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the calculated vacancy formation energy is much too
high.

Consideration of Jansen exchange forces®3% and
four-dipole interactions?¢—3 lowers both the energy of
formation of a vacancy and the activation energy for
divacancy self-diffusion to give good agreement with
experiment. The agreement between experiment and
calculation suggests that diffusion in rare-gas solids may
be primarily via divacancies at high temperatures.

It was shown that it is not implausible that the rela-
tively scarce divacancies move sufficiently rapidly com-
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pared to single vacancies to be responsible for the ob-
served self-diffusion in solid rare gases.
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Electronegativity difference is redefined as a scaling parameter, generalizing the concept of valence dif-
ference. A procedure for its evaluation is developed in terms of the dielectric constants of diatomic crystals.
A simple alternative to the Clausius-Mossotti theory of the electronic dielectric constant is developed in terms
of this concept. The effect of d-electron states and of hydrostatic pressure are discussed, and procedures for
their approximate evaluation are developed. The treatment is extended to 68 crystals of the diamond, zinc-
blende, wurtzite, and rock-salt types; values of the electronegativity parameter are tabulated for these

crystals.

I. INTRODUCTION

HE concept of the relative electronegativity of

the elements is an old one which arose in connec-
tion with oxidation-reduction potentials in the eigh-
teenth century. Thomson appears to have been first
to discuss a microscopic dielectric model.! With the
advent of quantum mechanics, interest in dielectric
models of electronegativity seems to have waned, ap-
parently because of difficulties with extensive numerical
solutions to Schrodinger’s equation, which a theory of
dielectric functions seemed to require.

Attempts have frequently been made to place the
concept on firm ground either semiempirically or
through one-electron quantum theory formulated in
terms of atomic orbitals.? Pauling® defined electro-
negativity as “the power of an atom in a molecule to
attract electrons to itself.” But his, and all other,
efforts to render this definition more precise have met
with only partial success. It may be correct to say that

* Submitted in partial fulfillment of the requirements for the
degree of Ph.D. in Physics, University of Chicago, Chicago, Ill.

Fannie and John Hertz Foundation Fellow. .
1 Present address: Bell Telephone Laboratories, Murray Hill,

N.J.
iT]. J. Thomson, Phil. Mag. 27, 757 (1914), especially p. 769;
also, G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916?.

2 The standard review article remains H. O. Pritchard and
H. A. Skinner, Chem. Rev. 55, 745 (1955).

3L, Pauling, J. Am. Chem. Soc. 54, 3570 (1932).

many currently regard the concept as qualitatively
useful but not refinable quantitatively.

Here we reexamine the concept of electronegativity
in the light of modern theory of the dielectric properties
of crystals. We use a phase-space model that is con-
sistent with the results of many of those extensive
numerical calculations that were unmanageable before
the widespread availability of computers.

Previous discussions of electronegativity have cen-
tered primarily on the binding or cohesive energies of
atoms or molecules. Thus, Mulliken* defined atomic
electronegativity as the average of the ionization poten-
tial and the electron affinity, Xm,o=2%{«+E.), and
defined the relative electronegativity difference of two
atoms « and 8 as

Xop=Xa—Xs. (1.1)
The relation (1.1) is necessary if X4 is to be transitive,
Xaﬂ+Xﬂ1=Xa7- (1-2)

Pauling observed that the energy D, binding the atoms
a and B in the system a-8 is generally larger than the
mean of the energies D.. and Dgg binding the systems
a-a and B-B. Thus he defined the “extraionic energy”
A

A=Dag—3(Daa+Dge),

4R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).

(1.3)
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and proposed a table of atomic electronegativities,
X ».a, such as would yield the relationship

[ Xa— X 5] =0.208412, (1.4)

where A is in kilocalories per mole.

Neither of the above definitions in terms of ground
state energies is wholly satisfactory. With Mulliken’s
atomic binding definition, we known that the addition
or removal of an electron to an open-shelled atom alters
the energy of the remaining electrons appreciably. In
large molecules or crystals this rearrangement energy
is usually much less (Koopmans’s theorem®). Pauling’s
definition in terms of molecular binding energies does
not suffer from this defect. However, it is crude in two
senses: (1) It defines electronegativities independently
of the coordination number (valence environment) of
the atom; and (2) it does not distinguish between con-
tributions to the cohesive energy of s-p hybridized elec-
trons and polarized d electrons. The latter may play a
greater role in cohesive energies than in other physical
properties and their effect is not in general transitive.
Indeed, if @ and  contain d states of low excitation or
binding energy but 8 does not, then one would not ex-
pect (1.2) to hold owing to the a-y d resonance.

These comments are meant to illustrate but not ex-
haust all the difficulties inherent in defining an electro-
negativity scale. The author proposes to minimize them
without recourse to accurate, quantum-mechanical,
many-electron calculations by regarding electronega-
tivity as a scaling parameter which generalizes the con-
cept of valence difference.

Thus we being by considering some observable O,
and determine empirically its dependence on the valence
difference Z,—Zz of atoms a and 8 when these belong
to the same row of the periodic table and both are in
definite states of hybridization [e.g., we might find 0,
proportional to (Za—Z)*]. Knowing this functional
dependence and its variation from one row to the next
for Z,=Zg, we attempt to predict the value of 9,(e,8)
in terms of X«g when « and B have different valence
and belong to different rows of the periodic table. To
do this we adopt a quantum-mechanical model which
approximates the real situation. Thus electronegativity
represents a quantum-mechanical scaling parameter
which enables one to treat simultaneous size and valence
differences knowing only the effects of valence and size
differences separately.

Initially we consider the static electronic dielectric
constant of crystals of the diamond, zinc-blende, and
wurtzite, and rocksalt type composed of elements from
the first four rows of the periodic table. All such crystals
have a full eight-electron s-p valence band. We do not
treat any crystals containing transition elements. The
author believes that the static electronic dielectric
constant represents a useful weighted average of many
polarization processes that may occur. In latter papers,

 T. Koopmans, Physica 1, 104 (1933).
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the present scaling approach is applied to individual
transition energies of definite symmetries as well as
to cohesive energies of molecules and crystals.

To treat the electronic dielectric constant, we adopt
a simple one-gap model for the electronic band struct-
ure. For diamond, zinc-blende, and wurtzite crystals,
Phillips® has suggested that such a model may be used
and the average gap separated into homopolar and
heteropolar parts, E, and C. The average homopolar
energy gap Fj is taken to be a function of nearest-
neighbor distance d only. Phillips® also suggested that
the average heteropolar energy gap C is to be given by
a simple expression, and that C,g is a suitable measure
of the electronegativity difference between elements «
and 8.

Figuratively speaking, Ej and C measure the average
energy gaps due to covalent and ionic effects. The total
average energy gap E, is given by

Ep=E2+C2. (1.5)

Phillips also suggested that one can define the frac-
tions of ionic and covalent character, f; and f., by

J=C/E?, fe=FEl/E2. (1.6)

We review the basis of Phillips’s model in Sec. II.
Modifications of the model must be made to take into
account the effect of d-core states for atoms from
rows 3 and 4. These modifications are discussed in
Sec. III. A critical analysis of the model for all tetra-
hedrally coordinated crystals is given in Sec. IV, where
it is shown that Phillips’s model (with d-core correc-
tions included) establishes C to about 7%, accuracy.

A characteristic feature of Phillips’s theory is that
the crystal structure factor nowhere appears explicitly.
Therefore in Sec. V the discussion is extended to include
crystals belonging to the NaCl structure. Although it
has been customary to treat these by the Born closed-
shell model, from a dielectric viewpoint this would be
justifiable only if almost all the optical oscillator
strength were exhausted by excitons. Actually, even in
the alkali halides, excitons represent less than 109, of
the total oscillator strength.” Thus although exciton
effect are neglected in Phillips’s model, it was thought
that it should apply to NaCl-type crystals with only
slightly less success than for conventional covalent
crystals. This proves to be the case after allowance is
made for the effects of ionicity on lattice constant.

All the formulas in this work are general and hold for
arbitrary lattice constant, equilibrium or compressed.
Indeed the model used here constitutes a universal
theory for all crystals of the diamond, zinc-blende,
wurtzite, and NaCl types, with each described by two
parameters Ej, and C. It predicts the derivative of the
static electronic dielectric constant with hydrostatic

¢J. C. Phillips, Phys. Rev. Letters 20, 550 (1968); Covalent
Bonding in Molecules and Solids (University of Chicago Press,

Chicago, to be published).
7H. R. Phillip and H. Ehrenreich, Phys. Rev. 131, 2016 (1963).
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pressure. Hitherto this derivative has usually been
discussed in terms of the Clausius-Mossotti model,
which is only able to account for the results, in even the
most ionic crystals, at the expense of introducing a new
parameter for each ion.

Within the limits of available experimental data, our
model gives good results for the 68 crystals considered.
The fraction of ionic character, f;, of these crystals
ranges from 0.00 to 0.96.

II. ONE-GAP MODEL: BOTH ATOMS BELONG
' TO SAME ROW

Several models have been proposed to describe the
dielectric properties of insulators. One may formulate a
general theory?® of the dielectric response of a crystal to
an external electric field of wave vector ¢ (modulo a
reciprocal lattice vector G) and frequency w in terms of
a complex, nonlocal dielectric tensor &;(q+G, g+G’; w)
+ies(q+G, q+G’; w). Within the random-phase ap-
proximation this theory reduces to the Hartree, or one-
electron, model of energy levels and oscillator strengths.?

In practice even the latter theory requires elaborate
computations, and it has been developed in detail
only for a few semiconductors such as Si and Ge. At
the opposite extreme one has the classical Clausius-
Mossotti model with polarizable point ions. The dielec-
tric constant of a strongly ionic crystal is calculated
using local-field corrections and constant-ionic polariz-
abilities. These polarizabilities are treated as parame-
ters to be fitted to experiment. Because no allowance is
made for the effects of covalency, the theory is satis-
factory only for alkali halides. For example, it has been
found® that the value obtained for a given nonhalide
ion is not at all constant from one compound to an-
other and there does not seem to be any clear pattern
to the variations. (The value of ionic polarizability for
O~ —, apparently a bad case because of covalent effects,
varies from 0.5 to 3.2 A3).

We begin our analysis of the dielectric properties of
covalent systems with Fig. 1, where it is seen that the
reciprocal of the electric susceptibility of the diamond,
zinc-blende, and wurtzite crystals made up of atoms
from the same row of the periodic table is linear in the
square of the valence difference AZ and that the con-
stant of proportionality decreases with increasing row
number y. We may write this relationship in the form

[51(0)"‘1]_1=0‘7+l87(AZ)2- (2.1)

The quantum model that is adopted here is the
isotropic two-band model of a covalent solid. (This
model has recently been widely used and discussed.!+12)
We assume that the unperturbed electronic system is a

8 P. Nozieres and D. Pines, Phys. Rev. 109, 762 (1958); Nuovo
Cimento 9, 470 (1958).

9 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

10 J, R. Tessman, A, H. Kahn, and W. Schockley, Phys. Rev. 92,
890 (1954).

1. Penn, Phys. Rev. 128, 2093 (1962).

12 H. Nara, J. Phys. Soc. Japan 20, 778 (1965).
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F16. 1. Inverse of the electronic dielectric constant minus one,
1/(e1(0)—1), versus the square of the valence difference, (AZ)?,
for diamond and zinc-blende-type crystals for which both ele-
ments in the compound belong to the same row of the periodic
table. Data are available for at least three such crystals for rows
I, III, and IV. Rows III and IV have been continued by shifting
the line obtained to the left. The points plotted for CuBr and Agl
(the open circles) are the intercepts of the continuation of the
lines for rows IIT and IV with the experimental values of
1/(e1(0)—1). These points indicate “effective values” of (AZ)?
of about 26 and 29, respectively.

free-electron gas and apply a three-dimensional gen-
eralization of the results of one-dimensional perturba-
tion theory. It has been shown!? for the case of the wave-
vector-dependent dielectric function of Si that this
approximate and greatly simplified approach gives
results in good agreement with rigorous band-structure
calculations.

Recall that in one dimension a small potential with
only one nonzero Fourier component V ¢ will mix only
states which have wave numbers differing by G and will
have small effects except when there is near degeneracy
of the unperturbed energy of the states that are mixed.
Near such a degeneracy one may solve the 2X 2 secular
equation for the coefficients of the unperturbed states,
Y°(k) and ¢¥°(k—G), which are mixed and find that the
energies split into bands with a single energy gap
E,=2|V g| according to

E£(k)=3{E+ Er-&°
£[(EL—Er¢"+4V 172}, (2.2)

where E=7%2%2/2m. If, by analogy with the diatomic
crystal, the perturbing potential separates into parts
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centered about different points, i.e., if we have two
atoms per one-dimensional unit cell, then it is conven-
ient to place the coordinate origin midway between
them and divide the Fourier transform, which is now
complex, into symmetric and antisymmetric parts.

That is, if

V(x)=Vi(|x1—x|)+Va(|x2—2])
=Vi(|la—7])+Vao(|a+1]),

where #; 5 is the position of atom 1, 2 (in the unit cell)
and 7 is half the interatomic distance and is also the co-
ordinate of atom 1 with respect to the above choice of

origin, then

(2.3)

V() =X (S 'V +iSe*V a)ei%,  (2.4)
G
where
Ve=tVatVe), V=3Va—Ve), (2.52)
S ¢*=cosGT, S ¢*=sinG7, (2.5b)

Vei2=2/1) S Vie(x)e dx is the Fourier trans-
form of the potential V5, and ! is the length of the
unit cell. With this complex Fourier potential com-
ponent, Ve=S¢'Ve'+iSe®V % the solution of the
2X2 secular equation goes through as before. The
quantity V¢V ¢* replaces V¢* in (2.2) and the single
energy gap is seprable into a symmetric, homopolar
part and an antisymmetric, heteropolar part®:

B, ¢t=Ey, +Ce= 2S¢V )+ (25 ¢V 6%)?. (2.6)

Of course, in a real three-dimensional solid the band
structure remains, but there are many Ve¢’s and sig-
nificant mixing of states with wave vectors G in several
directions may occur. The traditional approach is to
work with the complicated, actual Brillouin-zone geom-
etry. In the present model we concern ourselves only
with the average gap between the valence and conduc-
tion bands and represent the average effect of all the
V ¢’s by one complex parameter §,= F;+4C such that
the effective valence-conduction band gap E, is given
by

Ep=8,8,*=E*+C2. 2.7)

Penn® has evaluated the wave-vector-dependent di-

electric function e(q) for this model. The static limit

of his expression is

€(0)=1+[ (hwp)*/ EF](1— B+3B%)
=1+ (fuw,)*4/ (ER+C?),

where B=E,/4E;, A=1—B+3B? E; is the Fermi
energy, and w, is the free-electron-plasma frequency
wp= (47e2N/m)"? where we take N=4 electrons per
atomic volume. Comparing (2.8) with the empirically

(2.8)

18 M. L. Cohen and T. K. Bergstresser [Phys. Rev. 141, 789
(1966)] discuss this in their analysis of the electronic structure of 14
diamond and zinc-blende semiconductors.
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observed relationship (2.1) we find
1 Ez?
ay= = ’
ey (0)—1 (Awp)24

where ¢,(0) is the static electronic dielectric constant
of the diamond-type crystal of row v. Since C=0 for the
diamond-type crystals, the E, of (2.8) is identically
equal to Ej, ie., E,=F; for diamond-type crystals.
Thus we may solve (2.9) to find Ej, in terms of the
known quantities a, [or €(0)], w,, and E;. We now ob-
serve that the nearest-neighbor distance 7, or, equiv-
alently, the lattice constant, of the crystals formed of
pairs of atoms from the same row is almost constant.
Thus w;, and E; are constant and Fig. 1 and (2.1) imply
that E; is constant for these crystals. We define
E,,,=E,;, the quantity E; being determined by (2.9)
for each row y. (Indeed, Cohen and Bergstresser's
achieved very satisfactory results for band-structure
calculations by assuming the symmetric part of the
potential is constant for all pairs of atoms belonging
to the same row.)

Returning to the comparison of (2.1) and (2.8), we

also find o)
C? fiwp)? C%
B(AZ)2= / “A=—"1 (210

Ey 2 Ep,2 By 2

C= (By/ay)2En,AZ. (2.11)

We see from (2.11) that C is a measure of the elec-
tronegativity or valence difference between the two
atoms when they belong to the same row of the periodic
table. Before we generalize the discussion to include
atoms from different rows, we should discuss the varia-
tion of Ej,, with v. As we shall see, this variation is
strongly correlated with the appearance of d shells in
the atomic cores.

(2.9

so that

III. EFFECT OF d STATES IN ATOMIC CORES

The form of Eq. (2.8) is common in the elementary
discussion of the optical properties of semiconductors.
A standard result of such studies! is

J
e(w) =1+w,? 3’ ’ ) (3.1a)
i wif—w?
where
wp?
a(0)=1+3"" fi— (3.1b)
J wj

where w;= (s;—50)/%, so is the energy of the ground
state (here the average valence state), s; is the energy
of the jth excited or core state, f;is the oscillator strength
of the transition, and 3_’ means that the sum is taken
only over the higher, unoccupied states. In Penn’s
model one neglects the effect of the core electrons and

14 J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, London, 1964), Sec. 8.2.
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takes N to be the density of valence electrons, i.e.,
four per atomic volume or eight per unit cell, when
computing w,. This is equivalent to assuming that the
well-known f-sum rule will give
2" fi=4, (3.22)
J
where >_"’ means the sum is taken over the conduction-
band states and one does not go to such high energies
that core states are excited. This approximation works
well for diamond and Si where the core states are well
separated from the valence band (by some 80 eV in Si).
However, it leads to difficulties when core d states are
present.’® The trouble is!®! that the f sum rule is
proved for a sum over all other states, i.e., including
those below s¢ as well as above, and the core states
do contribute terms. These terms are negative because
the energy difference is negative. There is a correspond-
ing increase in the sum of the f’s connecting the valence
and conduction states. Thus when the atomic core con-
tains d states one may have
> fi>4, © (3.2p)
J
or, equivalently, the effective plasma frequency is
greater than that found by taking IV to be four electrons
per atomic volume.
For a rigorous treatment one must consider the total
electron density and the total f sum. A general result!®
of the f-sum rule is

/ wes(w)dw =312, 3.3)
0

where Q,, is the plasma frequency as calculated from the
total electron density.!® At least in principle, this
allows one to define empirically an effective number of
free valence electrons per atom, #es¢ in the notation of
Ref. 17, for use in connection with the simple theory
discussed earlier, on which our model is based. We
define 7e1:(wo) by

2m2N qe? @0
"'-——-——neff(wo) =f wez(w)dw s
m 0

(3.4)

where N, is the atomic density. The quantity s (wo)
is a measure of the fraction of available oscillator
strength which has been exhausted by electronic transi-
tions of energy up to %wo. If there is a frequency w;
which is high enough that when used in (3.4) the
valence to conduction-band oscillator strength is ex-
hausted but low enough that the core excitations have

16 These are about 30 eV below the valence band in Ge and Sn,
20 eV in Ga and In, and 10 eV in Zn and Cd.

16 F, Seitz, The Modern Theory of Solids (McGraw-Hill Book Co.
New York, 1940), p. 644.

17 H, R. Phillip and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).

18 P, Nozieres and D. Pines, Phys. Rev. 113, 1254 (1959).

19 The lower limit of the integral in (3.3) must be taken to be
larger than the reststrahlung frequency to avoid the effects of
lattice vibrations.
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Fic. 2. Experimental #es:(w) versus energy 7w for several semi-
conductors. Except for the extrapolation to the right-hand limit
of the curve for InSb below the knee around 18 €V, this figure has
been borrowed from Ref. 17, where it is labeled Fig. 5.

not yet begun to affect e;, then we may define N
= ots(w1). For the reader’s convenience we reproduce
in Fig. 2 values of 7 (wo) for several semiconductors.!?
We see that for Si, 7. (wo) saturates at a value of 4, as
expected, around 20 eV. When 7w, reaches the core ex-
citations energy, there should be a knee in the e
curve. This is seen at about 18 eV in the InSb curve,
when the excitation of d-core states begins. [ Note that
#ets(wo) is well above 4 at this point.] One might ex-
trapolate the #a:(wo) curve beyond the knee to obtain
an estimate of the value for the N that would be
found were it not for these excitations, i.e., the value of
the f sum connecting the valence and conduction
states.

Recall that the Kramers-Kronig relation for & (0)
is
)

(5}

2
a(0)=1+4- / do. 3.3)

Because the integrand in (3.5) is e/w instead of wee
as in the equation for 7 (wo) [Eq. (3.4)], the core ex-
citations which cause the increase in #.¢:(wo) above the
knee do not contribute substantially to the value of
€:(0). Thus the dominant effect of the d states on € (0)
is described by the increase over 4 of N, as defined
above.

In practice determination of Neg by extrapolation
above the knee is difficult because it requires the mea-
surement of the absolute value of the reflectance. Fur-
thermore, at high energies the surface condition of the
crystal is critical; the presence of an oxide layer will
introduce a large error because of the strong absorption
of oxide compounds in the range 10-20 eV. Despite these
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Fic. 3. Imaginary part of dielectric function e (w) versus
energy in units of the effective homopolar potential Ej, as defined
by Eq. (3.6). In this method the value of , for Ge is found by
extrapolating the value of the Penn-model energy gap for diamond
and Si as a function of nearest-neighbor distance. The value of
E}, 3, the Penn-model energy gap, for Ge is also indicated.

objections, we conclude from Fig. 2 (by comparing Ge
with GaAs) that Ness is not the same for all crystals
made up of pairs of elements belonging to the same row
of the periodic table; i.e., Vet is not independent of AZ.

Now consider another aspect of the effect of the d
core states on the excitation spectrum. Take Ge as an
example. Between the 3s23p° core electrons and the
45?4p? valence electrons there is a region of large 3d
charge density. In this region the central potential seen
by the valence electrons is quite large—of the order of
the free-atom d-electron binding energy, i.e., 50-100 eV.
This potential is much larger than one would find out-
side the 2522 core in Si. As a result, the binding energy
of a 4s electron in Get? exceeds that of a 4p electron by
28.39,, while in Si the difference is only 24.4%,. This
difference of 3.9%, is 1.8 eV.

To compare spectra proceed as follows: Write for

diamond and Si

E}, «ys, (36)
where 7 is the nearest-neighbor distance. From the ob-
served values ¢(0)=5.7 and 12.0 for diamond and Si,
respectively, one obtains the indicial value s=2.48.%
We then use (3.6) to extrapolate® to obtain an estimate
of the value of Ej for Ge in the absence of d-state effects.
We use these values of E, to plot ex(w) versus the
dimensionless variable 7iw/E; for the three crystals

(Fig. 3).

20K, M. Guggenheimer [Proc. Phys. Soc. (London) 58, 456
(1946)] has found that the force constants £ for bond stretching
vibrations of 100 diatomic molecules depends only on the valence
numbers and 7246 within a mean error of 1.64%,, and irrespective
of the presence of d states.
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On this scale the spectra of diamond and Si are
rather similar; they begin about 0.5, rise until about
0.7, and then have a large peak about 0.9. The largest
peak in Ge is found at %, and appears more spread out;
the low-energy region contains a second peak and has
shifted down to about 0.5. Detailed band calculations?
have shown that the low-energy region is associated
with bonding p — antibonding s transitions in all three
crystals. The shift of this region between Si and Ge is
about 1.1 eV. (The low-energy peak in Ge is due to
As-A; transitions which have shifted by about 1.7 eV
between Si and Ge according to alloy studies.?!)

The value of €(0) for Ge in the absence of d-state
effects, which we estimate by our approximations, is
about 13 as compared with the observed values of 12.0
for Si and 16.0 for Ge. (Note that the lattice constant
of Ge is only 49, larger than that of Si.) Using the
Kramers-Kronig transform [Eq. (3.5)], one can verify
that the shift of the low-energy region accounts semi-
quantitatively for the increase in ¢;(0). The s-bonding —
p-antibonding transition energies, which are much
larger, are increased by the d states. They contribute to
the increase in #er [see Eq. (3.4)]. They probably
also account for the spreading of the large peak in Ge
relative to Si and for its shift to somewhat higher
energy.

Thus the effect of the d-state core, which is well
localized in real space, is to increase € (0) and 7t above
the values predicted by (2.8) and (3.6). One can correct
for this in several ways. One might insist on taking N
equal to four valence electrons per atom and reduce E,
to fit Ej,y. We prefer to renormalize N (i.e., use an
Nets) and retain Ej as extrapolated, because it seems to
yield more consistent results when we deal with atoms
from different rows, to lead to better electronegativity
scaling factors C, and to lead to better comparisons be-
tween spectra. (Note the position of Ej; in Fig. 3.)
Moreover, the d-states do not seem to affect certain
phenomena arising outside the core.’ Thus we define a

parameter D by
D=T}:Neff- (37)

We continue to compute and quote the plasma fre-
quency assuming four free electrons per atomic volume
and use (3.6). In cases where the d-state effects are
relevant, such as €(0), we multiply w, by DV2 Thus
(2.8) becomes

1(0) =1+ (fiww,)2 DA/ (E2+C?). (2.8")

We do not try to infer Ner and thus D from curves
such as are found in Fig. 2, because of the experimental
difficulties mentioned above. We take D equal to 1.0
for diamond and Si and find [Eq. (2.8')] D=1.25 and
1.46 for Ge and a-tin by using the extrapolated values,
Ey, the observed values of €(0), and the fact that C=0
due to symmetry.

21 1. C. Phillips, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1966), Vol. 18;
also, E. Schmidt, Phys. Status Solidi 27, 57 (1968).



182 ELECTRONEGATIVITY

We now consider what value D will take when AZ,
and thus C, is not zero. In our calculations we found
empirically a general formula for D [Eq. (3.11)] which
yields values for C that the author believes are accurate
on the basis of evidence to be presented. Because Nest
is experimentally observable, this formula may also be
tested directly. A plausibility argument is now offered
in favor of the author’s empirical formula.

As was discussed above, D increases above 1 (Ve
increases above 4) because of the contribution of nega-
tive terms in the f sum due to oscillator strength be-
tween the d core around the ions and the valence band
throughout the crystal. Therefore, let us assume that
the effect of the d-core at atom a will be proportional
to the product of the average valence charge density
around o, which we denote by ¢,, and some parameter
¥,, which is characteristic of the d-core at a. We also
assume that, because the effect is a cooperative one
between the two types of atoms present, the total effect
will be multiplicative rather than additive. Thus we
assume that for elements @ and 3

D (0‘;6) = 0aVapp¥s.

¥, should be roughly proportional to the probability
that an s electron be found within the d-core and this
should be roughly proportional to 1/Z because of the
decrease in the radius of the core. If we make use of the
relation of ¥, to the increase in s-state over p-state
binding energy we can substantiate this conjecture. Let
us define ¥, to be the percent difference of s-state to
p-state binding energy for the hydrogenic ion of ele-
ment a. Consider the percent difference in the values of
¥,’ for the elements of the same valence of rows 2 and 3
of the periodic table?? which we denote ¥z’. This is
shown in TableI.

Assuming that the ¥z"’s are roughly proportional to
the ¥,”’s for row 3, we conclude that indeed ¥,/ « 1/Z.

If there were no charge transfer the valence density
would be proportional to Z, i.e., ¢« Z,, and we would

(3.8)

TazsLe I. Effect of the presence of a d core on the s to p energy-
level splittings of free hydrogenic ions. ¥,  is the difference in
energy between the lowest p level and the ground-state s level
for the hydrogenic ion of element & expressed as a percentage of the
binding energy. ¥z’ is the difference in ¥,’ between the third-row
and the second-row elements with valence Z. The last row shows
the product of ¥z’ and Z, which is approximately constant.
Thus ¥, is roughly proportional to 1/Z as proposed.

Mg Al Si P S Cl
Yo' 41.679% 30.559%, 24.35% 20.349, 17.529%, 15.39%
Zn Ga Ge As Se Br
Yo 50299, 35.709% 28.29% 23.81% 20.64%, ces
v 8.629% 5.159, 3949 3479 3.129
Zyd 17249, 15459, 15.769, 17.399%, 18.729,

22 C, E. Moore, in Alomic Energy Levels, Natl. Bur. Std. (U.S.)
Circ. No. 467 (U. S. Government Printing Office, Washington,
D.C., 1949).
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TasLE II. Parameters used in calculations presented. A and &
are the parameters used with Eq. (3.11) to calculate D, the effect
of the d-core levels on the effective plasma frequency. 7 is the
covalent radius introduced in Sec. IV, which is equal to half the
nearest-neighbor distance in the diamond-type crystal of the
group-IV element in the row listed.

row A 4 e/ @0

I 1.0 1.0 1.45929

IT 1.0 1.0 2.22178

111 1.12 1.0025 2.31460

v 1.21 1.005 2.65576
find

D« (Za)(1/Z4)(Z)(1/Zg) = const.

The actual charge transfer should be proportional to
AZ. Suppose Zg>Z,. Then, to within a constant of
proportionality,

Pa=Zo—nAZ, ¢g=Zs+nAZ,

where 7 is a parameter characteristic of the rows to
which a and B belong. Thus

D« (Zo—nAZ)(1/Za)(Zs+nAZ)/Zs
= 1—nAZY ZoZs—nPAZY ZoZs
=1—v5(n+n")AZ*
[ (n4n2)/16X64)JAZi - -+ . (3.10)

Therefore, the lowest-order change in D is a decrease
proportional to (AZ)% Physically this comes about be-
cause more electrons are localized near the ion of higher
valence, where, because the d-core states are more
tightly bound, there is less valence-d-core hybridiza-
tion. The general prescription for D we have used is

D(ayﬁ)zAaAﬂ~ (5a65_1)(za_zﬂ)2: (311)

(3.9)

where A and 6 are parameters for the rows of the periodic
table to which a and 8 belong. [Thus (3.11) holds also
in the case where o and 3 do not belong to the same row,
which is discussed in Sec. IV.] Because there are no d
core electrons, A=68=1 for rows 1 and 2. For rows 3 and
4, A is given by Dge'/? and Ds,'/2. We have chosen the
8’s for rows 3 and 4 to given a good fit to the experi-
mental data. (See Sec. IV.) Table II contains a sum-
mary of all parameters used. Table III presents our
results as calculated from (2.8") using our calculation
of C which we now present.

1V. GENERAL ZINC-BLENDE AND WURTZITE
CRYSTALS; ATOMS FROM
DIFFERENT ROWS

As we noted in Sec. IT from Fig. 1, the average
antisymmetric potential, the C in (2.7), is proportional
to | Zo—Zs| when the atoms a and 8 belong to the same
same row of the periodic table. Because C has the
dimensions of energy, one might guess that

Cap< (Za/ra—Zg/78). (4.1)
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(Gordy® noted that an expression of this form would
yield Pauling’s electronegativity table.) Previously,22
the single-bond covalent radii of the atoms « and 8
have been used for the 7,’s in (4.1). We have defined
a new covalent radius which may be more appropriate
to solids. Let d,,y be the nearest-neighbor distance in
the diamond-type crystal of the group-IV element of
the same row, v, as element a. In crystals with an
average of four valence electrons per atom this length
da,y i1s taken to be a prototypical covalent bonding
length for row v and, as a first approximation (to be
refined in a moment), we assume 2¢,=dq,,,. This as-
sumption implies that the nearest-neighbor distance, or,
equivalently, the lattice constant, is the same for all
crystals in which the two elements involved belong to
the same row. We have already noted that this is a
good approximation. (In BeO the lattice constant is
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7% larger than in diamond ; in all other cases the varia-
tion is less than 297.) The assumption would also imply
that the nearest-neighbor distance in a crystal contain-
ing atoms from different rows would be the mean of the
nearest-neighbor distances of the group-IV elements of
the rows involved and thus, for a given pair of rows,
this distance would also be constant. Reference to the
lattice constants in Table IIT will show that while there
is somewhat more variation when atoms are from dif-
ferent rows, both predictions are basically correct. It
should be noted that the crystals showing a variation
larger than 49, (CuF, BeS, BAs, BeSe, BeTe, and
MgTe) are all rather unstable, so much so that the
author has been able to find experimental values of
€:(0) only for BeSe and MgTe, and these are tentative
values. Thus crystals that vary greatly from the above
prediction do not enter the present discussion. Indeed

TasLE III. Crystal data and calculated parameters. The experimental dielectric constants are listed according to method of ob-
servation, either by refraction (refract.) or by reststrahlen (rest.) measurements. The value we believe is most reliable is in italics. The
column labeled “Var.” gives the variation of the lattice constant from the predicted value.

Lattices Expt
Row const. €(0) Expt €(0) C E; Var.
Crystal  Nos. Type (ao) (refract.) (rest.) b (eV) (eV Noest ()

C 1-1 diamond 6.740 S.m 0.0 13.6 4.0

BN 1-1 zinc-blende 6.831 4.5i 1.55 7.8 13.1 4.0 + 14
BeO 1-1 wurtzite 7.195 3.0p 1.55 14.1 11.5 4.0 4+ 6.8
LiF 1-1 NaCl 7.592 1.9» 1.94 1.90 23.0 7.0 40 +12.6
Si 2-2 diamond 10.263 12.0m 11.7¢ 0.0 4.8 4.0

AlP 2-2 zinc-blende 10.301 8.57 1.50r 3.1r 4.7 40 + 04
MgS 2-2 NaCl 9.833 5.1p 1.50 7.1 3.7 40 — 4.2
NaCl 2-2 NaCl 10.639 2.3b 2.34 2.00 11.8 3.1 4.0 + 3.7
Ge 3-3 diamond 10.691 16.0» 15.9¢ 0.0 43 5.0

GaAs 3-3 zinc blende 10.684 11.3¢, 10.94:1 1.50 2.9 43 49 — 0.1
ZnSe 3-3 zinc blende 10.710 5.08 6.0, 5.84, 5.4¢ 1.45 5.6 43 4.7 + 0.2
CaSe 3-3 NaCl 11.168 5.1p 2.30 8.1 2.7 43 + 4.5
CuBr 3-3 wurtzite 10.865 4.4>,4.01 1.50 6.9 4.1 4.5 + 1.6
KBr 3-3 NaCl 12.472 2.4° 2.3 2.30 9.3 2.1 4.1 +16.7
Sn 44 diamond 12.267 241 0.0 3.1 5.9

InSb 4-4 zinc blende 12.242 15.74:¢ 1.50 2.1 3.1 5.7 — 0.2
CdTe 44 zinc blende 12.246 7.28 7.2¢,7.10, 7.6™ 1.55 44 3.1 5.2 — 0.2
SrTe 4-4 NaCl 12.227 5.8b 2.35 6.7 2.2 44 — 0.3
Agl 44 zinc blende 12.232 4.9v 1.60 5.7 3.1 49 — 03
RbI 4-4 NaCl 13.875 2.7 2.64 2.25 7.1 1.6 43 +13.1
SiC 1-2 zinc blende 8.217 6.7d 1.40 3.9 8.3 4.0 — 1.2
BP 1-2 zinc blende 8.576 ~9n 8.67 1.30F 0.7¢ 7.4 4.0 + 3.1
BeS 1-2 zinc blende 9.165 7.1r 1.30r 4.0r 6.3 4.0 +10.2
LiCl 1-2 NaCl 9.693 2,70 2.74 2.30 11.6 3.8 4.0 +16.6
AIN 1-2 wurtzite 8.257 4.8° 1.20 7.3 8.2 4.0 - 0.7
MgO 1-2 NaCl 7.958 3.0» 1.45 14.5 6.3 4.0 — 43
NaF 1-2 NaCl 8.731 1.70 1.74 1.90 20.9 5.0 4.0 + 5.0
GaN 1-3 wurtzite 8.483 5.0 1.30r 7.6 7.6 44 — 0.1
ZnO 1-3 wurtzite 8.628 4.0v 3.6¢ 1.10 9.3 7.3 4.3 + 1.7
Ca0O 1-3 NaCl 9.091 3.3v 1.90 14.6 4.5 4.0 + 7.1
CuF 1-3 zinc blende 8.041 2.57 1.307 15.8¢ 8.7 4.2 — 5.3
KF 1-3 NaCl 10.104 1.8 1.54 1.95 16.1 3.5 4.0 +19.0
BAs 1-3 zinc blende 9.027 10.4r 1.30r 0.3 6.6 44 + 6.4
BeSe 1-3 zinc blende 9.581 ~7.3p 8.5t 1.307 3.4 5.7 4.3 +12.9
LiBr 1-3 NaCl 10.396 3.2b 3.24 2.30 9.5 3.2 4.1 +22.5
InN 1-4 wurtzite 9.399 5.57 1.30F 6.87 59 4.8 4+ 0.3
CdO 1-4 NaCl 8.873 6.2b 0.9 7.6 4.8 4.5 — 24
SrO 14 NaCl 9.751 3.2b, 3.34 1.90 134 3.8 4.0 + 7.2
AgF 1-4 NaCl 9.298 2.9 1.30° 12.2 4.3 4.3 + 2.3
RbF 1-4 NaCl 10.658 1.9» 11,94 1.85 139 3.0 4.1 +17.2
BeTe 14 zinc blende 10.469 11.67 1.30" 2.1 4.5 4.5 +15.1
Lil 1-4 NaCl 11.338 3.8 2.55 7.4 2.6 4.1 +24.7

22 W. Gordy, Phys. Rev. 69, 604 (1946), especially Appendix (ii) or Ref. 2.
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TasiE III. (continued).
Lattice» Expt
Row const. €(0) Expt ¢(0) C Ey Var.
Crystal  Nos Type (a0) (vefract.) (rest.) b (eV) eV) Nott (%)

AlAs 2-3 zinc blende 10.620 ~10.2p 10.3~ 1.50° 2.7° 44 44 + 14
MgSe 2-3 NaCl 10.301 5.9 1.60 5.4 3.3 4.3 - 1.7
NaBr 2-3 NaCl 11.288 2.6 2.64 2.00 9.8 2.6 4.1 + 7.8
GaP 2-3 zinc blende 10.300 9.1x 9.1c, 8,54 1.45 3.3 4.7 44 - 1.7
ZnS 2-3 zinc blende 10.222 5.2 5.1¢,5.7¢ 1.40 6.2 4.8 4.3 — 24
gugl %-g 1z\iIn(:C })lende 18%; i.g:, 3.64 4.84 1.50 8.3 4.8 4.2 — 25

) - a/ 10. X 2.30 9.1 3.0 4.0 + 2.7
KCl 2-3 NaCl 11.892 2.2b 2.1 2.25 10.4 2.3 4.0 +13.5
InP 2-4 zinc blende 11.090 9.6+ 1.40 34 3.9 4.8 — 11
CdS 2-4 wurtzite 11.047 5.2 5.1¢, 5.4¢ 1.40 5.9 4.0 4.5 - 15
SrS 2-4 NaCl 11.376 4.4b 2.15 8.5 2.6 4.0 + 14
AgCl 2-4 NaCl 10.482 4.2b,4.09 1.35 7.8 3.2 4.3 — 6.6
RbCl 2-4 NaCl 12.436 2.2b 2.24 2.15 9.7 2.1 4.1 +10.8
AlSb 2-4 zinc blende 11.593 10.24:¢ 3.05 3.1 3.5 4.8 + 33
MgTe 2-4 wurtzite 12.050 ~7P 8.3 1.50r 3.6° 3.2 4.5 + 74
Nal 2-4 NaCl 12.232 3.1v,2.9¢ 3.04 2.10 7.8 2.2 4.1 + 9.0
GaSb 34 zinc blende 11.561 13.7¢, 14.44:1 1.75 2.1 3.5 5.3 + 1.0
%n%e Sj ﬁn% })lende 11.5;8 7.3: 7.3¢,7.84,6.7° 1.60 4.; 3.6 4.% + 0.5

aTe 3 a/ 11.9¢ 6.3 2.65 6. 2.3 4. + 4.7
Cul 3-4 zinc blende 11.419 5.5b 1.55 5.5 3.7 4.7 — 0.3
KI 34 NaCl 13.352 2.7° 2.74 2.35 74 1.7 4.1 +16.6
InAs 3-4 zinc blende 11.406 12,341 1.30 2.7 3.7 5.3 — 04
CdSe 34 wurtzite 11.489 6.1°,5.8¢ 1.50 5.5 3.6 4.9 + 0.3
SrSe 34 NaCl 11.773 4.9 2.25 8.0 24 43 + 2.8
AgBr 3-4 NaCl 10.912 5.00,4.64 1.35 6.9 29 4.7 — 4.7
RbBr 3-4 NaCl 12.952 2.4 2.34 2.20 8.9 19 4.3 +13.1

a See Ref. 25, Vol. I. Note: For wurtzite structures an effective cubic lattice constant gess is given. In terms of the normal wurtzite parameters a and ¢,

and ¢, dor® =V3a%c.

b Handbook of Chemistry and Physics, edited by R. C. Weast (The Chemical Rubber Co., Cleveland, 1965), 46th ed.

©J. W. Allen (private coommunication).

d'E, Burstein, H. M. Brodsky, and G. Lucousky, Int. J. Quant. Chem. 1s, 759 (1967).
e A, Manabe, A. Mitsuishi, and H. Yoshinaga, Japan. J. Appl. Phys. 6, 593 (1967).

t M. Hass and B. W. Henvis, J. Phys. Chem, Solids 23, 1099 (1962).
. T. F. Marple, J. Appl. Phys. 35, 539 (1964).
Czyzak, W. M. Baker, R. C. C

i)

. Bieniewsky and S. J. Czyzak, J. Opt. Soc. Am. 53, 496 (1963).

Lindquist and A. W. Ewald, Phys. Rev. 135, A191 (1964).

. J
2
. J. Planker and E. Kauer, Z. Angew. Phys. 12; 425 (1960).

M
% Barker, Phys. Rev. 165, 917 (1968).
]
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. Crane, and J. B. Howe, J. Opt. Soc. Am, 47, 240 (1957).
Gielisse, S. S. Mitra, J. N. Plendl, R. D, Griffis, L. C. Mansur, R. Marshall, and E. A. Pasco, Phys. Rev. 155, 1039 (1967).

. A. Goryunova, Chemistry of Diamond-Like Semiconductors (Chapman and Hall, London, 1965).

o A, T. Collins, E. C. Lightowlers, and P, J. Dean, Phys. Rev. 158, 833 (1967).

»S. K. Kurtz (private communication).

a K. Hojendahl, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 16, 66 (1938) ; this work is quoted by N. F. Mott and R. W. Gurney, in Electronic

Processes in Ionic Crystals (Dover Publications, Inc., New York, 1964).

r Value predicted on basis of trends noted in text; experimental data are not firm.

the worst variation in lattice constant among skew-
tetrahedrally-coordinated crystals for which firm values
of ¢(0) have been obtained is the 59, variation between
CdS and AlSb, the crystal CdS being 2%, lower than ex-
pected and AlSb 39, higher.

To take account of what variation there is, we scale
the 7.’s to the lattice constant that is actually observed.
Thus if @qp is the observed lattice constant and aqg’ is
the geometric mean of the a,,,’s, we define 7, by

Ta=%0a,v(0ap/das’) - (4.2)

When (4.1) and (4.2) are used to compute the values
of C for row 1 and rows 3 and 4 (see Fig. 1), one finds
that the agreement with experiment is qualitative.
However, (4.1) represents the average antisymmetric
potential of bare ions, whereas the actual antisymmetric
potential includes the effects of valence electron
screening.

The simplest treatment of valence electron screening
is obtained from the Thomas-Fermi theory. This yields

a linearized screening wave number &, which may be ex-
pressed as? b= (& /ma0), (4.3)
where k; is the Fermi wave number of the valence
electron gas, k=32, (4.4)

and N corresponds to eight electrons per diatomic
volume.
When this screening is included, (4.1) is replaced by

Cap=b(Zo/1a—Zs/18)e ", (4.5)

where R=2%(ro+75), 7« and 75 are as defined in (4.2),
and b is a dimensionless constant, which is of order
unity. The exponential screening factor varies from
0.14 to 0.07 from row 1 to 4.

In common with (4.1), the screened expression (4.5)
yields Cog o | Zo—Zs| when a and 8 belong to the same
row. However, because of the exponential factor, (4.5)

24 N. F. Mott and H. Jones, Theory of the Properties of Metals
and Alloys (Dover Publications, Inc., New York, 1958).
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EXPERIMENTAL VALUES OF b FOR ZINC-BLENDE-TYPE CRYSTALS

F16. 4. Frequency histogram for zinc-blende- and wurtzite-type
crystals of the parameter b in Eq. (4.5), which determines the
mean ionic potential C.

differs from (4.1) in that the former is not in general
transitive. Thus Cus cannot be expressed as the dif-
ference of two terms, one depending only on « and the
other only on 8.

Physically (4.5) says that the electronegativity dif-
ference is proportional to the screened electrostatic
potential difference of a and B at a point that might
loosely be taken to be their point of contact or bond
site; i.e., a distance 7, from « toward atom 8. (Indeed
scaling 7, has insured that the actual nearest-neighbor
distance is 7,+7g.) The dielectric screening is repre-
sented by the exponential, which is the geometric mean
of the factors ¢ %s"« and e*:"8, the screening factors for
the ion core potential at the bond site in the simple,
linearized Thomas-Fermi model. Note that no allow-
ance has been made for d-state effects; C is a property
relevant to the bonding sites which are outside the core.

At this point in the development of our theory we
refer to the experimental dielectric constants for a
second time. We calculate the value of C necessary to
zive the most reliable experimental value of €(0) (the
underlined value in Table III), for all zinc-blende and
wurtzite crystals, except those containing noble metals,
for which reliable experimental data is known to the
author (18 crystals in all). (We noted the anomalous
behavior of CuBr and Agl in Fig. 1 and will discuss
the noble metals later.) With this value of C and Eq.
(4.5) we find the corresponding value of b, the prefactor
in (4.5). The &’s are plotted in a frequency histogram,
Fig. 4.

From Fig. 4 we see that 13 of the 18 experimental
values of b fall between 1.4 and 1.6, i.e., within 79 of
1.5. Because of the discrepancies in the experimental
values recorded in Table III, we believe that 79 is
about the level of experimental accuracy. The five
cases in which the experimental 4 is more than 79, away
from 1.5 are InAs (1.3), AIN (1.2), ZnO (1.1), GaSb
(1.75), and AlSb (3.05). We have already noted that
AISb has an unexpectedly large lattice constant, indeed
only BeO (for which the experimental d=1.55) varies
more from our predicted value. ZnO is also unusual be-
cause its wurtzite structure is distorted so that one
neighbor is substantially nearer than the other three.2s

2% See the w-parameter table [R. W. G. Wyckoff, Crystal
Structures (Wiley-Interscience, Inc., New York, 1963), Vol. I,
p. 1127]; ZnO has the greatest distortion of any wurtzite crystal
listed there.
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Now consider the noble metals, Cu, Ag, and Au.
These have often been a source of trouble in electro-
negativity theories.>#? Chemically they show a pro-
pensity to assume an effective valence greater than the
value of 1 that we would expect from their d'%* ground-
state configuration. Indeed, reference to their atomic-
energy levels? shows that the d%? configuration is the
lowest excited state in Cu and Au, only 1.38 and 1.13
eV, respectively, above d¥s!, and in Ag d°%? is only
slightly higher than d¥p! at 3.7 eV. The d°? configura-
tion would indicate an effective valence of 2 instead of
1. We noted in Fig. 1 that when CuBr and Agl are
placed on the extrapolation of the 1/X-versus-(AZ)?
lines for rows 3 and 4, their observed dielectric constants
indicate values of (AZ)? of 26 and 29, respectively.
These values are closer to the value 25, which would be
obtained by assigning valence 2 to the noble metals?®
than to the value 36, which would be obtained if they
have valence 1.

When we calculate the experimental value of b for
the four zinc-blende crystals containing a noble metal
for which an experimental value of €;(0) has been ob-
tained, we find (Fig. 4) that all four values fall within
7% of 1.5, provided we assume Z=2 for these metals.
(However, we have continued to assume eight electrons
per diatomic volume when calculating w, and E,.)
Therefore, we will assume that Z=2 for these metals
in further calculations.

V. ROCK-SALT STRUCTURE

All diatomic compounds which are composed of
elements from the first four rows of the periodic table
and which have a saturated valence band (i.e., have
eight valence electrons per diatomic unit) are found in
stable crystals either in the NaCl structure or in the
diamond, zinc-blende, or wurtzite structures, which

98 .
Rbcl RbBr RbF
¢ SKCl % oKF
94} Nacl ® NaBr RbI  KBr k1 .
i ® Sr0e® eNal
5 ST eSrSe ocq0  LIF g B
g %ot SrTes s eCaSe . V8
< CaTe .
5 Agel
g d
g 861 ager
8 *Mgo fi
uw 821 -1
o
Mgse
Z mgs
= 78) 4
Q
<
&
74} 4
cdo
.
70 1 1 1 1 1 1 H 1
8 -4 o0 4 8 2 16 20 24 28

% VARIATION IN LATTICE -CONSTANT FROM
PREDICTED COVALENT VALUE

F16. 5. For NaCl-type crystals the fraction of ionic character
is plotted against the deviation of observed lattice constant from
the value predicted by taking the mean of the lattice constants of
the group-IV crystals of the rows to which the two elements of
the compound belong.

26 See Guggenheimer, Ref. 20.
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have already been discussed. By extending our cal-
culations to include the NaCl-type crystals we will be
able to treat all diatomic compounds to which the
simple Penn model applies, and for which we have fixed
values for the 7, A, and & parameters. Note that a
characteristic feature of the Penn model is the absence
of structure factors Se¢ which would distinguish be-
tween zinc-blende and rock-salt structures. Therefore
to the extent that a continuum model is applicable to
strongly ionic systems, the Penn model can be used to
extrapolate the dielectric properties of semiconductors
to I-VII ionic crystals.

As in zinc-blende crystals, the NaCl structure is fcc,
diatomic, and contains eight atoms per unit cell. Thus
the translational symmetry is the same, and crystals
of the same atomic density will have the same lattice
constant ¢ in the two structures. However, NaCl has
coordination number 6, whereas zinc-blende has 4, and
the nearest-neighbor distance is @ instead of $V3a. For
crystals of the same atomic density, each ion in the NaCl
structure will have 509, more of the oppositely charged
ions as nearest neighbors, but they will be about 159,
further away. If one thought of the atoms as hard
spheres, one might expect the NaCl structure to yield
denser crystals than the zinc-blende structure.

Although no clear distinction has yet been made be-
tween ionic and covalent compounds, those which are
generally considered to be most ionic, e.g., KI, are found
in the NaCl structure and those which are considered
most covalent, e.g., diamond, are found in the diamond,
zinc-blende, or wurtzite structures. Indeed, covalency
is commonly thought to be concomitant with tetra-
hedral coordination. To some extent this idea may arise
from the fact that many tetrahedrally coordinated
crystals have an average of four valence electrons per
atom and the notion of a covalent bond as a shared,
localized, pair of electrons between the atoms involved.
This notion of the bond is certainly naive for there are
many tetrahedrally coordinated crystals in the diamond
and zinc-blende structures which do not have four
valence electrons per atom,” e.g., GazSe;, and there are
NaCl-type crystals, e.g., LiH, which are thought to be
substantially covalent on the basis of analysis of the
charge distribution?® and measurement of the dipole
moment.? Some compounds, such as MgS and MgSe,
will condense from the gas phase in the wurtzite struct-
ure and then undergo a slow phase change to a stable
NaCl structure.?7:%

In Fig. 5 a plot is shown of the fraction of ionic
character, f;, as defined by (1.6), versus the deviation
of the lattice constant from the ‘“‘normal covalent
value,” i.e., the value we would predict for a zinc-

% N. A. Goryunova, The Chemistry of Diamond-like Semi-
conductors (Chapman and Hall, London, 1965), pp. 42-57.

28 R. S. Calder, W. Cochran, D. Griffiths, and R. D. Lowdee,
J. Phys. Chem. Solids 23, 621 (1962).

29 M. Brodsky and E. Burstein, J. Phys. Chem. Solids 28, 1655

(1967).
% H. Mittendorf, Z. Physik 183, 113 (1965).
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blende crystal of the same compound using our covalent
radii for 30 NaCl-type crystals. (We do not use any of
the well-known ionic radii tables.) We note that all the
Li, Na, K, Rb, and Ca salts have a lattice constant up
to about 289, greater than that predicted. The Mg, Ag,
and Cd compounds in the NaCl structure are more
dense than the author would predict, but in no case is
the observed lattice constant as much as half the 15%-
less value that a hard-sphere model would indicate.

In Fig. 6 a plot is presented of f; versus the value of &
in Eq. (4.5) which is necessary to obtain the experimen-
tal value of €;(0) from (2.8’)—except as noted below
for Ca and Sr salts—when, as noted earlier, we continue
to obtain E; from the extrapolation of the diamond and
Si values® as a function of the actual nearest-neighbor
distance (3.6), and D from (3.11).

Special note must be taken of the calculation for the
group ITa compounds, i.e., the Ca and Sr alkali earths.
In contrast to the group IIb elements Zn and Cd, the
elements Ca, and Sr have no d core so that D=1.0 and
(3.11) should not be used. However, reference to the
atomic-energy levels®? shows that the d-states lie just
1.7 and 1.8 €V, respectively, above the ground state
for Cat and Sr*, so that these levels should not be
neglected. One method of including the effect of the
conduction-band d levels is as follows: We assume total
ionicity so that in the valence level the electrons are
localized about the group-VI atom and that in the

81 Tt is possible to test the validity of the extrapolation method
of determining Ej; by examining the cases in which (1) there are
no d states present in the cores and (2) the value of C as predicted
by (4.5) is too small to have much effect on the value of E,. The
latter condition obtains when Z./Zg~rq/rs. The zinc-blende-type
crystal BP satisfies these conditions, and we calculate that €(0)
should be 8.6. Unfortunately, we do not know of any firm experi-
mental determination. However, Goryunova (Ref. 27, p. 93),
gives a tentative value of 9. The NaCl-type crystal LiH is also
expected to satisfy these conditions. Although we have not yet
fixed a characteristic covalent radius for H, we conclude from the
fact that the lattice constant of LiH (7.720ao) is about 19, larger
than that of LiF (7.592a,), that the radius for H should be about
the same as that of the first row elements. (Of course, Z is 1 for
both Li and H.) If we take C=0, we calculate E,=6.8 eV and
€1(0) =3.9. Brodsky and Burstein (Ref. 29) found €;(0) =3.6. That
value would indicate that the true value of C should be about 2.3
eV.
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lowest conduction band they are localized about the
group-ITa atom. Then, in addition to this lowest con-
duction band, we add d bands 1.7 and 1.8 eV higher for
Ca and Sr, respectively. The p electrons in the valence
band can make transitions to the d level as well as to the
normal conduction band. Such transitions increase the
dielectric constant. Instead of (2.8) we have

€1(0) =1+ (fuo,)’[ 1/ Ef+1/ (EA+AEP 14, (5.1)

where A=1—B+%B? and AE is the difference in
energy between the ground state and the first-excited
d state of the IIat ion, i.e., 1.7 or 1.8 eV for Ca or Sr.

There is a clear analogy between the effect described
by (5.1) and the effect of adding resistances in parallel.
As with resistances, the relevant physical quantity may
be either the actual energy gaps E, and E,+AE or
the effective energy gap defined by

1/E*=1/E/+1/(EA+AE),

depending on the application.

The value of b used in Fig. 6 is not that which yields
the experimental value of E, for (5.1), i.e., the & which
gives the actual E, and which is appropriate to dis-
cussions of the actual interband transition energies.
One may also define an effective b value &’ and an
effective ionic potential C’ which gives the effective

E,, Eg' by Eg, 2=Eh2+C'2. (5_3)

Because the bond charge in the Phillips theory of
covalent bonding® is inversely proportional to the
dielectric constant, which is determined by E,/, the
quantity &’ is more appropriate than & for discussions
of the charge distribution. Thus we use & for the Ca
and Sr salts in Fig. 6.

Returning to Figs. 5 and 6 we note that there is con-
siderable scatter in both plots but both suggest that
the deviations remain small until f; reaches about 0.90.
Then the plots seem to turn over in an intermediate
region extending perhaps to 0.93 and then the devia-
tions increase rapidly with f;. This behavior suggests
to the author that a fairly rapid transition from
“covalent” behavior to “ionic” behavior occurs in this
range of f;. We also note that there is a substantial
amount of clustering in both figures. There appears
to be a ‘““normal value ”of b for the most ionic crystals
in the NaCl structure (f;>0.93) of about 2.25. This
would be the normal value for b for the zinc-blende
structure, i.e., 1.5, times the ratio of the coordination
numbers of the two structures, i.e., 6 to 4. This would
say that the average ionic potential is proportional to
the number of oppositely charged ions surrounding a
given ion. We also note that compounds containing an
ion with the neon configuration, i.e., O, F, or Na, have
a b value of about 809 of this normal value and that all
crystals which are more dense than the covalent pre-

(5.2)

diction have the same b value that we would expect in

# J. C. Phillips, Phys. Rev. 166. 832 (1968).
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a zinc-blende structure except for CdO, which exhibits
an anomalously small value of &.

In Fig. 7 we simply plot the variation of lattice con-
stant versus the b or &’ values. Figure 7(a) shows only
the I-VII compounds. Figure 7(b) shows the plot for
the II-VI compounds if the b values, instead of &’ as
in Fig. 6, are used for the Ca and Sr salts. In Fig. 7(c)
we plot all NaCl-type crystals using the 4’ values for
the Ca and Sr salts.

Figure 7 suggests that the & value increases with
deviation in lattice constant. Although there is sub-
stantial scatter, the figure suggests that a linear correla-
tion may exist, and that we should prefer the presenta-
tion in Fig. 7(c) to that of Figs. 7(a) and 7(b). (The
latter distinction would support our assumption that it
is the charge distribution and not the interband energy
gaps which is most directly involved in these effects.)
To pursue this point we consider the effect of hydrostatic
pressure on €;(0).

VI. PRESSURE DEPENDENCE OF
DIELECTRIC CONSTANT

Photoelastic effects in crystals have been the subject
of much experimental and theoretical investigation

during the last century.® Virtually all theoretical ap-.

proaches have begun by considering alkali-halide cry-
stals, which were assumed to be totally ionic. There
has been substantial variation in treatment among
these approaches. Mueller® assumed the Lorentz local-
field equation

Ei.=E+4rP, (6.1)

where Eo, is the local atomic field E is the macroscopic
average field, and P is the polarization. This assump-
tion leads to the Clausius-Mossotti model.® Mueller
demonstrated that in order to explain the pressure de-
pendence of €;(0) for the alkali halides, it is necessary
to assume that the polarizability of the ions decreases
with pressure because the increase in € (0) is generally
less rapid than would be predicted by considering only
the derivative with respect to atomic density.

Mott and Littleton®:3 argued that the overlap of the
ions in a crystal would invalidate the Lorentz equation
(6.1) and suggested replacing it with

Ewoe=E+4$mv/P, 6.2)

where v is a parameter which describes the effect of the
overlap. Agreement with experiment is obtained for v
approximately equal to O for most alkali halides. Thus
(6.2) leads to a model which is approximately equivalent
to assuming the Drude equation. When the crystal is

33 Cf., K. Vedam and S. Ramaseshan, in Progress in Crystal
Physics, edited by R. S. Krishnan (Wiley-Interscience, Inc.,
New York, 1958), Vol. I

3¢ H., Mueller, Phys. Rev. 47, 947 (1935).

3 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Dover Publications, Inc., New York, 1964).

(1;;1\} F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485
8).
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compressed the degree of ionic overlap increases and ¥
must be assumed to decrease still further to account for
the pressure dependence of € (0).

Yamashita®” has developed a quantum-mechanical
approach to the calculation of €(0) for ionic crystals
which he was able to carry out with fair success for
LiF. By introducing empirical parameters, he has been
able to extend® his method to describe the pressure de-
pendence of ¢ (0) for all the alkali halides.

All the above theories have difficulty with the case of
MgO because for this NaCl-type crystal, e;(0) decreases
with hydrostatic pressure.’* The Mott-Littleton ap-
proach is inapplicable as their v parameter is found to
be imaginary for Mg0.%® Mott® argues that the failure
of the Cauchy relation among the elastic coefficients
C,‘j

8.7=C15%C44=14.8(10" dyne/cm?) (6.3)
in the case of MgO * demonstrates the importance of
noncentral, covalent forces in this material. Because
noncentral forces are important, no theory based on
ionic interactions should be applicable to MgO.

Yamashita®” calculated €;(0)—1 for MgO on the basis
of his @ priori quantum-mechanical theory to be 3.56
as compared to the observed value of 1.95. However,
his extended model with three empirically determined
parameters®® is capable of accounting for a decrease in
€1(0) with increasing pressure if one makes the assump-
tion that the energy due to the overlap of the ions is
roughly a constant fraction of the total energy for all
crystals.® We know of no explanation of the basis of
such an assumption nor of any further development
along these lines.

The explanation that seems to have been preferred
is that based on the Mueller theory. Vedam and
Schmidt® conclude that the ionic polarizabilities,
particularly that of O~ —, must decrease rapidly enough
in MgO to outweigh the increase in atomic density.
However, no theory has been advanced to explain
this behavior of the ions and it is noted that similar
behavior of O~ ~ in vitreous silica is not observed.®®

Although de;(0)/dV <0 for all alkali halides, MgO
is by no means the only case for which de;(0)/dV>0.
It is known that for ZnS,%2 diamond,*®® Si,* and Ge *
the quantity € (0) also decreases with pressure.

We propose to approach the problem of the pressure
dependence of ¢;(0) by means of our covalent theory for
diamond, zinc-blende, and NaCl-type crystals. Let us
take the derivative of (2.8") with respect to r=74+7s.

3 J, Yamashita, Progr. Theoret. Phys. (Kyoto) 8, 280 (1952).
( 8 J, Yamashita and T. Kurosawa, J. Phys. Soc. Japan 10, 610
1955).

3 K, Vedam and E. D. D. Schmidt, Phys. Rev. 146, 584 (1966).

40 S, Mayburg, Phys. Rev. 79, 375 (1950).

4 Americal Institute of Physics Handbook (McGraw-Hill Book
Co., New York, 1963), 2nd ed.

42 K, Vedam and E. D. D. Schmidt, Phys. Rev. 150, 766 (1966).

4D, F. Gibbs and G. J. Hill, Phil. Mag. 9, 367 (1964).

44 M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem. Solids 8,
204 (1959).
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As A=1— B+1B?is always approximately 1 because B
is always small with respect to 1, we make the approxi-
mation 4 =const and find

v dél(O) 61(0)—1
a) d  «)
D E2 C?/r dC
[27~+2 48——————(—— —)-1.5] . (6.4)
ES2?2 E2\C dr

We first consider the elemental group-IV crystals for
which E,=E, and C=0, so that we need not evaluate

dC/dr. Thus (6.4) becomes
7 del(O) 61(0) 1/1
a(0) dr a0 \* dr

For diamond and Si, the quantity D is always equal to
1, so dD/dr=0 and we predict [7/¢:(0)Jde; (0)/dr to be
+1.62 and +1.80, respectively. Unfortunately the ex-
perimental data are not as conclusive as one might
hope. Gibbs and Hill® have reported

r—0. 98) (6.5)

olar

for a type-ITa diamond (0.029, nitrogen impurity).
Cardona, Paul, and Brooks* have reported (1/x)
X (0n/0P)r=(—3242)X10~7 cm?/kg for Si, where
is the optical index of refraction.

The bulk modulus % of Si is generally reported to be
9.75X 10" dyne/cm?2.4454 For diamond there is some
question as to what the value of % is, and there may be
significant dependence of & on the nitrogen impurity
level.#:45 McSkimin and Bond® report 2=57.7X104
dyne/cm?, which is 309, higher than earlier values. With
these values we calculate the experimental values of

> =(—1.0740.09) X107 cm?/kg
T

r del(O) 1 661(0)
—3k)
61(0) dr 61(0) 6P
2dn
=——(—3k)
ndP

to be 4+1.85 and 4-1.75 for diamond and Si, respectively.
Thus our predicted values of +1.62 and +1.80 are in
agreement with observation to within the limits of ex-
perimental uncertainty.

For the case of Ge, we lack a theoretical prescription
for evaluating dD/dr. We might conclude that it is
positive by noting that D is larger for Sn than it is for
Ge. If we assume we can make a rough estimate of

45 H. B. Huntington, Solid State Physics, edited by F. Seitz
and D. Turnbull (Academ1c Press Inc., New York, 1958), Vol. 7.

46 H. J. McSkimin, J. Appl. Phys. 24 988 (1953)

@3, C. Prasad and W. A. Wooster, Acata Cryst. 8, 361 (1955).
48 H. J. McSkimin and W. L. Bond, Phys. Rev. 105, 166

(1957).
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TasLE IV. Pressure dependence of €(0), C, and b.

der(0) r dC

_r a0 _r r dC 7 db
Crystal 2065 3 a@ dr  Cdr par  Reb
.. dC
if P 0 Expt Expt
RbCl —1.5 —1.44 —-0.1 2.3 49
KI —-1.7 —1.57 —-0.2 2.2 50
KBr —1.6 —1.35 -0.2 2.1 50
KCl1 —1.5 —0.93 —0.5 1.8 50
NaCl —1.5 —0.95 -0.5 1.7 50
LiF —1.2 —0.57 —0.7 1.3 51
MgO —1.5 +1.07 -2.3 —0.2 39
dD/dr by taking
dD Dgn—Dage
—_————— (6.6)
dr YSn—7"Ge

we conclude 7dD/dr~1.43, With this value we would
predict from (6.5) [7/€1(0)]dei(0)/dr=+3.20 for Ge,
whereas if we assume dD/dr=0, we would predict
+1.84. Cardona, Paul, and Brooks* reported (1/7)
X (9n/dP)=— (7£2)X10~" cm?/kg for Ge, and k is
generally reported®# to be 7.52X 10" dyne/cm?. Thus
the experimental value of [7/€(0)]de:(0)/dr is +3.16.
This result would indicate that dD/dr is indeed positive,
and that our rough estimate is approximately correct.

Although the experimental evidence is not sufficient
to confirm the validity of our treatment, we note that
(6.4) does offer a simple explanation of the fact that
€1(0) decreases under compression for diamond, Si, Ge,
and for the more covalent crystals in general. It is
simply that Ej, and thus the bond energy gap, increases
with pressure faster than the plasma energy.

For nonelemental crystals, C£0; thus we need to
evaluate dC/dr in order to use (6.4). Taking the deriva-
tive of (4.5) we find

r dC rdb ke

C dr

6.7)

The value of ks is, in general, between 4 and 6 for
the alkali halides. If we assume that we may estimate
db/dr, at least for the alkali halides, from the correla-
tion noted in Sec. V [Figs. 7(a) or 7(c)] between the
observed lattice constant and the experimental value
for b, we conclude that (r/b)db/dr is approximately
2.0 to +2.5. Thus we would conclude from (6.7) that

(r/C)dC/dr~0 6.8)

for the alkali halides. This is an attractive conclusion
because it implies that in the ionic limit the condition
that the total energy be a minimum, which determines
the equilibrium lattice constant, is equivalent to the
condition that the mean ionic potential C be a maxi-
mum. Since the Madelung energy makes the dominant
contribution to the cohesive energy in alkali halides,
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the equilibrium lattice constant should be that which
maximizes the ionicity of the crystal.

Of course, even in the alkali halides we never reach
the fully ionic limit, i.e., E; is never totally negligible.
Thus we expect small deviations from the condition
(r/C)dC/dr=

The experimental data on the pressure dependence of
€(0) for the alkali halides allow a somewhat more
rigorous test of these conjectures than was possible
for the group-IV crystals. We present the evidence in
Table IV.4-5 First we calculate a predicted value of
[7/€1(0)]dei(0)/dr from (6.4) under the assumption
dC/dr=0. (We also have dD/dr=0 because the d core
states are well below the valence level in Br, I, and Rb
and not present in K.) Next we show the experimental
value of [7/€,(0)]de1(0)/dr and from this, again using
(6.4), we obtain an expeumental value for (r/C)dC/dr.
In the last column we give the value of (r/b)db/dr
necessary to give the experimental value of (/C)dC/dr
from (6.7).

In view of the cumulative effect of all the experi-
mental uncertainties, as well as the approximations
involved, we believe that the results of Table IV sup-
port the following : (1) The basic validity of our covalent
approach even in the case of the alkali halides and (2)
the conjecture that dC/dr is small in ionic crystals.

We have included in Table IV the results of a similar
calculation for MgO. The covalent effects noted by Mott
are clearly evidenced by the fact that the logarithmic
derivative of C is not small but indeed is roughly the
same as that of Ej.

On the basis of very sparse experimental data avail-
able to us, we suggest that there may be a.linear de-
pendence of the value of & (or &’ for IIa-VI crystals) on
lattice constant for the most ionic crystals. Among
NaCl-type crystals only our data on RbCl,* LiF,* and
MgO® are recent. In Fig. 8 we have reproduced Fig.
7(c) with lines drawn through RbCl, LiF, and MgO
having the slope indicated by the pressure dependence of
1(0) for these crystals (see Table IV). It is seen that
most of the crystals for which f;20.93 fall close to the
RbCl line. The behavior of MgO and the position of the
Ca0 and SrO points seems to indicate that for the more
covalent crystals (f;<.0.90), the value of 4 is much less
dependent on lattice constant. LiF may represent an
intermediate case. We note that in LiF the Cauchy
relation is also violated*:

C12=4.205£6.28=Cy in units of 10"* dyne/cm?.

( “K) Vedam and E. D. D. Schmidt, J. Mat. Sci. 1, 310
1966

5 E. Burnstein and P. L. Smith, Phys. Rev. 74, 229 (1948).

( 51%( Vedam and E. D. D. Scmhldt Solid State Commun. 3,373
1965).
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Fig. 7(c).

Note added in proof. The value of € (0) for CdO shown
in Table III, 6.2, is inaccurate because of anomalous
dispersion at the frequency at which the refractive
index was measured. Although there is still some un-
certainty as to the true value, it is known® to be
approximately 5. If we take €(0)=35.0 we calculate
b=1.05, c=9.0 eV, and f;=0.78. This correction brings
CdO into line with ZnO and similar skew compounds
containing one first row element. Thanks are due to
Dr. P. Eisenberger and Dr. H. Finkenrath for bringing
this to my attention.

Also new data is now available for the pressure de-
pendence of the dielectric constant of several alkali
halides®® and also of CdS, ZnS, and Zn0O.* The new
alkali halide data is in substantially better agreement
with the values calculated in Table IV than is the 1948
data of Ref. 50. The data on CdS and ZnO is within
109, of value calculated in a manner similar to that
used for Ge, but for ZnS the experimental value is
about % the calculated value.
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