
MANY-BODY SELF-DIFFUSION IN RARE-GAS SOLIDS

the calculated vacancy formation energy is much too
high.

Consideration of Jansen exchange forces" " and
four-dipole interactions'~'0 lowers both the energy of
formation of a vacancy and the activation energy foI
divacancy self-diffusion to give good agreement with
experiment. The agreement between experiment and
calculation suggests that diftusion in rare-gas solids may
be primarily via divacancies at high temperatures.

It was shown that it is not implausible that the rela-
tively scarce divacancies move sufficiently rapidly com-

pared to single vacancies to be responsible for the ob-
served self-diffusion in solid rare gases.
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Electronegativity difference is redefined as a scaling parameter, generalizing the concept of valence dif-
ference. A procedure for its evaluation is developed in terms of the dielectric constants of diatomic crystals.
A simple alternative to the Clausius-Mossotti theory of the electronic dielectric constant is developed in terms
of this concept. The effect of fg-electron states and of hydrostatic pressure are discussed, and procedures for
their approximate evaluation are developed. The treatment is extended to 68 crystals of the diamond, zinc-
blende, wurtzite, and rock-salt types; values of the electronegativity parameter are tabulated for these
crystals.

I. DTTRODUCTION

'HK concept of the relative clectronegativity of
the dements is an old. one which arose in connec-

tion with oxidation-reduction potentials in the eigh-

teenth century. Thomson appears to have been erst
to discuss a microscopic dielectric model. ' With the
advent of quantum mechanics, interest in dielectric
models of electronegativity seems to have waned, ap-
parently because of di6iculties with extensive numerical

solutions to Schrodinger's equation, which a theory of
didectric functions seemed to require.

Attempts have frequently been made to place the
concept on 6rm ground either semiempirically or
through one-dectron quantum theory formulated in

terms of atomic orbitals. m Paulinga de6ned dectro-
negativity as "the power of an atom in a molecule to
attract electrons to itself. " But his, and all other,
eGorts to render this dednition more precise have met
with only partial success. It may be correct to say that

*Submitted in partial ful611ment of the requirements for the
degree of Ph.D. in Physics, University of Chicago, Chicago, Ill.

f Fannie and John Hertz Foundation Fellow.
g Present address: Bell Telephone Laboratories, Murray Hill,¹J.' J. J. Thomson, Phil. Mag. 27, 757 (1914), especially p. 769;

also, G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).
'The standard review article remains H. 0. Pritchard and

H. A. Skinner, Chem. Rev. SS, 745 (1955).
~ L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).

Xgg p+Xpy —Xggy a (1.2)

Pauling observed that the energy D p binding the atoms
n and p in the system n pis gener-ally larger than the
mean of the energies D and Dpp binding the systems
n-n and P-P. Thus he deaned the "extraionic energy"

+=Dap 2 (Daa+Dpp) &

4 R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).

many currently regard the concept as qualitatively
useful but not rehnable quantitativdy.

Here wc reexamine the concept of dectronegativity
in the light of modern theory of the dielectric properties
of crystals. We usc a phase-space model that 18 con-
sistent with the results of many of those extensive
numerical calculations that were unmanageable before
the widespread availability of computers.

Previous discussions of electronegativity have cen-
tered primarily on the binding or cohesive energies of
atoms or molecules. Thus, Mulliken4 dered atomic
electronegativity as the average of the ionization poten-
tial and the electron affinity, X, =2(I +E ), and
dined the relative clectronegativity difference of two
atoms cs and p as

X p=X —Xp.

The relation (1.1) is necessary if X p is to he transitive,
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and proposed a table of atomic electronegativities,

X~, , such as wouM yield the relationship

tX —Xp[ =0.2086'",

where d is in kilocalories per mole.
Neither of the above definitions in terms of ground

state energies is wholly satisfactory. Kith Mulliken's
atomic binding definition, we known that the addition
or removal of an electron to an open-shelled atom alters
the energy of the remaining electrons appreciably. In
large molecules or crystals this rearrangement energy
is usually much less (Koopmans's theorem'). Pauling's
definition in terms of molecular binding energies does
not suGer from this defect. However, it is crude in two
senses: (1) lt defines electronegativities independently
of the coordination number (valence environment) of
the atom; and (2) it does not distinguish between con-
tributions to the cohesive energy of s-p hybridized elec-

trons and polarized d electrons. The latter may play a
greater role in cohesive energies than in other physical
properties and. their effect is not in general transitive.
Indeed, if 0. and y contain d states of low excitation or
binding energy but P does not, then one would not ex-

pect (1.2) to hold owing to the n yd re-sonance.

These comments are meant to illustrate but not ex-
haust aII the difhculties inherent in de6ning an electro-
negativity scale. The author proposes to minimize them
without recourse to accurate, quantum-mechanical,
many-electron calculations by regarding electronega-
tivity as a scaling parameter which generalizes the con-
cept of valence diGerence.

Ihus we being by considering some observable 5„
and determine empirically its dependence on the valence
difference Z —Zs of atoms a and P when these belong
to the sense row of the periodic table and both are in
definite states of hybridization Le.g., we might find 8„
proportional to (Z —Zs)sj. Knowing this functional
dependence and its variation from one row to the next
for Z =Zs, we attempt to predict the value of 8„{a,p)
in terms of X p when n and P have different valence
gad belong to diGerent rows of the periodic table. To
do this we adopt a quantum-mechanical model which

approximates the real situation. Thus electronegativity
represents a quantum-mechanical scaling parameter
which enables one to treat simultaneous size and valence
differences knowing only the effects of valence and size
differences separately.

Initially we consider the static electronic dielectric
constant of crystals of the diamond, zinc-blende, and
wurtzite, and rocksalt type composed of elements from
the 6rst four rows of the periodic taMe. All such crystals
have a full eight-electron s-p valence band. We do not
treat any crystals containing transition elements. The
author believes that the static electronic dielectric
constant represents a useful weighted average of many
poIarizatlon processes that may occur. In latter papels

' L Koopmans, Physica 1, 104 (4933).

the present scaling approach is applied to individual
transition energies of definite symmetries as well as
to cohesive energies of molecules and crystals.

To treat the electronic dielectric constant, we adopt
a simple one-gap model for the electronic band struct-
ure. For diamond, zinc-blende, and wurtzite crystals,
Phillips' has suggested that such a model may be used
and the average gap separated into homopolar arid
heteropolar parts, Eg and C. The average homopolar
energy gap E@ is taken to be a function of nearest-
neighbor distance d only. Phillips' also suggested that
the average heteropolar energy gap C is to be given by
a simple expression, and that C p is a suitable measure
of the electronegativity difference between elements n
and P.

Figuratively speaking, Eg and C measure the average
energy gaps due to covalent and ionic effects. The total
average eIiergy gap E, is given by

Eg'= Ei'+C'.

Phillips also suggested that one can define the frac-
tions of ionic and covalent character, f; and f„by

f;=C'/Eg', f.=Ei,2//Eg'.

VVe review the basis of Phillips s model in Sec. II.
Modifications of the model must be made to take into
account the eBect of d-core states for atoms from
rows 3 and 4. These modifications are discussed in
Sec. III. A critical analysis of the model for all tetra-
hedrally coordinated crystals is given in Sec. IV, where
it is shown that Phillips s model (with d-core correc-
tions included) establishes C to about / jo accuracy.

A characteristic feature of Phillips's theory is that
the crystal structure factor nowhere appears explicitly.
Therefore in Sec. V the discussion is extended to include
crystals belonging to the NaC1 structure. Although it
has been customary to treat these by the Born closed-
shell model, from a dielectric viewpoint this would be
justifiable only if almost all the optical oscillator
strength mere exhausted by excitons. Actually, even in
the alkali halides, excitons represent less than 10% of
the total oscillator strength. ' Thus although exciton
effect are neglected in Phillips's model, it was thought
that it should apply to NaCI-type crystals with only
slightly less success than for conventional covalent
crystals. This proves to be the case after allowance is
made for- the sects of ionicity on lattice constant.

All the formulas in this work are general and hold for
arbitrary lattice constant, equilibrium or compressed.
Indeed the model used here constitutes a universal
theory for all crystals of the diamond, zinc-blende,
wurtzite, and NaCI types, with each described by tmo

parameters Ey, and C. It predicts the derivative of the
static electronic dielectric constant with hydrostatic

6 J. C. Phillips, Phys. Rev. Letters 20, 550 (I968); Covalen4
BONfjj~g jN Moleclles md Sots (University oI Chicago Press,
Chicago, to be published).

~ H. R. Phillip and H. Ehrenreich, Phys. Rev. 131,2056 (19),
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pressure. Hitherto this derivative has usually been
discussed in terms of the Clausius-Mossotti model,
which is only able to account for the results, in even the
most ionic crystals, at the expense of introducing a new
parameter for each ion.

Within the limits of available experimental data, our
model gives good results for the 68 crystals considered.
The fraction of ionic character, f;, of these crystals
ranges from 0.00 to 0.96.

(d Z j CONTINUED

26 30

IL ONE-GAP MODEL: BOTH ATOMS BELONG
TO SAME ROW

Several models have been proposed to describe the
dielectric properties of insulators. One may formulate a
general theory' of the dielectric response of a crystal to
an external electric field of wave vector q (modulo a
reciprocal lattice vector 6) and frequency oi in terms of
a complex, nonlocal dielectric tensor si(ii+6, q+6'; oo)

+iso(il+G, ii+6';&o). Within the random-phase ap-
proximation this theory reduces to the Hartree, or one-
electron„model of energy levels and oscillator strengths. '

In practice even the latter theory requires elaborate
computations, and it has been developed in detail
only for a few semiconductors such as Si and Ge. At
the opposite extreme one has the classical Clausius-
Mossotti model with polarizable point ions. The dielec-
tric constant of a strongly ionic crystal is calculated
using local-field corrections and constant-ionic polariz-
abilities. These polarizabilities are treated as parame-
ters to be fitted to experiment. Because no allowance is
made for the effects of covalency, the theory is satis-
factory only for alkali halides. For example, it has been
found" that the value obtained for a given nonhalide
ion is not at aQ constant from one compound to an-
other and there does not seem to be any clear pattern
to the variations. (The value of ionic polarizability for0, apparently a bad case because of covalent e6ects,
varies from 0.5 to 3.2 A').

We begin our analysis of the dielectric properties of
covalent systems with Fig. 1, where it is seen that the
reciprocal of the electric susceptibility of the diamond,
zinc-blende, and wurtzite crystals made up of atoms
from the same row of the periodic table is linear in the
square of the valence difference DZ and that the con-
stant of proportionality decreases with increasing row
number y. We may write this relationship in the form

The quantum model that is adopted here is the
isotropic two-band model of a covalent solid. (This
model has recently been widely used and discussed. "")
We assume that the unperturbed electronic system is a

' P. Nozieres and D. Pines, Phys. Rev. 109, 7'62 (1958); Nuovo
Cimento 9, 470 (1958).

9 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 'N6 (1959)."J.R. Tessman, A. H. Kahn, and W. Schockley, Phys. Rev. 92,
890 (1954}."D.Penn, Phys. Rev. 128, 2093 (1962)."H. Nara, J. Phys. Soc. Japan 20, 778 (1965).
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Fio. 1. Inverse of the electronic dielectric constant minus one,
1/(e~(0) —1},versus the square of the valence difference, (dZ)',
for diamond and zinc-blende-type crystals for which both ele-
ments in the compound belong to the same rom of the periodic
table. Data are available for at least three such crystals for rows
I, III, and IV. Rows III and IV have been continued by shifting
the line obtained to the left. The points plotted for CuBr and AgI
(the open circles) are the intercepts of the continuation of the
lines for rows III and IV with the experimental values of
1/{e&(0)—1}.These points indicate effective values" of (4Z)~
of about 26 and 29, respectively.

free-electron gas and apply a three-dimensional gen-
eralization of the results of one-dimensional perturba-
tion theory. It has been shown" for the case of the wave-
vector-dependent dielectric function of Si that this
approximate and greatly simpliied approach gives
results in good agreement with rigorous band-structure
calculations.

Recall that in one dimension a small potential with
only one nonzero Fourier component Vg will mix only
states which have wave numbers diGering by G and will
have small effects except when there is near degeneracy
of the unperturbed energy of the states that are mixed.
Near such a degeneracy one may solve the 2&2 secular
equation for the coeKcients of the unperturbed states,

(k) aond P(k —G), which are mixed and find that the
energies split into bands with a single energy gap
E,=2~ Vg~ according to

E+(k)=-'(Es'+Ex-a'
&L(E~o Eo go)o+.4ygoyo) (2 2)

where E&o=i'i'k'/2m. H, by analogy with the diatomic
crystal, the perturbing potential separates into parts
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centered about di6'erent points, i.e., if we have two
atoms per one-dimensional unit cell, then it is conven-
ient to place the coordinate origin midway between
them and divide the Fourier transform, which is now

complex, into symmetric and antisymmetric parts.
That is, if

V(~)= V, ([*,—*~)+V,([~,—*[)
= VI([*—r [)+V1(l*+rI), (2 3)

where g1,1 is the position of atom 1, 2 (in the unit cell)
and r is half the interatomic distance and is also the co-
ordinate of atom 1 with respect to the above choice of
origin, then

where

V(x) =Q(Se'Ve'+iSe Ve )e'a',
6

(2.4)

Va'= s (Vel+ Vem), Ve'= 2 (Val —Va2), (2 Sa)

Sa =sinGr, (2.5b)

Va I ~
——(2/I) J' VI,1(x)c 'a dx is the Fourier trans-

form of the potential t/'~, 2, and / is the length of the
unit ceO. With this complex I'"ourier potential com-

ponent, Ve=Se'Ve'+I'Sa'Va', the solution of the
2&&2 secular equation goes through as before. The
quantity VaVe* replaces Ve' in (2.2) and the single

energy gap is seprable into a symmetric, homopolar

part and an antisymmetric, heteropolar part":

E,,;=E,, y+C;= (»'V") +(»"V") . (2.6)

Of course, in a real three-dimensional solid the band
structure remains, but there are many Vg's and sig-

ni6cant mixing of states with wave vectors 6 in several

directions may occur. The traditional approach is to
work with the complicated, actual Brillouin-zone geom-

etry. In the present model we concern ourselves only

with the average gap between the valence and conduc-

tion bands and represent the average eGect of all the
Va's by one complex parameter 8,= EI,+iC such that
the eGective valence-conduction band gap E, is given

by
(2.'I)E2=h h *=E '+C'

Penn' has evaluated the wave-vector-dependent di-

electric function e(II) for this model. The static limit

of his expression is

(0)= 1+f(Aced )'/E, 'j(1—8+—'8')
= 1+(Ace~)'2/(EI, 1+C'), (2 8)

$3=E/4' g= 1—8+38 ) Er Is tllc Fcr1111

energy, and or„ is the free-electron-plasma frequency
~~=(41re'E/ns)"' where we take %=4 electrons per
atomic vollllIlc. C0111paIIIlg (2.8) wltll the cInplrlcally

» M. L. Cohen and T. K. Bergstresser )Phys. Rev. 141, 789
($9|M)j discuss this in their analysis of the electronic structure of 14
diamond and zinc-blende semiconductors.

observed rclatloIlshlp (2.1) wc find

EXp=
~,(0)—1 (A(0~)'A

(2 9)

where e~(0) is the static electronic dielectric constant
of the diamond-type crystal of row y. Since C=0 for the
diamond-type crystals, the E, of (2.8) is identically
equal to Eq, i.e., E,=—Ey, for diamond-type crystals.
Thus we may solve (2.9) to 6nd E1 in terms of the
known quantities o~ for e(0)j, a&~, and Er. We now ob-
serve that the nearest-neighbor distance r, or, equiv-
alently, the lattice constant, of the crystals formed of
pairs of atoms from the same row is almost constant.
Thus &o~ and Er are constant and Fig. 1 and (2.1) imply
that EI, is constant for these crystals. We de6ne
E1,„=E1, the quantity Ey, being determined by (2.9)
for each row y. (Indeed, Cohen and Bergstresser"
achieved very satisfactory results for band-structure
calculations by assuming the symmetric part of the
potential is constant for all pairs of atoms belonging
to the same row. )

Returning to the comparison of (2.1) and (2.8), we
also flQd

C' (AIo~)'
P,(~~)'=

~I ~ ~I,,~2 EA„~2
(2.10)

so that
C= {8,/, ) I E,,,~Z. (2.ii)

We see from (2.11) that C is a measure of the elec-
tronegativity or valence diGerence between the two
atoms when they belong to the same row of the periodic
table. Before we generalize the discussion to include
atoms from di8erent rows, we should discuss the varia-
tion of Eq, ~ with y. As we shall see, this variation is
strongly correlated with the appearance of d shells in
the atomic cores.

The form of Eq. (2.8) is common in the elementary
discussion of the optical properties of semiconductors.
A standard result of such studies" is

~I(~) =1+~~' Z'
COg

—GP

(3.1a)

6)y2

~I(0) =1++'f,
COg'

(3.ib)

where a&;= (s;—so)/II, so is the energy of thc ground
state (here the average vs,lence state), s; is the energy
of the jth exci&ed or core state, f;is the oscillator strength
of the transition, and g' means that the sum, s t~k~~
only over the higher, unoccupied states. In Penn's
model one neglects the eGect of the core electrons and

j4 J. M. Ziman, Pr&sci jks of the Theory Of Sots (Cambridge
University Press, London, 1964), Sec. 8.2.
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takes S to be the density of valence electrons, i.e.,
four per atomic volume or eight per unit cell, when

computing co~. This is equivalent to assuming that the
well-known f-sum rule will give

+II f (3.2a)

where g"means the sum is taken over the condlction
hued states and one does not go to such high energies
that core states are excited. This approximation works
well for diamond and Si where the core states are well

separated from the valence band (by some 80 eV in Si).
However, it leads to difficulties when core d states are
present. " The trouble is" '" that the f sum rule is
proved for a sum over a/l other states, i.e., including
those below so as well as above, and the core states
do contribute terms. These terms are negative because
the energy difference is negative. There is a correspond-

ing increase in the sum of the f's connecting the valence
and conduction states. Thus when the atomic core con-
tains d states one may have

p"f,&4, (3.2b)

or, equivalently, the effective plasma frequency is

greater than that found by taking E to be four electrons

per atomic volume.
For a rigorous treatment one must consider thc total

electron density and the total f sum. A general result"
of the f-sum rule is

ppe, (cp)dpp= ,'s.Q,', - (3.3)

f

where 0„is the plasma frequency as calculated from the
total electron density. " At least in principle, this
allows one to define empirically an effective number of
free valence electrons per atom, e,ff in the notation of
Ref. 47, for use in connection with the simple theory
discussed earlier, on which our model is based. We
deftne nett(rpp) by

2m2E, e' G)0

(3 4)Seff GPO

where E, is the atomic density. The quantity n, t, (up)
is a Ineasure of the fraction of available oscillator
strength which has been exhausted by electronic transi-
tions of energy up to Aero. If there is a frequency ~~
which is high enough that when used in (3.4) the
valence to conduction-band oscillator strength is ex-
hausted but low enough that the core excitations have

"These are about 30 eV below the valence band in Ge and Sn,
20 eV in Ga and In, and 10 eV in Zn and Cd.

'6 F. Seitz, The Modern Theory of Sol@'s (McGraw-Hill Book Co.
New York, 1940), p. 644.

'~ H. R. Phillip and H. Ehrenreich, Phys. Rev. 129, 1550 I'1963).
'8 P. Nozieres and D. Pines, Phys. Rev. 113, 1254 (1959).
"The lower limit of the integral in (3.3) must be taken to be

larger than the reststrahlung frequency to avoid the eGects of
lattice vibrations.

l0
EteV)

20 30

Fzo. 2. Experimental N, n(cal versus energy ko for several semi-
conductors. Except for the extrapolation to the right-hand limit
of the curve for InSb below the knee around 18 eV, this figure has
been borrowed from Ref. 1'E, where it is labeled Fig. 5.

2 es(pp)
et(0) =1+- dip.

7i 0 N
(3.5)

Because the integrand in (3.5) is es/a& instead of ~ps
as in the equation for n, ft(&op) LEq. (3.4)j, the core ex-
citations which cause the increase in n, r, (cpp) above the
knee do not contribute substantially to the value of
et(0). Thus the dominant effect of the d states on et(0)
ls dcscllbcd by thc lncrcasc ovel 4 of %@fan) as de6ncd
above.

In practice determination of E,ff by extrapolation
above the knee is dBBcult because it requires the mea-
surement of the absolute value of the reQcctancc. Fur-
thermore, at high energies the surface condition of the
crystal is critical; the presence of an oxide layer will
introduce a large error because of the strong absorption
of oxide compounds in the range 10—20 eV. Despite these

not yet begun to affect e2, then we may defjne g,«
=nstr(ppt). For the reader's convenience we reproduce
in Fig. 2 values of n, tt(ppp) for several semiconductors. t~

We see that for Si, n.tt(top) saturates at a value of 4, as
expected, around 20 eV. When Acro reaches the core ex-
citations energy, there should be a knee in the g,ff
curve. This is seen at about 18 eV in the InSb curve,
when the excitation of d-core states begins.

C
Note that

n tf(ppp) is well above 4 at this point. ) One might ex-
trapolate the n, ft(rpp) curve beyond the knee to obtain
an estimate of the value for the E,ff that would be
found. mere it not for these excitations, i.e., the value of
the f sum connecting the valence and conduction
states.

Recall that the Kramers-Kronig relation for et(0)
ls
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FIG. 3. Imaginary part of dielectric function ~&(+) versus
energy in units of the effective homopolar potential Eq as de6ned
by Eq. {3.6). In this method the value of X&A, for Ge is found by
extrapolating the value of the Penn-model energy gap for diamond
and Si as a function of nearest-neighbor distance. The value of
gf, 3, the Penn-model energy gap, for Ge is also indicated.

objections, we conclude from Fig. 2 (by comparing Ge
with GaAs) that E,II is not the same for all crystals
made up of pairs of elements belonging to the same row
of the Perlodlc table~ 1.e., jeff 1s not lIldePendent of DZ.

Now consider another aspect of the effect of the d
core states on the excitation spectrum. Take Ge as an
example. Between the 3s'3p' core electrons and the
4s'4p' valence electrons there is a region of large 3d
charge density. In this region the central potential seen

by the valence electrons is quite larg- of the order of
the free-atom d-electron binding energy, i.e., 50—100 eV.
This potential is much larger than one would And out-
side the 2s'2p' core in Si. As a result, the binding energy
of a 4s electron in Ge+' exceeds that of a 4p electron by
28.3%, while in Si the difFerence is only 24.4%. This
difference of 3.9% is 1.8 eV.

To compare spectra proceed as follows: Write for
d1.amond and Sl

(3 6)

where r is the nearest-neighbor distance. From the ob-
served values eI(0) =5.7 and 12.0 for diamond and Si,
respectively, one obtains the indicial value s=2;48.2O

We then use (3.6) to extrapolate' to obtain an estimate
of the value of E~ for Ge in the absence of d-state eGects.
We use these values of E1 to plot e2(co) versus the
dimensionless variable Ace/E@ for the three crystals
(Fig. 3).

"K. M. Guggenheimer LProc. Phys. Soc. (Iondon) 58, 456
(1946)j has found that the force constants k for bond stretching
vibrations of j.00 diatomic molecules depends only on the valence
numbers and r ~'4' within a mean error of 1.64 jo, and irrespective
of the presence of d states.

On this scale the spectra of diamond and Si are
rather similar; they begin about 0.5, rise until about
0.7, and then have a large peak about 0.9. The largest
peak in Ge is found at EI, and appears more spread out;
the low-energy region contains a second peak and has
shifted down to about 0.5. Detailed band calculations"
have shown that the low-energy region is associated
with bonding p ~ antibonding s transitions in all three
crystals. The shift of this region between Si and Ge is
about 1.1 eV. (The low-energy peak in Ge is due to
A3-A~ transitions which have shifted by about 1.7 eV
between Si and Ge according to alloy studies. ")

The value of eI(0) for Ge in the absence of d-state
effects, which we estimate by our approximations, is
about 13 as compared with the observed values of 12.0
for Si and 16.0 for Ge. (Note that the lattice constant
of Gc ls 011ly 4% lal'gcl' than tha't of SI.) USIIIg tile
KrRnlels-KIoIllg trRllsfoInl I Eq. (3.5)j, oIIC CRI1 vcllfy
that the shift of the low-energy region accounts semi-
quantitatively for the increase in eI(0). The s-bonding~
p-antibonding transition energies, which are much
larger, are increased by the d states. They contribute to
the increase in II,II Lsee Eq. (3.4)j. They probably
also account for the spreading of the large peak in Ge
relative to Si and for its shift to somewhat higher
energy.

Thus the effect of the d-state core, which is well
localized in real space, is to increase eI (0) and n, II above
the values predicted by (2.8) and (3.6). One can correct
for this in several ways. One might insist on taking X
equal to four valence electrons per atom and reduce Ey,
to fIt E1,~. We prefer to renormahze /I/ (i.e., use an
IV ff) and retain E@ as extrapolated, because it seems to
yield more consistent results when we deal with atoms
from different rows, to lead to better electronegativity
scaling factors C, and to lead to better comparisons be-
tween spectra. (Note the position of E1,1 in Fig. 3.)
Moreover, the d-states do not seem to affect certain
phenomena arising outside the core.2' Thus we dehne a
parameter D by

g+eff ~ (3 &)

We continue to compute and quote the plasma fre-
quency assuming four free electrons per atomic volume
and use (3.6). In cases where the d-state effects are
relevant, such as eI(0), we multiply ar„by DI~'. Thus
(2.8) becomes

eI (0)= 1+(i'1(o„)'Drf/(EI, '+C') . (2.8')

We do not try to infer Ã, ff and thus D from curves
such as are found in Fig. 2, because of the experimental
difhculties mentioned above. We take D equal to 1.0
for diamond and Si and find LZq. (2.8')j D=1.25 and
1.46 for Ge and e-tin by using the extrapolated values,
Eg& tllc observed valllcs of 6I (0), Rnd tl1c fRct tllRt C=0
due to symmetry.

~' J. C. Phillips, in Solid SION I'hysics, edited by I'. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1966}, Vol. I8;
also, E. Schmidt, Phys. Status Solidi 27, 5'7 (1968).
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Ke now consider what value D will take when dZ,
and thus C, is not zero. In qur calculations we found
empirically a general formula for D [Eq. (3.11)j which
yields values for C that the author believes are accurate
on the basis of evidence to be presented. Because E,ff
is experimentally observable, this formula may also be
tcstcd dlI'ectly. A plausibility arguIQcnt is now Offered

in favor of the author's empirical formula.
As was discussed above, D increases above 1 (X,ff

111cl'cRscs above 4) bccRIlsc of tllc contrlbutlon of llcgR-
tive terms in the f sum due to oscillator strength be-
tween the d core around the ions and the valence band
throughout the crystal. Therefore, let us assume that
the effect of the d-core at atom o, will be proportional
to the product of the average valence charge density
around o., which we denote by q, and some parameter
0, which is characteristic of the d-core at 0,. %e also
assume that, because the effect is a cooperative one
between the two types of atoms present, the total CGcct
will be multiplicative rather than additive. Thus we
assume that for elements n and P

TABLE I.Effect of the presence of a 4' core on the s to p energy-
level splittings of free hydrogenic ions. + is the difference in
energy between the lowest p level and the ground-state s level
for the hydrogenic ion of element o. expressed as a percentage of the
binding energy. Nz' is the difference in + ' between the third-row
and the second-rom elements with valence Z. The last row shows
the product of +g' and Z, which is approximately constant.
Thus 4 ' is roughly proportional to 1/Z as proposed.

fn'
Pr.

'

Zga'

67 jo
Zn

0.29%
8.62%

17.24 jo

30.55&o
Ga

35.70 jo
5 15'Fo

15.45 jo

Si

24.35%
Ge

28.29%
3.94 jo

15.76/

20.34@o
As

23.81/o
3.47%

17.397'.

17.52&
Se

20.64/o
3.12 jo

18.72%

Cl

15.39%
Br

2' C. E. Moore, in Afore ErIergy Levels, Natl. Bur. Std. (U.S.)
Circ. No. 467 (U. S. Government Printing Ofdce, Washington,
D. C., 1949).

(3.g)

should be roughly proportional to the probability
that an s electron be found within the d-core and this
should be roughly proportional to 1/Z because of the
decrease in the radius of the core. If we make use of the
relation of 4' to the increase in s-state over p-state
binding energy we can substantiate this conjecture. I.et
us define 4 ' to be the percent difference of s-state to
p-state binding energy for the hydrogenic ion of ele-

ment e. Consider the percent difference in the values of
0' ' for the elements of the same valence of rows 2 and 3
of the periodic table" which we denote 0'g'. This is
shown in Table I.

Assuming that the %z"s are roughly proportional to
the 4 "s for row 3, we conclude that indeed 4 ' fx: 1/Z.

If there were no charge transfer the valence density
would bc pioportional to Z, i.c., p ~ Z, and wc would

TAsI,E II. Parameters used in calculations presented. 6 and 8
are the parameters used with Eq. (3.11}to calculate D, the effect
of the d-core levels on the effective plasma frequency. r is the
covalent radius introduced in Sec. IV, which is equal to half the
nearest-neighbor distance in the diamond-type crystal of the
group-IV element in the row listed.

row

I
II
III
IV

1.0
1.0
1.12
1.21

1.0
1.0
1.0025
1.005

re/Co

1.45929
2.22178
2.31460
2.65576

Iv. GENERAL ZINC-BLENDE AND WURTZITE
CRYSTALS; ATOMS FROM

DIFFERENT ROWS

As we noted in Sec. II from Fig. 1, the average
antisymmetric potential, the C in (2.7), is proportional
to

~

Z —Zp
~

when the atoms n and P belong to the same
same row of the periodic table. Because C has the
dimensions of energy, one might guess that

C:-p" (Z-/r= Zp/&p).

D~ (Z )(1/Z )(Zp)(1/Zp)=const.

The actual charge transfer should be proportional to
hZ. Suppose Zp&Z . Then, to within a constant of
proportionality,

(3.9)

where q is a parameter characteristic of the rows to
wlllcll Q Rnd p belollg. Tlllls

D" (Z- ~~Z) (1/Z-)(Zp+»Z)/Zp
=1 nfI Z'/—Z.Zp n'&Z'/—Z-Zp
= 1——,', (If+If')hZ'

+L(~+~')/16X64) j~Z'+ " (3 10)

Therefore, the lowest-order change in D is a decrease
proportional to (AZ)'. Physically this comes about. be-
cause more electrons are localized near the ion of higher
valence, where, because the d-core states are more
tightly bound, there is less valence —d-core hybridiza-
tion. The general prescription for D we have used is

D(~,P) = ~-~p (&-t'p 1)—(Z- Z—p)', —(3 11)

where 6 and 6 are parameters for the rows of the periodic
table to which n and P belong. LThus (3.11) holds also
in the case where n and P do not belong to the same row,
which is discussed in Sec. IV.j Because there are no d
core electrons, 6=5= 1 for rows 1 and 2. For rows 3 and
4, 6 is given by DG,'I' and Ds 'I'. %C have chosen the
8's for rows 3 and 4 to given a good fit to the experi-
mental data. (See Sec. IV.) Table II contains a sum-

mary of all parameters used. Table III presents our
results as calculated from (2.8') using our calculation
of C which we now present.
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(Gordy" noted that an expression of this form would
yield Pauling's electronegativity table. ) Previously, ' "
the single-bond covalent radii of the atoms n and P
have been used for the r 's in (4.1). We have defmed
a new covalent radius which may be more appropriate
to solids. I,et d, ~ be the nearest-neighbor distance in
the diamond-type crystal of the group-IV element of
the same row, p, as element n. In crystals with an
average of four valence electrons per atom this length
d, ~ is taken to be a prototypical covalent bonding
length for row y and, as a first approximation (to be
refined in a moment), we assume 2r =d, ~. This as-
sumption implies that the nearest-neighbor distance, or,
equivalently, the lattice constant, is the same for all
crystals in which the two elements involved belong to
the same row. We have already noted that this is a
good approximation. (In Be0 the lattice constant is

7% larger than in diamond; in all other cases the varia-
tion is less than 2/z. ) The assumption would also imply
that the nearest-neighbor distance in a crystal contain-
ing atoms from different rows would be the mean of the
nearest-neighbor distances of the group-IV elements of
the rows involved and thus, for a given pair of rows,
this distance would also be constant. Reference to the
lattice constants in Table III will show that while there
is somewhat more variation when atoms are from dif-
ferent rows, both predictions are basically correct. It
should be noted that the crystals showing a variation
larger than 4+0 (Cup, BeS, BAs, BeSe, BeTe, and
MgTe) are all rather unstable, so much so that the
author has been able to And experimental values of
ei(0) only for BeSe and MgTe, and these are tentative
values. Thus crystals that vary greatly from the above
prediction do not enter the present discussion. Indeed

TABLE III. Crystal data and calculated parameters. The experimental dielectric constants are listed according to method of ob-
servation, either by refraction (refract. ) or by reststrahlen (rest. ) measurements. The value we believe is most reliable is in italics. The
column labeled "Var."gives the variation of the lattice constant from the predicted value.

Crystal

C
BN
Beo
LiF
Si
Alp
MgS
Nacl
Ge
GaAs
ZnSe
CaSe
CuBr
KBl
Sn
InSb
CdTe
SrTe
AgI
RbI
SiC
BP
BeS
LiCl
A1N
Mgo
NaF
GaN
Zno
caO
CuF
KF
BAs
BeSe
LiBr
InN
Cdo
Sro
AgF
RbF
BeTe
LlI

Row
Nos.

1-1
1-1
1-1
1-1
2-2
2-2
2-2
2-2
3-3
3-3
3-3
3-3
3-3
3-3

44

4Q
44
4-4
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-3
1-3
1-3
f-3
1-4
1-4
1-4
1-4
1-4
1-4
1-4

Type

diamond
zinc-blend e
wurtzite
NaC1
diamond
zinc-blende
NaCl
Nacl
diamond
zinc blende
zinc blende
NaC1
wurtzite
NLC1
diamond
zinc blende
zinc blende
NaC1
zinc blende
NaC1
zinc blende
zinc blende
zinc blende
Nacl
wurtzite
NaCl
NRC1
wurtzite
wurtzite
Nacl
zinc blende
NaCl
zinc blende
zinc blende
NaCl
wurtzite
NaCl
Nacl
Nacl
NRCl
zinc blende
NaC1

Lattice
const.
(~0)

6.740
6.831
7.195
7.592

10.263
10.301
9.833

10.639
10.691
10.684
10.710
il.i68
10.865
12.472
12.267
12.242
12.246
12.227
12.232
13.875
8.217
8.576
9.165
9.693
8.257
7.958
8.731
8.483
8.628
9.091
8.041

10.104
9.027
9.581

10.396
9.399
8.873
9.751
9.298

10.658
10.469
11.338

Expt
~(0)

(refract. )

5 jn

3.0b
19b

1Z.O"
8.5'
5.1b

2 3b
16.0

5 9g
5 Ib
4.4b, 4.0~
2.4b

241

7.Z~
8b

49b
Z.7b

9&
7.1»

2 7b

30b
1 7b
5 pr
4.0b
3 3b
2.5'
i.gb

10.4'
~7 3P

3.2b
5.5'
621
3.Zb 3.3'I
2.9
1 9b

11 6r
38b

Expt e(0)
(rest. )

11.7e

2.3d
15.9e
11.3', 10.P'
6.0e 5.8d, 5.4

Z3d

15.7d*'
72e&7 Ie& 76

2.6d

6.7d

8.6'

2.7d

4.8.

I.jd

3.6e

1.5d

85r
3.2d

' 1.9d

1.55
1.55
1.90

1.50'
1.50
2.00

1.50
1.45
2.30
1.50
2.30

1.50
1.55
2.35
1.60
2.25
1.40
1.30
1.30'
2.30
1.20
1.45
1.90
I 30r
1.10
1.90
1.30'
1.95
1.30'
1.30'
2.30

30r
0.9
1.90
I 30r
1.85
I 30r
2.55

C
(eV)

0.0
7.8

14.1
23.0
0.0
31'
7.1

11.8
0.0
2.9
5.6
8.1
6.9
9.3
0.0
2.1
44
6.7
5.7
7.1
39
p 7'
4.0'

11.6
7.3

14.5
20.9
7.6'
9.3

14.6
15 8r
16.1
03r
34r
95
6.8'
7.6

13.4
12.2»

13.9
2 fr
74

&a
(ev)

13.6
13.1
11.5
7.0
4.8
47
3.7
3.1
43
4.3
43
2.7
4.1
2.1
3.1
3.1
3.1
2.2
3.1
1.6
8.3
7.4
6.3
3.8
8.2
6.3
5.0
7.6
7.3
4.5
8.7
3.5
6.6
5.7
3.2
5.9
4.8
3.8
4.3
3.0
4.5
2.6

jeff

4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
5.0
49
47
4.3
4.5
4.1
5.9
5.7
5.2
44
4.9
4.3
4.0
4.0
4.0
4.0
4.0
4.0
4.0

4.3
4.0
4.2
4.0

4.3
4.1
4.8
4.5
4.0
4.3
4.1
4.5
4.1

Var.
Po)

+ 1.4
+ 6.8
+12.6

+ p4—4.2
+ 37
—0.1
+ 0.2
+ 4.5
+ 1.6
+16.7
—0.2—0.2—0.3—0.3
+13.1—1.2+31
+10.2
+16.6—07—4.3
+ 5.0—0.1+17
+ 7.1—5.3
+19.0
+ 6.4
+12.9
+22.5
+ 03—2.4

7.2
2.3

17.2
15.1
24.7

"%'. Gordy, Phys. Rev. 69, 604 (1946), especiaHy Appendix (ii) or Ref. 2.
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TABLs III. (6053$NQ8d)

Row
Crystal Nos.

A1As 2-3
MgSe 2-3
Nor 2-3
GaP 2-3
ZQS 2-3
CuC1 2-3
Ca8 2-3
KCl 2-3
InP 2-4
Cd8 2-4
SrS 2-4
AgC1 2-4
RbC1 2-4
AlSb 2-4
MgTe 2-4
NaI 2-4
GaSb 3-4
ZnTe 3-4
CaTe 3-4
CuI 3-4
KI 3-4
InAs 3-4
CdSe 3-4
SrSe 3-4
AgBr 3-4
RbBr 3-4

T3Ve

zinc blende
NaCl
NaCl
zine blende
zinc blende
zine blende
NaC1
NaCl
zinc blende
vrurtzite
NaC1
NaCl
Nacl
zinc blende
vrurtzite
NaCl
zinc blende
zinc blende
NaCl
zinc blende
NaC1
zinc blende
wurtzite
Nacl
NaCl
NaCI

Lattice'
const.

(uo)

10.620
10.301
11.288
10.300
10.222
10.215
10.753
11.892
11.090
11.047
11.376
10.482
12.436
11.593
12.050
12.232
11.561
11.510
11.990
11.419
13.352
11.406
11.489
11.773
10.912
12.952

F
e($0

(refract. )
~10.2~

5.9b
2 61
P.P
J Zh

3.P', 3.6~
4.5b

Z.Zb

5.Z'
4.4b
4.Zb, 4.0~
2.2b

3.1b, 2.9~

F.ag
6 3b
5.5b

2.7b

4.9b
$0b 46@
Z.4b'

Expt e(0)
(rest. )

10.3~

2 6d
9 10 8 5dtf

5.10, 5.7
48d

2.1d

9 6dif
5.1', 5.4'

2.2d

10 2dif

3.0
13.70, l4.4d'f
7.3' 7.8d 6.7~

jd
12.3d ~

6.1,$.E

2.3d

1.50r
1.60
2.00
1.45
1.40
1.50
2.30
2.25
1.40
1.40
2.15
1.35
2.15
3.05
1 50r
2.10
1.75
1.60
2.65
1.55
2.35
1.30
1.50
2.25
1.35
2.20

2 7'r

5.4
9,8
3.3
6.2
8.3
9.1

10.4
3.4
59

7.8
9.7
3.1
3 6r
j.8
2.1
4.5
6.7
5.5
j4
2.7
5.5
8.0
6.9
8.9

&a
(eV}

3.3
2.6

4.8
4.8
3.0
23
3.9
4.0
2.6
3.2
2.1
3.5
3.2
2.2
3.5
3.6
2.3
3.j
1.7
3.7
3.6
2.4
2.9
1.9

44
4.3
4.1
4.4
4.3
4.2
4.0
4.0

4.5
4.0
43
4.1
4.8
4.5
4.1
5.3
49
4.5

4.1
5.3
4.9
43
4 j
43

Var.
(%)

+ 1.4—17
+ j8—1 j—2.4—2.5
+ 27
+13.5
—1.5
+ 1.4—6.6

—0.3
+16.6—0.4
+ 0.3
+ 2.8

47
+13e1

+10.8
+ 3+3

+
+ 9.0
+ 1.0
+ 0.5
+ 47

See Ref. 25, Vol. I. Note: For wurtzite structures an effective cubic lattice constant e f f is given. In terms of the normal wurtzite parameters e and c,
and c, e.fp =Acme.

b Handbook of Chemistry and Physics, edited by R. C. Weast (The Chemical Rubber Co., Cleveland, 1965), 46th ed.
& J.W. Allen (private coommunication).
d E. Burstein, H. M. Brodsky, and G. Lucousky, Int. J.Quant. Chem. 1s, 759 (1967).
e A. Manabe, A. Mitsuishi, and H. Yoshinaga. Japan. J. Appl. Phys. 6, 593 (1967).
& M. Hass and B.%'. Henvis, J.Phys. Chem. Solids 23, 1099 (1962).

D. T. F. Marple, J. Appl. Phys. 35, 539 (1964).
& S.J, Czyzak, W. M. Baker, R. C. Crane, and J. B.Howe, J. Opt. Soc. Am. 47, 240 (1957).
I T. M. Bieniewsky and S.J. Czyzak, J.Opt. Soc. Am. 53, 496 (1963).
& P.J.Gielisse, S.S.Mitra, J.N. Plendl, R. D. GriKs, L. C. Mansur, R. Marshall, and E.A. Pasco, Phys. Rev. 155, 1039 (1967).
& A. S. Barker, Phys. Rev. 165, 917 (1968).

& R. E.Lindquist and A. W. Ewald, Phys. Rev. 135, A191 (1964).
m K.J. Planker and E. Kauer, Z. Angew. Phys. 12; 425 (1960).
&

¹ A. Goryunova, Chasm'stry of Diamold-Iikc Scmicomdgctors (Chapman and Hall, London, 1965).
o A. T. Collins, E. C. Lightowlers, and P. J.Dean, Phys. Rev. 158, 833 (1967).
& S. K. Kurtz (private communication).
& K. Hojendahl, Kgl. Danske Videnskab. Selska'b, Mat. -Fys. Medd. 16, 66 (1938);this work is quoted by N. F. Mott and R. W. Gurney, in Electronic

Processes fe Eomic Crystals (Dover Publications, Inc. , New York, 1964).
& Value predicted on basis of trends noted in text; experimental data are not firm.

the worst variation in lattice constant among skew-
tetrahedrally-coordinated crystals for which firm values
of ei(0) have been obtained is the 5% variation between
CdS and A1Sb, the crystal CdS being 2% lower than ex-

pected and AlSb 3% higher.
To take account of what variation there is, we scale

the r 's to the lattice constant that is actually observed.
Thus if u p is the observed lattice constant and u p' is
the geometric mean of the a,~'s, we define r by

a linearized screening wave number k, which may be ex-

(4.3)

where kj is the Fermi wave number of the valence
electron gas, kg'= 3x'E, (4 4)

and E corresponds to eight electrons per diatomic
volume.

When this screening is included, (4.1) is replaced by

~a da=2m(aap/oap ) ~ (4.2) c p=b(z /r —zp/rp)p
—'*" (45)

When (4.1) and (4.2) are used to compute the values
of C for row 1 and rows 3 and 4 (see Fig. 1), one finds
that the agreement with experiment is qualitative.
However, (4.1) represents the average antisymmetric
potential of bare ions, whereas the actual antisymmetric
potential includes the eGects of valence electron
screening.

The simplest treatment of valence electron screening
is obtained from the Thomas-Fermi theory. This yields

where E=g'(r +rp), r and rp are as defined in (4.2),
and b is a dimensionIess constant, which is of order
unity. The exponential screening factor varies from
0.14 to 0.07 from row j. to 4.

In common with (4.1), the screened expression (4.5)
yields C p 0-

~
Z —Zp ~

when n and P belong to the same
row. However, because of the exponential factor, (4.5)

'4 N. F. Mott and H. Jones, 1"heory of the Properties of 3fetals
and Al/oys (Dover Publications, Inc., New York, 1958).
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',CUClt
L.

CdS,'CUBr,'Cur t

InP CdSe CdTe

ZnS 6aP LnSb BeO AQII

Zn0 AlN fnAs, SIC ZnSesaAs BN ZnTe aS lSb
l l I I I l I "I I

L2 l3, L4 l.5 t.6 I.l l.8 3.0 3.l
EXPERIMENTAl VALUES OF b FOR ZINC-BLENOE-TYPE CRYSTALS

FIG. 4. Frequency histogram for zinc-blende- and wurtzite-type
crystals of the parameter h in Eq. t',4.5), which determines the
mean ionic potential C.

differs from (4.1) in that the former is not in general
transitive. Thus C p cannot be expressed as the dif-
ference of two terms, one depending only on 0, and the
other only on P.

Physically (4.5) says that the electronegativity dif-
ference is proportional to the screened electrostatic
potential difference of n and P at a point that might
loosely be taken to be their point of contact or bond
site; i.e., a distance r from n toward atom P. (Indeed
scaling r has insured that the actual nearest-neighbor
distance is r +rp. ) The dielectric screening is repre-
sented by the exponential, which is the geometric mean
of the factors e ~'" and e ~'"&, the screening factors for
the ion core potential at the bond site in the simple,
linearized Thomas-Fermi model. Note that no allow-
ance has been made for d-state elects; C is a property
relevant to the bonding sites which are outside the core.

At this point in the development of our theory we
refer to the experimental dielectric constants for a
second time. Ke calculate the value of C necessary to
,~ive the most reliable experimental value of ei(0) (the
underlined value in Table III), for all zinc-blende and
wurtzite crystals, except those containing noble metals,
for which reliable experimental data is known to the
author (18 crystals in all). (We noted the anomalous
bchRvlor of CUBr and AgI ln Flg. 1 Rnd will discuss
the noble metals later. ) With this value of C and Eq.
(4.5) we find the corresponding value of b, the prefactor
in (4.5). The b's are plotted in a frequency histogram,
Fig. 4.

From Fig. 4 wc see that 13 of the 18 experimental
values of b fall between 1.4 and 1.6, i,e., within 7% of
1.5. Because of the discrepancies in the experimental
values recorded in Table III, we believe tha, t 7'Po is
about the level of experimental accuracy. The 6ve
cases in which the experimental b is more than 7%%uz away
from 1.5 are InAs (1.3), AIN (1.2), Zno (1.1), GaSb
(1.75), and AlSb (3.05). We have already noted that
AlSb has an unexpectedly large lattice constant, indeed
only BeO (for which the experimental b=1.55) varies
morc from our predicted value. ZnO is also unusual be-
cause its wurtzite structure is distorted so that one
neighbor is substantially nearer than the other three. 2'

~5 See the e-parameter table I R. %. G. Wyckoff, Cryslcl
Strgctlres (Wiley-lnterscience, Inc. , New York, 1963}, Vol. I,
p. 112j; Zno has the greatest distortion of any wurtzite crystal
listed there.

Now consider the noble metals, Cu, Ag, and Au.
These have often been a source of trouble in electro-
negativity theories. '""Chemically they show a pro-
pensity to assume an effective valence greater than the
value of 1 that we wouM expect from their d"s' ground-
state configuration. Indeed, reference to their atomic-
energy levels" shows that the d's' configuration is the
lowest excited state in Cu and Au, only I.38 and I.13
CV, respectively, above d"s', and in Ag d's' is only
slightly higher than d"p' at 3.7 eV. The d's' configura-
tion would indicate an effective valence of 2 instead of
1.. We noted in Fig. 1 that when CuBr and AgI are
placed on the extrapolation of the 1/X-versus-(AZ)'
lines for rows 3 and 4, their observed dielectric constants
indicate values of (dZ)' of 26 and 29, respectively.
These values are closer to the value 25, which would be
obtained by assigning valence 2 to the noble metals'6
than to the value 36, which would be obtained if they
have valence 1.

When we calculate the experimental value of b for
the four zinc-blende crystals containing a noble metal
for which an experimental value of ei(0) has been ob-
tained, we find (Fig. 4) that all four values fall within
7% of 1.5, provided we assume Z=2 for these metals.
(However, we have continued to assume eight electrons
per diatomic volume when calculating &v~ and Er.)
Therefore, we will assume that Z=2 for these metals
ln ful ther cRlcUlatlons.

Rbcl RbBr RbF
NaF ~ QKCI,', ~ KF

NaCI ~ NaBr RbI It'Br III

S S . SrOo oNaI
SrS~ eSrSe +CaO CLIF

SrTe~ ~ ~CaSe
CaS

CaTe

~ 90-

„AgCI
yAgBr

O MgO

u 82-
O

MgSe

LiBr LiI

Cdo

t t t t t t t t

-4 0 4 8 12 16 20 24
'io VARIATION IN LATTICE -CONSTANT FROM

PREDICTED COVALENT VALUE

28

FIG. 5. For NaQ-type crystals the fraction of ionic character
is plotted against the deviation of observed lattice constant from
the value predicted by taking the mean of the lattice constants of
the group-IV crystals of the rows to which the two elements of
the compound belong.

"See Guggenheimer, Ref. 20.

V. ROCK-SALT STRUCTURE

All diatomic compounds which are composed of
elements from the first four rows of the periodic table
and which have a saturated valence band (i.e., have
eight valence electrons per diatomic unit) are found in
stable CI'ystRls either ln thc NRCl structure ol ln thc
diamond, zinc-blende, or wurtzite structures, which
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have already been discussed. By extending our cal-
culations to include the NaCl-type crystals we will be
able to treat all diatomic compounds to which the
simple Penn model applies, and for which we have 6xed
values for the r, 6, and 8 parameters. Note that a
characteristic feature of the Penn model is the absence
of structure factors 50 which would distinguish be-
tween zinc-blende and rock-salt structures. Therefore
to the extent that a continuum model is applicable to
strongly ionic systems, the Penn model can be used to
extrapolate the dielectric properties of semiconductors
to I—VII ionic crystals.

As in zinc-blende crystals, the NaCl structure is fcc,
diatomic, and contains eight atoms per unit cell. Thus
the translational symmetry is the same, and crystals
of the same atomic density will have the same lattice
constant a in the two structures. However, NaCl has
coordination number 6, whereas zinc-blende has 4, and
the nearest-neighbor distance is 2a instead of ~43@.For
crystals of the same atomic density, each ion in the NaC1
structure will have 50% more of the oppositely charged
ions as nearest neighbors, but they will be about 15%
further away. If one thought of the atoms as hard
spheres, one might expect the NaC1 structure to yield
denser crystals than the zinc-blende structure.

Although no clear distinction has yet been made be-
tween ionic and covalent compounds, those which are
generally considered to be most ionic, e.g., KI, are found
in the NaCl structure and those which are considered
most covalent, e.g., diamond, are found in the diamond,
zinc-blende, or wurtzite structures. Indeed, covalency
is commonly thought to be concomitant with tetra-
hedral coordination. To some extent this idea may arise
from the fact that many tetrahedrally coordinated
crystals have an average of four valence electrons per
atom and the notion of a covalent bond as a shared,
localized, pair of electrons between the atoms involved.
This notion of the bond is certainly naive for there are
many tetrahedrally coordinated crystals in the diamond
and zinc-blende structures which do not have four
valence electrons per atom, '~ e.g., Ga2Se3, and there are
NaCl-type crystals, e.g. , I.iH, which are thought to be
substantially covalent on the basis of analysis of the
charge distribution" and measurement of the dipole
moment. "Some compounds, such as MgS and MgSe,
will condense from the gas phase in the wurtzite struct-
ure and then undergo a slow phase change to a stable
NaCl structure. ""

In Fig. 5 a plot is shown of the fraction of ionic
character, f~, as de6ned by (1.6), versus the deviation
of the lattice constant from the "normal covalent
value, " i.e., the value we would predict for a zinc-

"N. A. Goryunova, The ChenusAy of Lbamosd-Eke Semi-
eomEuctors (Chapman and Hall, London, 1965), pp. 42—57.

2 R. S. Calder, W. Cochran, D. GrifEths, and R. D. Lowdee,
J.Phys. Chem. Solids 23, 621 (1962).' M. Brodsky and E. Bursteinp J Phys Chem. Solids 28, 1655
(1967)."H. Mittendorf, Z. Physik 183, 113 (1965).
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Fro. 6. Fraction of ionic character versus the b parameter of
Eq. (4.5) or for Ca and Sr salts the b' parameter of (5.3).

blende crystal of the same compound using our covalent
radii for 30 NaCl-type crystals. (We do not use any of
the well-known ionic radii tables. ) We note that all the
I i, Na, K, Rb, and Ca salts have a lattice constant up
to about 28% greater than that predicted. The Mg, Ag,
and Cd compounds in the NaC1 structure are more
dense than the author would predict, but in no case is
the observed lattice constant as much as half the 15%-
less value that a hard-sphere model would indicate.

In Fig. 6 a plot is presented of f; versus the value of b

in Eq. (4.5) which is necessary to obtain the experimen-
tal value of e~(0) from (2.8')—except as noted below
for Ca and Sr salts—when, as noted earlier, we continue
to obtain Eh fxom the extrapolation of the diamond and
Si values" as a function of the actual nearest-neighbor
distance (3.6), and D from (3.11).

Special note must be taken of the calculation for the
group IIa compounds, i.e., the Ca and Sr alkali earths.
In contrast to the group IIb elements Zn and Cd, the
elements Ca, and Sr have no d core so that a=1.0 and
(3.11) should not be used. However, reference to the
atomic-energy levels" shows that the d-states lie just
1.7 and 1.8 eV, respectively, above the ground state
for { a+ and Sr+ so that these leve]s should not
neglected. One method of including the effect of the
conduction-band d levels is as follows: We assume total
ionicity so that in the valence level the electrons are
localized about the group-VI atom and that in the

"It is possible to test the validity of the extrapolation method
of determining Eq by examining the cases in which (1) there are
no fg states present in the cores and (2) the value of C as predicted
by (4.5) is too small to have much eGect on the value of E&',. The
latter condition obtains when Z /Zp~r /r p. The zinc-blende-type
crystal BP satisfies these conditions, and we calculate that e&(0)
should be 8.6. Unfortunately, we do not know of any firm experi-
mental determination. However, Goryunova (Ref. 27, p. 93),
gives a tentative value of 9. The NaCl-type crystal. LiH is also
expected to satisfy these conditions. Although we have not yet
fixed a characteristic covalent radius for H, we conclude from the
fact that the lattice constant of LiH (7.720a0) is about 1'po larger
than that of LiF (7.592u0), that the radius for H should be about
the same as that of the first row elements. (Of course, Z is 1 for
both Li and H.) If we take C=O, we calculate Ey, =6.8 eV and
e&(0) =3.9. Brodsky and Burstein (Ref. 29) found ~1(0)=3.6. That
value would indicate that the true value of C should be about 2.3
eV.
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lowest conduction band they are localized about the
group-IIa atom. Then, in addition to this lowest con-
duction band, we add d bands i.7 and 1.8 eV higher for
Ca and Sr, respectively. The p electrons in the valence
band can make transitions to the d level as well as to the
normal conduction band. Such transitions increase the
dielectric constant. Instead of (2.8') we have

where 3=1—8+-',B' and hE is the difference in
energy between the ground state and the erst-excited
d state of the IIa+ ion, i.e., 1.7 or 1.8 eV for Ca or Sr.

There is a clear analogy between the eGect described
by (5.1) and the effect of adding resistances in parallel.
As with resistances, the relevant physical quantity may
be either the actual energy gaps E, and E,+DE or
the effective energy gap de6ned by

20 1/Eg" ——1/Eg'+ 1/(Eg+hE)', (5.2)
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Fzo. 7(a). Deviation of lattice constant versus b parameter for
the alkali halides and noble-metal halides in the NaCl structure.
{b) Deviation of lattice constant versus b parameter for II-VI
and IIa-VI compounds in the NaCl structure. Note that the b
parameter, which is appropriate to the actual model energy gap,
and not b', vvhich is appropriate to the charge redistribution, is
used for the IIa-VI compounds. (c) Deviation of lattice constant
versus b for all NaCl-type crystals except the IIa-VI compounds
for vrhich b' is used instead.

depending on the application.
The value of b used in Fig. 6 is not that which yields

the experimental value of E, for (5.1), i.e., the b which
gives the actual Eg and which is appropriate to dis-
cussions of the actual interband transition energies.
One may also de6ne an effective b value b' and an
effective ionic potential C' which gives the effective

gs g E~2 E 2+C&2 (5.3)

"J.C. Phillips, Phys. Rev. 166.832 (1968}.

Because the bond charge in the Philhps theory of
covalent bonding" is inversely proportional to the
dielectric constant, which is determined by E,', the
quantity b' is more appropriate than b for discussions
of the charge distribution. Thus we use b' for the Ca
and Sr salts in Fig. 6.

Returning to Figs. 5 and 6 we note that there is con-
siderable scatter in both plots but both suggest that
the deviations remain small until f; reaches about 0.90.
Then the plots seem to turn over in an intermediate
region extending perhaps to 0.93 and then the devia-
tions increase rapidly with f; This behavi. or suggests
to the author that a fairly rapid transition from
"covalent" behavior to ionic" behavior occurs in this
range of f; We also not.e that there is a substantial
amount of clustering in both igures. There appears
to be a "normal value "of b for the most ionic crystals
in the NaC1 structure (f;&0.93) of about 2.25. This
would be the normal value for b for the zinc-blende
structure, i.e., 1.5, times the ratio of the coordination
numbers of the two structures, i.e., 6 to 4. This would

say that the average ionic potential is proportional to
the number of oppositely charged ions surrounding a
given ion. %e also note that compounds containing an
ion with the neon coniguration, i.e., 0, F, or Na, have
a b value of about 80% of this normal value and that all
crystals which are more dense than the covalent pre-
diction have the same b value that we would expect in
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a zinc-blende structure except for CdO, which exhibits
an anomalously small value of b.

In Fig. 7 we simply plot the variation of lattice con-
stant versus the rior b' values. Figure 7(a) shows only
the I-VII compounds. Figure 7(b) shows the plot for
the II-VI compounds if the b values, instead of b' as
in Fig. 6, are used for the Ca and Sr salts. In Fig. 7(c)
we plot all Nacl-type crystals using the b' values for
the Ca and Sr salts.

Figure 7 suggests that the b value increases with
deviation in lattice constant. Although there is sub-
stantial scatter, the Ggure suggests that a linear correla-
tion may exist, and that we should prefer the presenta-
tion in Fig. 7(c) to that of Figs. 7(a) and 7(b). (The
latter distinction would support our assumption that it
is the charge distribution and not the interband energy
gaps which is most directly involved in these effects. )
To pursue this point we consider the eGect of hydrostatic
pressure on ei (0).

Photoelastic eGects in crystals have been the subject
of much experimental and theoretical investigation
during the last century. "Virtually all theoretical ap-
proaches have begun by considering alkali-halide cry-
stals, which were assumed to be totally ionic. There
has been substantial variation in treatment among
these approaches. Mueller'4 assumed the Lorentz local-
Geld equation

Ei.,——E+-;sP, (6.1)

where Ei„is the local atomic field E is the macroscopic
average 6eld, and P is the polarization. This assump-
tion leads to the Clausius-Mossotti model. '0 Mucllcr
demonstrated that in order to explain the pressure de-
pendence of ei(0) for the alkali halides, it is necessary
to assume that the polarizability of the ions decreases
with pressure because the increase in ei(0) is generally
less rapid than would be predicted by considering only
the derivative with respect to atomic density.

Mott and Littleton" "argued that the overlap of the
ions in a crystal would invalidate the Lorentz equation
(6.1) and suggested replacing it with

Ei„=E+-;~yP, (6 2)

where y is a parameter which describes the CGect of the
overlap. Agreement with experiment is obtained for p
approximately equal to 0 for most alkali halides. Thus
(6.2) leads to a model which is approximately equivalent
to assuming the Drude equation. %hen the crystal is

33Cf., K. Vedam and S. Ramaseshan, in I'rogress iN Crystal
I'hysics, edited by R. S. Xrishnan (Wiley-Interscience, Inc.,
New York, 1958), Vol. I

g4 H. Mueller, Phys. Rev. 47, 947 (1935}.
gs

¹ F. Mott and R. W. Gurney, E/ectrorIic Processes As Iorlic
Crystals (Dover Publications, Inc., New York, 1964).

"N. F. Mott and M. J. I ittleton, Trans. Faraday Soc. 84, 485
(1938}.

compressed the degree of ionic overlap increases and y
must be assumed to decrease still further to account for
the pressure dependence of ei(0).

Yamashlta hRS dcvclopcd R quantum-IQcchanlcal
approach to the calculation of ei(0) for ionic crystals
which he was able to carry out with fair success for
LiF. By introducing empirical parameters, he has been
able to extend" his method to describe the pressure de-
pendence of ei(0) for all the alkali halides.

A11 the above theories have difIj, culty with the case of
MgO because for this NaC1-type crystal, ei (0) decreases
with hydrostatic pressure. " The Mott-Littleton ap-
proach is inapplicable as their y parameter is found to
be imaginary for Mg0.4' Mott" argues that the failure
of the Cauchy relation among the clastic coeKcients
C;;

8.7=Cip &C44——14.8 (10"dyne/cm') (6 3)

@' J. Yamashita, Progr. Theoret. Phys. (Kyoto) 8, 280 (1952)."J.Yamashita and T. Kurosawa, J. Phys. Soc. Japan 10, 610
(1955).

'9 K. Vedam and E.D. D. Schmidt, Phys. Rev. 146, 584 (1966).
40 S. Mayburg, Phys. Rev. 79, 375 (1950).
4' Aeserica/ Iwstitute of I'hysics Handbook (McGraw-Hill Book

Co., New York, 1963), 2nd ed.
4~ K. Vedarn and E.D. D. Schmidt, Phys. Rev. 150, 766 (1966).
"D.F. Gibbs and G. J.Hill, Phil. Mag. 9, 367 {1964).
44 M. Cardona, W. Paul, and H. Brooks, J.Phys. Chem. Solids 8,

204 (1959).

in the case of MgO" demonstrates the importance of
noncentral, covalent forces in this material. Because
noncentral forces are important, no theory based on
ionic interactions should be applicable to MgO.

Yamashlta calculated 6i(0) 1 fol MgO oil the basis
of his a priori quantum-mechanical theory to be 3.56
as compared to the observed value of 1.95. However,
his extended model with three empirically determined
parameters" is capable of accounting for a decrease in
ei(0) with increasing pressure if one makes the assump-
tion that the energy due to the overlap of the ions is
roughly a constant fraction of the total energy for all
crystals. "We know of no explanation of the basis of
such an assumption nor of any further development
along these lines.

The explanation that seems to have been preferred
is that based on the Muell. er theory. Vedam and
Schmidt" conclude that the ionic polarizabilities,
particularly that of 0,must decrease rapidly enough
in MgO to outweigh the increase in atomic density.
However, no theory has been advanced to explain
this behavior of the ions and it is noted that similar
behavior of 0 in vitreous silica is not observed. "

Although dpi(0)/dV(0 for all alkali halides, MgO
is by no means the only case for which de&(0)/dV&0.
It is known that for ZnS, 4' diamond, ~ Si,4' and Ge ~
the quantity e&(0) also decreases with pressure.

We propose to approach the problem of the pressure
dependence of ~, (0) by means of our covalent theory for
diamond, zinc-blende, and NRCl-type crystals. Let us
take the derivative of (2.8') with respect to r=r +rs.
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As A —= 1—8+—',8' is always approximately 1 because 8
is always small with respect to 1, we make the approxi-
mation 2 = const and find r dc1(0) r def (0)

(0) dr ~I (0) dr
r dC
C dr

rdb
bdr

TAaI.E IV. Pressure dependence of e1(0), C, and b.

Ref.

r dpi(0) ei(0) —1
=2

~i(0)ei(0) dt

dD Eg' C' r dC
X ,'r —+2.48- — — —1.5 . (6.4)

dr Eg' Eg' C dr

We first consider the elemental group-IV crystals for
which EI,=E, and C=O, so that we need not evaluate
dC/dr. Thus (6.4) becomes

RbCl
KI
KBr
KCl
NaCl
LiF
MgO

. dC
if —=0

dr

—1.5—17—1.6
105—1.5—1.2—15

Expt

—1.44—1.57—1.35—0.93—0.95—0.57
+1.07

Expt

—0.1—0.2—0.2—0.5—0.5—07
203

2.3
2.2
2.1
1.8
1.7
1.3—0.2

49
50
50
50
50
51
39

r dpi(0) ei(0) —1 dD
=2 2r +0.98

e,(0) dr ei(0) dr
(6.5)

for a type-IIa diamond (0.02%%uz nitrogen impurity).
Cardona, Paul, and Brooks~ have reported (1/e)
X (Be/BP)r (—3&2——) X10 ' cm'/kg for Si, where e
is the optical index of refraction.

The bulk modulus k of Si is generally reported to be
9.75X10" dyne/cm'. 4'4"" 4' For diamond there is some
question as to what the value of k is, and there may be
signihcant dependence of k on the nitrogen impurity
level. ~ ' McSkimin and Bond report k=57.7X10"
dyne/cm, which is 30'Pz higher than earlier values. With
these values we calculate the experimental values of

For diamond and Si, the quantity D is always equal to
1, so dD/dr=0 and we predict Lr /e i( 0) ldll i( 0) /dr to be
+1.62 and +1.80, respectively. Unfortunately the ex-
perimental data are not as conclusive as one might
hope. Gibbs and Hill4' have reported

(
1 Bei(0) = (—1.07~0.09)X10 ' cm'/kg

ei(0) BP

dD/dr by taking

dD Dsn DQe

ran rGe
(6.6)

we conclude rdD/dr 1.43, With this value we would
predict from (6.5) $r/ei(0) jdei(0)/dr=+3. 20 for Ge,
whereas if we assume dD/dr=0, we would predict
+1.84. Cardona, Paul, and Brooks44 reported (1/e)
X(Be/BI')= —(7&2)X10 r cm'/kg for Ge, and k is
generally reported4"' to be 7.52 X10" dyne/cm'. Thus
the experimental value of Lr /e (i0))de (i0) /dr is +3.16.
This result would indicate that dD/dr is indeed positive,
and that our rough estimate is approximately correct.

Although the experimental evidence is not suf6cient
to confirm the validity of our treatment, we note that
(6.4) does offer a simple explanation of the fact that
ei(0) decreases under compression for diamond, Si, Ge,
and. for the more covalent crystals in general. It is
simply that EI„and thus the bond energy gap, increases
with pressure faster than the plasma energy.

For nonelemental crystals, C&0; thus we need to
evaluate dC/dr in order to use (6.4). Taking the deriva-
tive of (4.5) we find

r dpi(0) 1 Bei(0)
(—3k)

ei(0) dr ei(0) BP

r dC rdb kr —1
C dr b dr 4

(6.7)

2 dÃ
=——(—3k)
ed'

to be +1.85 and +1.75 for diamond and Si, respectively.
Thus our predicted values of +1.62 and +1.80 are in
agreement with observation to within the limits of ex-
perimental uncertainty.

For the case of Ge, we lack a theoretical prescription
for evaluating dD/dr. We might conclude that it is
positive by noting that D is la,rger for Sn than it is for
Ge. If we assume we can make a rough estimate of

4'H. B. Huntington, SolM State I'hysics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7.

46 H. J. McSkimin, J. Appl. Phys. 24, 988 {1953).
'7 S. C. Prasad and W. A. Wooster, Acata Cryst. 8, 361 (1955).
48H. J. McSkimin and W. L. Bond, Phys. Rev. 105,

(1957).

(r/C)dC/dr 0 (6 8)

for the alkali halides. This is an attractive conclusion
because it implies that in the ionic limit the condition
that the total energy be a minimum, which determines
the equilibrium lattice constant, is equivalent to the
condition that the mean ionic potential C be a maxi-
mum. Since the Madelung energy makes the dominant
contribution to the cohesive energy in alkali halides,

The value of k,r is, in general, between 4 and 6 for
the alkali halides. If we assume that we may estimate
db/dr, at least for the alkali halides, from the correla-
tion noted in Sec. V LFigs. 7(a) or 7(c)j between the
observed lattice constant and the experimental value
for b, we conclude that (r/b)db/dr is approximately
+2.0 to +2.5. Thus we would conclude from (6.7) that
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the equilibrium lattice constant should be that which
maximizes the ionicity of the crystal.

Of course, even in the alkali halides we never reach
the fully ionic limit, i.e., E~ is never totally negligible.
Thus we expect small deviations from the condition

(r/C) dC/dr =0.
The experimental data on the pressure dependence of

e~(0) for the alkali halides allow a somewhat more
rigorous test of these conjectures than was possible
for the group-IV crystals. We present the evidence in
Table IV.4' "First we calculate a predicted value of

Lr/eq(0))de&(0)/dr from (6.4) under the assumption
dC/dr=0 (W. e also have dD/dr=0 because the d core
states are well below the valence level in Br, I, and Rb
and not present in K.) Next we show the experimental
value of ter/eq(0))deq(0)/dr and from this, again using

(6.4), we obtain an experimental value for (r/C)dC/dr.
In the last column we give the value of (r/b)db/dr
necessary to give the experimental value of (r/C)dC/dr
from (6.7).

In view of the cumulative eGect of all the experi-
mental uncertainties, as well as the approximations
involved, we believe that the results of Table IV sup-

port the following: (1)The basic vahdity of our covalent

approach even in the case of the alkali halides and (2)
the conjecture that dC/dr is small in ionic crystals.

We have included in Table IV the results of a similar

calculation for MgO. The covalent eGects noted by Mott
are clearly evidenced by the fact that the logarithmic
derivative of C is not small but indeed is roughly the
same as that of EI,.

On the basis of very sparse experimental data avail-

able to us, we suggest that there may be a. linear de-

pendence of the value of b (or b" for IIa-VI crystals) on

lattice constant for the most ionic crystals. Among

NaCl-type crystals only our data on RbCl, "LiF,"and
MgO" are recent. In Fig. 8 we have reproduced Fig.
7(c) with lines drawn through RbC1, LiF, and MgO
having the slope indicated by the pressure dependence of
ex(0) for these crystals (see Table IV). It is seen that
most of the crystals for which f,&0 93 fall clos.e to the
RbCl line. The behavior of MgO and the position of the
CaO and SrO points seems to indicate that for the more
covalent crystals (f;= 0.90), the value of b is much less
dependent on lattice constant. LiF may represent an
intermediate case. We note that in LiF the Cauchy
relation is also violated":

Cq2=4. 20&6.28=C44 in units of 10"clyne/cm'.

'9K. Vedam and K. D. D. Schmidt, J. Mat. Sci. 1, 310
{1966).

'0 E. Burnstein and P. L. Smith, Phys. Rev. 74, 229 (1948)."K. Vedam and E. D. D. Scmhidt, Solid State Commun. 3, 373
(1965).
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to value of the parameter b as obtained from pressure dependence
of e1(0) in Mgo, I iI', and RbCl. The points are the same as in
Fig. 7(c).

Note added inproof, .The value of eq(0) for CdO shown

in Table III, 6.2, is inaccurate because of anomalous
dispersion at the frequency at which the refractive
index was measured. Although there is still some un-

certainty as to the true value, it is known" to be
approximately 5. If we take e~(0)=5.0 we calculate
b=1.05, c=9.0 eV, and f;=0 78 This c.orr. ectionbrings
CdO into line with ZnO and similar skew compounds
containing one first rom element. Thanks are due to
Dr. P. Kisenberger and Dr. H. Finkenrath for bringing
this to my attention.

Also new data is now available for the pressure de-
pendence of the dielectric constant of several alkali
halides" and also of CdS, ZnS, and ZnO. "The new
alkali halide data is in substantially better agreement
with the values calculated in Table IV than is the 1948
data of Ref. 50. The data on CdS and ZnO is within
10% of value calculated in a manner similar to that
used for Ge, but for ZnS the experimental value is
about -', the calculated value.
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