function repulsive potentials' (the so-called Kronig-
Penney model), 8-function attractive potentials, " a
nearly free electron potential, " and a sinusoidal
potential, " among others. The sinusoidal potential is
especially interesting because it has been terminated at
an arbitrary location in the last unit cell, and the
Schrodinger equation reduces to the Mathieu equation,
whose properties are well known. The procedure is
restrictive, however, in two ways. First, real crystals

15 T. 3. Grimley and B.YV. Holland, Proc. Phys. Soc. (London)
78, 217 (1961).

'6E. T. Goodwin, Proc. Cambridge Phil. Soc. 35, 205 (1939).
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require potentials with a greater variety of harmonics
than can be accommodated by simple 5 wells or square
wells or sinusoidal wells. Second, the matching condi-
tion becomes unwieldy in three dimensions (3D), since
matching must occur at an infinite number of points
in the unit cell of the surface plane. Even if a crystal
has translational symmetry parallel to the surface, the
3-D problem cannot be reduced to a 1-D problem, by
this method, because of matching difFiculties. These
should be more significant for localized, rather than de-
localized states. Basically, the difference between a 1-D
problem and a 3-D problem is that they correspond to
ordinary and partial differential equations, respectively.
The latter often cannot be solved in a simple way when
surfaces are present. A crude approach to 3-D problems
can be obtained essentially by matching the analytically
continued wave functions only at a few symmetry points
in the unit cell of the surface plane. "

All methods involving the step potential of Fig. 1
follow the procedure of analytic continuation of the
"bulk" states and matching at the step potential. Each
problem is essentially distinct, and one can draw only
limited information from this line of attack. Regardless
of the particular bulk-band-structure model (e.g. ,
pseudopotential, k p, etc.), the most questionable aspect
of the surface-state calculation is the lattice termination
by a potential planar discontinuity. For this reason,
it will not be considered further here.

A better method in terms of clarity, ease of computa-
tion, generality, and applicability to chemisorption,
catalysis, etc. , seems to be the so-called MO (molecular
orbital) or LCAO (linear combination of atomic
orbitals) or tight-binding or Hiickel method. ""In this
method one "digitizes" the potential in Fig. 1(a) by
assigning appropriate Coulomb integrals n (diagonal
elements of the Hamiltonian in a localized basis) and
resonance integrals P (off-diagonal elements of the
Hamiltonian in a localized basis). For example, the sur-
face Coulomb integral 0,

' is generally di8erent from n,'
this is generally considered a "surface perturbation. "
Also the surface resonance integral P' can also be differ-
ent from P; this is generally considered a "deformation. "
Here lies the chief conceptual advantage of the LCAO
method. Rather than a potential discontinuity, the
surface region is parametrized by n' and P'. Generally n
and p have indices which describe the appropriate
orbitals or bands involved. In this manner, the Schro-
dinger differential equation is transformed into a diGer-
ence equation. U a crystal has translational symmetry
parallel to the surface, the 3-D surface-state problem
can always be reduced, by this method, to a 1-D
problem. '" This feature is possible because of the finite-

'7 H. Statz, Z. Naturforsch. Sa, 534 (1950);see also E. Antonick,
J. Phys. Chem. Solids 21, 137 (1961); V. Heine, Proc. Phys. Soc.
(London) 81, 300 (1963);J. Surface Sci. 2, 1 (1964); R. O. Jones,
Proc. Phys. Soc. (London) 89, 443 (1966); Phys. Rev. Letters
20, 992 (1968);D. Pugh, ibid. 12, 390 (1964);I.Bartok, J. Surface
Sci. 15, 94 (1969); C. M. Chaves, N. Majlis, and M. Cardona,
Solid State Commun. 4, 271 (1966)."J.D. Levine and S. Freeman (unpublished).

mesh properties of the diRerence equation; it is not
possible with the infinitesimal-mesh properties of the
differential equation, as mentioned above. The introduc-
tion of extra orbitals or bands or interactions into the
LCAO method will cause the mesh to become finer and
more exact; in the limit, one would approach the infin-
itesimal-mesh properties of the differential equation.

In the LCAO method, the finite-lattice problem is
solved by finding the solutions of

QC=o, (6)

where Q is an X&&X matrix, and C is a coefficient
column matrix. All appropriate bulk and surface
Coulomb and resonance integrals are included in Q.
For the simplest problems, S is the number of atoms in
the crystal. For other problems involving more than one
dimension, orbital, band, atom in a unit cell, or reson-
ance integral, (6) still applies, although X need not be
the number of atoms in the crystal.

The solutions of (6) which yield energies in the for-
bidden gap and have wave functions damped away from
the surface region are called, by definition, surface
states. To obtain these solutions of (6), at least three
methods have been successfully used: (a) Try to guess
the forms of C; a correct guess $i.e., e'"~, sin(X —n)8)
will collapse QC into only a few recurrence equations
which can be solved simultaneously. (b) Try to guess C

by using principles of scattering-amplitude theory. (c)
Try to solve det~Q

~

=0 directly; one then ignores the C
matrix. (d) Try to solve an unperturbed problem
Q'C'= 0 and then consider the effect of surface perturba-
tions by an integral method. Methods (a)-(c) require
analytic continuation, while method (d) does not. In
practice, method (d) involves integrals which can be
performed most easily by complex integration; this
feature is similar to analytic continuation. Also methods
(a)—(c) are inadequate, except for the very simplest
examples, while method (d) is still useful even for
many-band, three-dimensional problems, with diferent
atoms in the surface plane D.e., zinc blende (110)$.

It is instructive to solve an extremely simple surface-
state problem by the four difI'erent methods above.
This will demonstrate that the same answer can be ob-
tained from different methods, and the multifold nature
of surface states will be more clearly revealed. All
methods are formally interrelated by appropriate trans-
formations, however, since the results are identical.

A. CoefBcient Method

In this method, one glesses the form of C, by trying
the Bloch form and analytic continua. tion. If this works
it is undoubtedly the simplest method to use. The
"guessing" aspect has not been emphasized by others, ' '
although this method appears to be the most fashion-
able one at present.

Consider what is perhaps the simplest surface-state
problem, the alkali-metal analog in 1-D. Here each
alkali atom in a, sclni-infinite chain has an s-like orbital
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Q(s) so that the wave function %(s) can be written as

(?)+(s) = Z ~-4(s—~).

where

It is convenient to de6ne

P =x y= (~—' ~)/0, —

(10)

which is a, measure of the surface perturbation. Com-
plications due to deformations, other bands, next-
nearest-neighbor interactions, etc., will be considered.
later. Gcllcl'Rlly p ls Ilcgatlvc (Rttlactlvc llltcl'Rctloll be-
tween atoms) so that x and y are proportional to B, not
to —K

To solve (9), try the simplest Bloch form

(12)

as in (1) with analytic continuation 8= &+ill as in (3).
This implies that B is also analytically continued, since
g—g(8)

Here the reduced zone scheme is used where —er& )
&x. Also it is necessary that g&0 to have a surface
state damped into the crystal, s& 0. The case p, &0 must.
be thrown out for a semi-ininite crystal. This guess
"collapses" (9) into the following set of simultaneous
equations:

This is inserted into the Schrodinger equation

?IO(s) =Z@{s), (g)

where II is the Hamiltonian operator and B represents
the eigenvalues. One then obtains the QC matrix in the
form (neglecting overlap)

'g

C2

y i. c3 ——0, (9)
C4

must be real. This reality condition is only satished for
two choices of 8: 8=iII, 8= er+iee, which correspond to
P&0 and p&0, respectively, and to the two surface
states

y=+IP+P 'I, I =»III (1»)
If

I p I & 1, these lie outside the allowed band L
—2(y(2j.

If p& 1, the surface state appears at the Brillouin-zone

(BZ) center ()=0) below the allowed band. If p( —1,
the surface state appears at the BZ edge ((=er) above
the allowed band. Thus either the + or —sign in (1»)
applies, not both at one time. A surface state is thus
found. That is, a state exists whose energy lies outside
the bulk band, and whose wave function is damped
away from the surface. "Virtual" surface states which
exist within a bulk band have also been considered. '
As seen from ('?) the wave function (for +p) is

@(s)= g (~1)"y(s—ee)a-"~.
+~1

It is a property of differential equations that a solution
obtlned by a trial-and-error method which satis6es all
the boundary conditions is the correct solution. Thus
the surface-state problem has been solved by the
coeKcient-guessing method. It should be noted that
for

I pI &1, there can be no surface state since, from

{16), p, is negative and the wave function blows up
inside the crystal.

A graphical solution of (14) and (15) can also be
performed. This has the advantage of dramatically
showing the nature of the surface termination. It is
similar to the graphical solution used in the ionic
surface-state problem. " For this purpose, one must
distinguish between the cases p& —1 or p& 1. Suppose

P is negative. Then by (16), 8 is of the form ~+ip.
It is convenient to de6ne

Then (15) becomes the "bulk" equation

x+ e'el

(y+2 cos8)
(y+2 cos8)

'1'

=0. (13)

which is plotted as a curve (y versus 1.) in Fig. 2. Also

(14) becomes the "surface" equation

y= P+I-, —

The equations to be solved are

x+e' =0

y+2 cos8=0, ( X times).

Analytical solution of (14), (15), and (11) yields

(14)

(15)

p (16)

y= {P+p ') — (»)
For any stationary state, the energy B(8) must be

Ical. Ill this ploblcm then x Rnd y ln (14), (15) Rlld (17)

which is plotted as a straight line in Fig. 2, taking, for
example, p= —2. The intersection is at y=2e, L=aa,
p=lnaa. An intersection always appears provided IpI
&1; this is the surface state. The same procedure is,
of course, applicable for p positive, say, p= ae, and the
intersection in Fig. 2 would occur at y= —26, I.= 3.

It is illuminating to consider the above problem in a
way which emphasizes the aspect of wave function
matching. This aspect is the heart of the potential-step
methods as described at the beginning of Sec. IV. Thus a
crude analogy can be drawn between the above method
gnd the potential-step method. In Fig, 2, each bulk
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FIG. 2. Graphical solution of a simple 1-D surface-state problem.

Energy y is plotted versus L, where L= e I", and p is the damping
constant. The surface state appears at the intersection of the bulk
and surface equations.

tions and unknowns to solve uniquely for the surface
states.

B. Scattexing-Amplitude Method

(22)Cy ——A,

where A is to be determined. Away from the scattering
center n&2, the wave function is assumed to consist
of an incident plane wave e @ plus a reQected plane
wave ye", so that

It is possible to consider surface states by using the
terminology of scattering theory. Feynman" has
developed a simple method for computing the states of
an impurity atom located in an in6nite lattice. Here the
same method will be applied to the above surface-state
problem. To be speciffc (9) will be solved using scatter-
ing amplitude terminology.

At the scattering center m=1, the wave-function
coeflicient is not immediately known, so that one can
write

analytically continued level is characterized by its L
value. The same is true for the surface-state levels as
shown in the ffgure. Each value of I. defines the slope p
of the wave function envelope (ii= —lnl. ). Thus the
intersection in the ffgure indicates a perfect ma&ching of
the slopes in the bulk and surface regions. At the inter-
section, then, there is a stationary state, which is the
desired surface state. In this manner the crude analogy
has been demonstrated between the above diBerence-
equation method and the potential-step method.

In certain problems, besides the simple alkali-metal
analog, the coeKcient-guessing method can still be
carried out. Usually better guesses than (12) have to be
used. For a finite monatomic crystal, a guess of the
form" c„=sin(X+1—n)8, $0=mr($+1) '; n an in-

tegerj is useful, since it contains nodes at n=0, X+1.
For next-nearest-neighbor interactions in a monatomic
crystal, a guess" of the form c„=E&e'~'+E&e+' is
useful since it gives two damping constants, Oi and 02,

necessary for matching the boundary conditions. For
1-D diatomic crystals MX, where M and X atoms are
located on odd and. even sites, and where each has its
own orbital @~ and @~, the appropriate guess" is
c =E~e'"e for n odd and c„=E2e'"e for n even. For a
monatomic crystal with s and p orbitals, there is also an
appropriateguess" of the form c =E,e'"+Ei,e@' for the
s orbital and c =E,e'""+Ede'"" for the p orbital "For
a crystal with surface distortion (p'p p), the coeffKient
method also can work. Thus suppose that in (9) the
ffrst Puir of off-diagonal terms were equal to P'/P,
instead of 1. Then the appropriate guess is c„=e'"e for
n=2, 3, 4 and c~ is chosen independent of the
others. This guess gives just the right number of equa-

(23)C =B(e '"&+ye'"'

where y is the "scattering amplitude" and 8 is a coef-

ficient to be determined. In this problem there is no
transmitted wave to be considered. By substituting the
coefficient guesses of (22) and (23) into (9), one can
eliminate A and 8 and solve for y in the form

V= (p s+*0)/(-p e-")- (24)

where p is defined in (11).A bound state is found when

the scattering amplitude y has a pole; that is, when

y ~~.The condition becomes

(25)&
—'e

which is identical with (16). Since p is real, it is

necessary that 0 be analytically continued as before
and the energy obtained as in (17). Thus the surface

state is found by this method.
In retrospect, the method seems almost trivial since

the coefficient guess of (23) must, in the last analysis,

equal the known correct guess C~= C&e'"e. This equality
, exists only if y —+~ (and B~0 in such a way that

7B~ Ci). Also if (23) were normalized in another way

by dividing by (1+&')'i', the pole aspect would dis-

appear. Physically, the analytic continuation accom-

plished at the last step of the analysis has peculiar
consequences if considered in the earliest step (23).That
is, for 1=ip, the sum of incident and reQected waves in

(23) becomes instead a sum of exponentially increasing

and exponentially decreasing waves. One of these must
be thrown out for a semi-infinite lattice; this is equiva-

lent to the condition that y —+~.
The usefulness of this interesting and suggestive

' W. M. Fairbairn, J. Surface Sci. 9, 439 (1968).
20 Artmann (Ref. 13) made a serious error in that he hybridized

wave functions which diverge at in6nity insid'e the semi-in6nite
crystal. This error was repeated and further compounded in Ref. 1.
The problem was done correctly by Goodwin (Ref. 13, p. 232),
and by Koutecky (Ref. 4, p. 123).

method in more complicated problems is in doubt.
Feynman states that it is not a straightforward matter

~' R. P. Feynman, R. B.Leighton, and M. Sands, The Feyrlmae
Lectures iN Physics (Addison-Wesley Publishing Co., Inc. , New
York, 1965), Vol. III, Chap. 13, pp. 13.10-13.13.
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C. Determinant Method

A method which is independent of coeKcient guessing
is the determinant method. It can be demonstrated best
when determinants are finite. For this reason it is best
to construct the above surface state problem with, say,
%+1 alkali atoms in a chain, and then to let 1V~ ~.
Consequently the determinantal equation correspond-
ing to (9) is

~N+~(y, x) =

x 1
1 y 1

1 y 1
1 '

~ . 1
1 y

=0 (26)

to consider more than one type of scattering center; this
situation occurs in three dimensions. On balance, it
seems easier to use the coeKcient method directly, in-
stead of solving first for 7 and then letting 7 ~~. The
scattering-amplitude method is probably most useful in
applications other than bound states.

the determinant obtained when a triply degenerate
7~5 level and a singly degenerate I'i level are introduced
to represent the valence-conduction band-gap region in
zinc blende": This can be written in the Hermitian form

~4N

R
R~ Y R

R* 7 R
R' 7 =0 ) (32a)

pi p~ p3

y
/ / /

/g /
1
/g

2

(32b)

(32c)

where Y, Y', R, and R"' are 4&4 matrices and have the
fol ITls

This can be solved by expanding the first row in minors
to yield

(27)

For arbitrary n, h„(y) can be written as"

71 72 73 74

R= 7""

76
(32d)

h„(y) = (—1)"sin(n+ 1)%inc, (28)
where

y= —2 cose. (29)

The right-hand side of (28) is the nth Tchebycheff
polynomial of the second kind of variable —,'y. For small

n, (28) can easily be checked since A&(y)=y, A&(y)
=y' —1, 63(y)=y' —2y, etc. Combining (27) and (28)
one gets

x+Lsinn%in(cV+ 1)ej= 0. (3o)

For 8 real, this is a transcendental equation which yields
all the bulk states, each slightly perturbed X ' due
to the surface termination. "For 0=i p, and X large, one
has x+e &=0. For e=~+iyand X, large, one has
x—e &=0. In general, then, for X large

x+e'= 0 (31)

~ L A. HofFmann, Acta Phys. Acad. Sci. Hung. 2, 195 (1952},
jn English.

Since (29) and (31) are identical to (15) and (14),
respectively, the same surface-state results are obtained
by the two methods.

The determinant method yields the energies without
any assumption as to the coef6cient matrix C, as was
to be demonstrated. To find the coefficients it is neces-
sary to use the matrix form and work backwards.

It is curious that, besides Hoffmann, " no other
theorists have applied this type of analysis to surface-
state determinations.

For more complicated problems, the determinant
method becomes unwieldy. As an example, consider

7& 75 76 77

Rg 72
73
74

(32e)

D. Integration Method

Assume that the surface perturbation extends over
a region involving only 0 atoms or orbitals. It would be
desirable to solve the surface-state problem with a
relatively small determinant Q&(Q, instead of the much
larger determinant Eg.V. This reduction in deter-
minant size is accomplished at the expense of ap-
propriate "integrations" over all E "bulk states. "The
integrals are conveniently carried out using complex
integration; this feature causes the surface-state wave
function to be a sum of a few ( 0) analytically con-
tinued bulk wave functions, as anticipated from the
"guessing" method in Sec. IV A.

To be specific, and to define the above terms more
precisely, consider the problem of a reference crystal
which is 6nite, but whose surface Coulomb integrals
and surface resonance integrals are otherwise un-
perturbed. One example of this is (32) with Y'= Y,

One can solve the entire 4$X4E determinant to
obtain the surface states. This is not a fruitful pro-
cedure, since only a few terms are perturbed
(x',y', y",y"',p&',p2', p3'). lt is possible to solve the entire
4S)&4E determinant, if desired, by high-speed com-
puter; but a better method, involving only a 4&(4
determinant, is given below.
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Another example is (26) with x= y; this will be treated
in more detail later. . The eigenstates of this reference
problem will henceforth be called "bulk states. " They
form a complete and orthogonal set which can be used
as the basis states for the surface-state problem. By
appropriate summation (or integration if N is large),
these bulk-state wave functions combine via the sur-
face perturbations (primed integrals) to give rein-
forcement and cancellation. Reinforcement represents
the surface state; and cancellation represents the per-
turbed bulk states, which now tend to avoid the surface
region, since all wave functions must be orthogonal.

To demonstrate this integration method, the same
alkali-metal problem will be considered below as a
prototype example.

Following closely the procedure of Baldock, 22 (6)
can be written for a one-band material in the form

y 1
1 y 1

1 y

C1

c2

c3 =0. (39)

vestigated by using a. relatively small 0)&0 determinant
instead of the more cumbersome E&(X determinant
of the A —P Hamiltonian. The price to pay for this re-
duction is the summation (or integral) over all the N
states, as indicated in (37). The only equations needed
to solve specihc surface-state problems with this method
are (37) and (38). They are designed for application to
one-band problems, but they can be extended to many-
band problems easily.

For the alkali-metal analog problem described in

(26), there is only one perturbed site n= 1, so that
Pi= P, but P2, P2, = 0. The unperturbed problem is
obtained by replacing x by y in (26):

(A —yI)C=PC, (33) y .cN

where A= [a„,g is a real symmetric NXN matrix, C is
the vector formed by the coeScients c„, and the pertur-
bation matrix P is taken, for simplicity, to be a diagonal
matrix with p, in the rth row. Typically p„= (n, —n)/P.
The perturbed energies y can be solved in terms of the
normalized energies of the unmodified equations (P= 0),
which are assumed known. Let these be

The solutions of this unperturbed problem are known
(and ea.sily checked) to be

y, = —2cos8„, 8,:=j~/(n+1)
(40)

c» ——[2(N+1)]'I' sinn8, (j = 1, 2&, iV).

Note that there are nodes at the surfaces n=0 and
n=N+1. It can be shown that (38) reduces to the
one-by-one determinant

Qe,12=1 (j=1,2, , N).
(34)

where

pZ11(y) —1=0,

Then A=UYU ', where U=[e„,jandYisthediagonal
matrix of the eigenvalues y;. A is real and symmetric,
and since the I„,are normalized, U '= [I,,].Only those
surface states are considered here which lie in the
forbidden bands, so y~y;. Then (Y—yI) ' exists, and
(33) becomes

1 ~ 2 sin'8
Z»(y) =- -de.

2m —2 cos0 —y
(42)

The numerator is normalized in the sense that ZII= 1
for a denominator of unity. By complex integration,
this integral (spectral-density function) becomes

C= U(Y —yI)
—'U "PC,

or in component form

(35) Z (y) = ——:[y+(y'—4)'"& (43)

Combining (41) and (43) to eliminate Z»(y), one obtains

N'.=Z Z-(y) p.'. , (36)

N

Z„=P (y;-y)-'u„"„. (37)

Since in general only a few of the p, are nonzero, say,
Pi, P2, , P0, the eigenvalues y are determined from

piZ11 1
pIZ12

piZ10

p1Z12

p2Z22 —1

p2Z20

p0Z10
poZ20

p0Z00 —1

=0 (38)

Thus the energies of a localized perturbation can be in-

"G. R. Baldock, Proc. Cambridge Phil. Soc. 48, 457 (1952);
see aIso R. D. Levine and A. T. Amos, Phys. Status Solidi 19,
587 (j967).

y= —(p+p ') (44)

which is identical with (15). Thus the integral method
yields the same results as before. This should not be
surprising, since complex integration is formally similar
to analytic continuation. All methods A, B, C, D are
formally equivalent. The integral method, D, because
of its rigor, seems more appropriate for three-dimen-
sional problems involving real lattices.

Roster and Slater" have developed a similar method
for dealing with point impurities in the crystal bulk.
Their formalism is more general and complicated than
Baldock's; in addition they primarily derive their
results from the Wannier, rather than the Bloch,
representation. Koutecky4 has applied the Koster-
Slater method (he calls it the "resolvent method")

24 G. F. Koster and J. C. Slater, Phys. Rev. 95, &j.67 (&954).
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to a variety of surface-state problems. But all integrals
used by Kouteckg and by Koster and Slater involve the
unperturbed wave functions of an infinite or cyciir.
crystal. Thus the numerator of (42) is replaced by
terms of modulus unity. To get the surface states, it is
necessary to include other types of integrals Z„,' which
subtract the P terms and "cleave" the surface. It seems
to the authors that, for surface states, Baldock's
method has certain advantages over the others. LIt
has been (unfortunately) neglected. ]It is acknowledged
that if the perturbation matrix I' is nondiagonal, the
problem becomes more complicated, but the matrix is
still of order Q)&Q.

It is interesting to note that the problem of an im-

purity atom in an infinit (rather than semi-in6nite)
chain can easily be treated by (37) and (38). Then one
has

de
Z11=-

2m —2 cose —y
(45)

which is the same as in (42), but with a numerator of
unity. Integration gives

and (38) yields

Px&
—(y2 4)

—1/2

y= ~(4+p')'".

(46)

(47)

Comparison of (47) with (44) shows that there is a
threshold for localized-state formation in the semi-
in6nite lattice, but no threshold in the corresponding
infinite lattice. Thus it is harder to bind a surface state
than to bind an equivalent bulk impurity state. This
same conclusion has been pointed out for extrinsic sur-
face hydrogenic donors, "as opposed to bulk hydrogenic
donors, in semiconductors. Essentially, the presence of
the free surface introduces a "nodal" condition on +
which raises the energy. To be specific, for the surface
donors, the 1s state is not allowed and the ground state
xs 2pp.

V. DISCUSSION

U-'Q UC =0. (48)

This problem tooks different from (6) but has exactly
the same eigenvalues of all bulk and surface states.
For example, suppose

(49)

edges are known'~ and the corresponding wave functions
have syxnxnetries I'x and I'xq (with no spin-orbit
coupling). The band curvatures, related to the effective
masses, are also known both theoretically and experi-
mentally. It has been shown" that this information can
adequately 6x the various bulk Coulomb and resonance
integrals. To help evaluate the Coulomb integrals of
the surface atoms, use can be made of the Madelung
method, "based on simple electrostatics. In this manner
comparison of theory and experiment in surface states
becomes more natural, '2 and complicated integrals which
define the u's and P's can be estimated easily.

Even this procedure is useless, unless it is established
experimentally that a particular free surface of a
particular crystal is unreconstructed, as theoretically
assumed. As mentioned in Sec. II, zinc-blende (110)
surfaces and certain others are unreconstructed, ac-
cording to LEKD. That is, the spots have the same loca-
tion as those expected for the bulk. Second-order effects
may appear such as relaxation of layers, in the normal
direction, by a few percent, or sliding of the M and X
sublattices with respect to each other by a few percent.
But these are minor effects, compared to the reconstruc-
tion (new spots) on Si and Ge surfaces, on the (111)
and (111)polar faces of zinc blende, and on the (0001)
and (0001) polar faces of wurtzite.

The calculations above can also be extended easily
by unitary transformations. For example, a unitary
transformation U applied to (6) yields

Surface-state calculations can be carried out by a
number of diBerent methods, only some of which are dis-
cussed at length above. But these will be irrelevant
unless correspondence is made with the band structure
of the real crystal prototype.

It seems much better first to describe accurately the
bulk band structure in the vicinity of the valence-to-con-
duction-band gap. In fact, a band-edge (or lx y-like)
method' and a directed-orbital I.CAO method have
been used to describe surface states in that gap. For
example, in a particular zinc-blende crystal such as
GaAs, ZnS, or InSb, the conduction- and valence-band

"J.D. Levine, Phys. Rev. 140, A586 (1965);R. J. Bell, W. T.
Bousman, Jr. , G. M. Goldman, and D. G. Rathbun, J. Surface
Sci. 7, 293 (1967); W. E. Tefft, R. J. Bell, and H. V. Romero,
Phys. Rev. (to be published)."J.Koutecky and M. Tom6, set, J. Surface Sci. 3, 333 (j.964).

Then (48) becomes

cy
'

c2

c3 =0.
c4

(50)

~' M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(&966).

This corresponds to a linear chain of p orbitals, instead
of s orbitals, as in (9). Essentially& the transformation
causes a phase shift of ~ in the y-versus-( diagram, while

leaving all energies invariant.
In conclusion, some techniques for treating surface-

state problems have been described, interrelated, and
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evaluated here. The guessing method has been shown
to work for very simple examples, but in general it
will not work for more complicated examples D.e.,
zinc blende as in (32)7. Approximations can be made,
of course, by neglecting certain boundary conditions,
or by matching 4 at only one point, or by using
1-D analogs. These are only crudely representative,
however, of the correct solution. After all, the surface
states are extremely sensitive to the boundary condi-
tions in the surface-termination region. A de6nitive and
realistic computation of surface states on a 3-D crystal
has not yet appeared, in the opinion of the authors. In
a sense, surface-state physics is 10-15 years behind
solid-state (or bulk) physics. The reason for this is the

lack of symmetry in the surface region; the free surface
is a huge planar defect. At present very little is known
experimentally about its topography and energy
structure. Even less is known about interface regions
Pe.g., Si-SiO interface, metal-semiconductor interface,
electrolyte-semiconductor interface, etc.7, because
LEED and other tools cannot be applied there.
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Photostimulated Therxrioluminescence in Additively Colored KC1
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Thermoluminescence is observed in additively colored alkali-halide crystals following illumination at low
temperature with light of wavelength in the absorption bands of the sample (F, E, and L bands) and sub-
sequent heating. ln this method one deals with only one type of carrier (electrons) and with one type of
activator (negative-ion vacancies). Thus, the nature of the trap and the trapping mechanism can be studied
under circumstances which avoid the complications intrinsic to the thermoluminescence of x- or y-irradiated
samples. At least two types of traps are present besides the F' in KC1 in the temperature range 55—300'K.
Hence the quantum yield of the F~ F' optical conversion is less than 2. No traps were found associated
with fresh dislocations. Two diferent mechanisms of trap 6lling have been observed, one through the con-
duction band, and another through tunneling from the lower excited state of the F center to a neighboring
trap.

1. INTRODUCTION
' 'N alkali-halide crystals, thermoluminescence is

- usually studied in samples which have been irradi-
ated with ionizing radiation (x,y, e ).The emission glow
curves which result when the sample is subsequently
heated are often subject to ambiguous interpretations,
in spite of the eBorts to correlate the glow peaks to the
intensity changes of given absorption bands, EPR
spectra, etc. This is due to the fact that one deals with
many unknown parameters at the same time, e.g. ,
traps, carriers, activators, and killers. In the literature,
one can still find unsolved questions on basic points,
such as the nature of the carrier involved. A useful
simpli6cation is obtained when a crystal previously
irradiated at a relatively high temperature with x or p
rays, in order to obtain color centers and activators, is
stimulated at a lower temperature with monochromatic
light. ' ' Even in this case, however, the nature and the

* Gruppo Nazionale di Struttura della Materia (GNSM) of the
Consiglio Nazionale delle Ricerche.' A. E. Stoddard, Phys. Rev. 120, 114 (1960).

2 A. A. Braner and M. israeli, Phys. Rev. 132, 2501 (1963).
'B. Bosacchi, R. Fieschi, and P. Scaramelli, Phys. Rev. 138,

A1760 (1965).

concentration of activators remain largely unknown,
because the crystal contains different kinds of color
centers and the high-energy radiation may introduce a
variety of traps whose properties mask the effect of the
intrinsic traps and of the traps due to known color
centers.

We propose here an experiment which provides the
simplest way to study the thermoluminescence process
in alkali-halide crystals, thereby avoiding all the com-
plications intrinsic to x- or y-irradiated samples. Let
us take an additively colored crystal, properly quenched
so that only Ii centers are present. The sample is cooled
in darkness down to a temperature To and then illumi-
nated with monochromatic light of wavelength X,
corresponding to a wavelength in the absorption bands
due to the Ii centers (Ii, X, or I. bands); a fraction of
the electrons excited by the illumination leaves the
negative-ion vacancies and is captured by the traps
of the crystal. During the subsequent heating, the

4 R. Fieschi and P. Scaramelli, Phys. Rev. 145, 622 (1966).' P. Scaramelli, Xuovo Cimento 45$, 199 (1967).
6 P. R. Crippa, C. Paracchini, and J. Felszerfalvi, J. Phys. Soc.

Japan 24, 92 (1968}.


