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The formation and self-diffusion activation energies for single vacancies and divacancies in solid argon
are calculated including contributions due to triple-dipole interactions. The triple-dipole interactions lower
both the formation and activation energies relative to the values calculated with a pair potential only. The
calculated activation energies, 3307 cal/mole for single vacancies and 4192 cal/mole for divacancies, are in
equally good agreement with the recent experimental results, 3600-3900 cal/mole. The calculated energy
of formation of a vacancy, 1790 cal/mole, is in poor agreement with the value of 1270 cal/mole estimated
by corresponding states from krypton experimental data. Consideration of Jansen superexchange forces and
four-dipole interactions lowers the vacancy formation energy to ~1430 cal/mole and the divacancy self-
diffusion activation energy to ~3510 cal/mole. The agreement between calculated and experimental values
of the vacancy formation energy and activation energy (for divacancy diffusion) suggests that self-diffusion
in rare-gas solids may occur via divacancies at high temperatures.

I. INTRODUCTION

EVERAL studies have been done on the experi-

mental properties of defects in solid rare gases.
Losee and Simmons!+? measured the vacancy formation
energy in krypton. It is significantly less than the heat
of sublimation from 0°K. The self-diffusion coefficient
has been determined in argon,®=® krypton,’ and xenon.”
The activation energies for self-diffusion are roughly
twice the heat of sublimation.

Several investigators®—'3 have attempted to calculate
vacancy formation energies and self-diffusion coeffi-
cients in solid rare gases. These investigators have em-
ployed pair potentials and have obtained the self-
diffusion activation energies using absolute-rate theory.
These calculations have met with limited success. The
calculated vacancy formation energies®19:1% are roughly
equal to the sublimation energy and are significantly
larger than experiment. The self-diffusion activation
energies,''™13 assuming diffusion via a monovacancy
mechanism, are twice the sublimation energy and in
good agreement with experiment. We would expect to
be able to calculate the energy of vacancy forma-
tion—an equilibrium process—more accurately than
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the energy of motion—a dynamical process. The activa-
tion energy for monovacancy diffusion is the sum of the
vacancy formation and motion energies. Disagreement
between calculation and experiment on the vacancy
formation energy diminishes the significance of the
agreement of the diffusion activation energies.

Losee and Simmons!? (based on experiments on
krypton) and Foreman and Lidiard** (based on calcu-
lations and experiments on argon) have suggested that
many-body effects play an important role in vacancy
formation for rare-gas solids. Studies of third-virial
coefficients!® have also indicated the importance of
many-body forces. It has also been argued that the ob-
served stability of the fcc phase of rare gases indicated the
presence of many-body effects. Alder!® has shown that
this argument is fallacious and that the stability of the
fcc phase can be obtained with a pair potential. It is of
considerable interest to investigate whether many-body
effects can account for the observed vacancy formation
energies and diffusion activation energies.

Two different types of many-body forces in rare
gases have been dealt with theoretically. Axilrod and
Teller'”18 showed that the total energy of interaction
between three well-separated polarizable atoms is not
just the sum of pair interactions. Considering only in-
duced dipole interactions, Axilrod and Teller obtained
an expression for the additional triple-dipole potential
energy. The effects of triple-dipole interactions on the
stability of the fcc phase,'*2® binding energies,?!:?
zero-point energies,?’23:24 elastic constants,?> and third-
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virial coefficients'® have been investigated. Considera-
tion of the triple-dipole potential yielded improved
agreement with experiment. In addition, Bade?®28 and
Lucas?® 3 have considered multiple-dipole interactions
for more than three dipoles. Bade obtained an expression
for the general n-dipole potential®é and calculated the
quadruple-dipole contribution of the binding energy for
several rare gases.?’+?8 The four-dipole term is opposite
in sign to the three-dipole and roughly one-third in
magnitude. Lucas solved completely the problem of in-
teracting dipoles?® and also obtained an expansion of
the result in a series in the number of interacting
dipoles.®® His results for three and four dipoles are in
good agreement with Bade. Lucas showed that the terms
in the series expansion alternate in sign in their contribu-
tion to the binding energy.

Jansen® pointed out that there is a serious problem
in the direct application of the Axilrod-Teller-type
multiple-dipole forces to the solid. Axilrod and Teller
assumed well-separated atoms with no electron ex-
change. In the solid, the atoms are no longer well sepa-
rated and the effect of electron exchange must be con-
sidered. Jansen® has investigated extensively the effect
of exchange on the interaction of three close atoms
having Gaussian wave functions and has shown that
a larger superexchange energy can occur for three close
atoms. Jansen has found that the three- and four-atom
superexchange potentials lead to stability of the fcc
phase in a number of materials.?? He has also considered
the three-atom exchange-potential contribution to va-
cancy formation energies in rare gases.?® There are also
some problems with Jansen’s superexchange potential
energies. Swenburg®* has found that the wave functions
used by Jansen give nearest-neighbor overlap more like
a metal than an insulator, and Margenau,?® has not
obtained agreement with Jansen®® on the magnitude of
the four-atom superexchange energy.

It is clear at this time that many-body potential-
energy effects do exist, and they may be of some impor-
tance in the properties of the solids. Accordingly, in
this paper, we investigate the contribution of many-
body potentials in vacancy formation and in self-
diffusion. To do this, we compare computed vacancy
formation and motion energies for a model with two-
body potentials with those for a model with a three-body
potential. Absolute-rate theory is used to calculate the
motion energy of the vacancy. Absolute-rate theory is
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only one possible approach to calculating the motion
energy. Flynn®? has had great success calculating diffu-
sion coefficients from the Debye approximation to the
phonon spectrum. The advantage to absolute-rate
theory is that it lends itself to simple examination of the
dependence of the results on the details of the model.

In Sec. IT it is proved that the contribution of an
additive #-body potential to the vacancy formation
energy is #—1 times as large as its contribution to the
heat of sublimation.

In Sec. III exact calculations are made of the vacancy
formation energies in solid argon for models based on
pair potentials (Lennard-Jones) only and pair poten-
tials plus three-body potentials (Axilrod-Teller). Inclu-
sion of the three-body potential lowers the vacancy
formation and motion energies and hence the diffusion
activation energy. The vacancy formation energy ob-
tained is still much larger than experiment. We also
examine the binding and motion energies of divacancies.
Inclusion of the three-body potential in the model does
not greatly affect either of these.

In Sec. IV the effects of many-body potentials other
than the Axilrod-Teller triple-dipole potential are con-
sidered. Inclusion of the higher-order multiple-dipole
terms worsens the agreement between experimental and
calculated vacancy formation energies. However, the
Jansen three-atom exchange potential leads to improved
agreement between experiment and calculation for the
vacancy formation energy. The Jansen potential also
gives agreement between calculations and experiment
for the diffusion activation energy for a divacancy self-
diffusion mechanism.

II. THEORY OF MANY-BODY CONTRIBUTIONS
TO VACANCY ENERGIES

A. Additive Potentials

In this section we examine the additive many-body
potential contribution to the energy of formation of a
vacancy. The effect of the additive #-body potential on
the vacancy formation energy will be shown to be n—1
times larger than its contribution to the sublimation
energy.

Let us define an additive #-body potential as a poten-
tial energy of interaction of # atoms V(71 - -7,), where
71+ - -7, are the coordinates of the # atoms; V,(r1- - 7,)
cannot be separated into lower-order terms; and the
total n-body contribution to a large system can be ob-
tained by summing over all #-sided polygons;

1
E,=— Z Vn(rl: tee :rﬂ) .

n!r,reern

The factor 1/n! enters in as each n-sided polygon is
counted 7! times in the sum. With this definition, Van

der Waal and Axilrod-Teller potentials are additive

8 C. P. Flynn, Phys. Rev. 171, 682 (1968).
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n-body potentials (two- and three-body potentials,
respectively).

The heat of sublimation H, of a crystal of NV atoms
with #-body interactions can be written

11 1
""Ho=—'{'—" 2 Valryr)+— 2 Va(ryrers)+---

N 2! rnr | r1,r2,73

or
—Hoy=3 E,.

n>2

Now we consider the formation of a vacancy in the
bulk of the crystal. Physically a vacancy is formed by
removing an atom from the bulk to the surface. This
process is mathematically inconvenient, and so we form
a vacancy by an equivalent two-step process:

Step 1. Given a crystal with V atoms and N sites, we
add one atom from infinity to give N4 1 atoms on N1
sites.

Step 2. We now remove one atom from the bulk of
the crystal to infinity to give N atoms on N1 sites.

To compute the energy of this two-step process, we focus
our attention on one #-body interaction. For step 1,
AE, is clearly just the contribution of this #-body po-
tential to the sublimation energy

AEy n=E,.

In step 2, we must break all #-sided polygons to which
the atom belongs, taking care to count each polygon
exactly once;

AEz,n= —nE,..
Hence, :
AE.=AE; x4 AEs n=—(n—1)E,.

The energy of formation of a vacancy is

E,=)  AE,=3Y, —(n—1)E,,

n>2

which can be expressed in terms of the heat of sublima-
tion as
E,=Hot+Y —(n—2)E,.

n>3

If only two-body interactions occur, then E, is identical
with H, (provided there are no relaxation effects). In
general, the additive #-body potential contributes an
extra #—2 times to the vacancy formation energy.
Many-body potentials depend on the configuration of
the interacting atoms. Their contribution to complicated
defects may be even larger than to the vacancy.

B. Zero-Point Energy

The zero-point energy of a crystal is a many-body
effect in that it depends on the interactions of all the
atoms. However, zero-point energy is not an additive
n-body effect.
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When zero-point energy is included, the heat of sub-

limation is

—H 0= Z En+ Ez )

where E, is the (positive) zero-point energy.

We now consider the formation of a vacancy in a crys-
tal by the same two steps as above and focus our atten-
tion on the zero-point energy. In step 1,

AE,,.=E,.
In step 2, «
AE2,2= ‘—Ez—l- 5Ez.

Here AE, is the decrease in the zero-point energy due
to the change in the forces on the atoms near the just
created vacancy. The value of 6E; is dependent on the
forces in the lattice. Combining steps 1 and 2,

AE,=AE,; s+ AE; ,=0E,.

Now, we again consider the energy of formation of
a vacancy, this time including #-body energies and the
zero-point energy;

Ey=Y AE,+AE,=Y —(n—1)E,+AE,

n>2

=Hot+> —(m—2)E,—E,+4E,.

n>3

The last two terms in E, are the zero-point contribution.
Unless 8E,, the change in zero-point energy due the
change in the forces on the atoms near the vacancy, is
greater than E,, the zero-point energy per atom, in-
clusion of zero-point energy increases the energy of for-
mation of a vacancy.

III. CALCULATIONS
A. Model

Three different models of solid fcc argon are used for
this work.

In the first model, hereafter referred to as model 2B
(two-body), pairs of argon atoms interact by an addi-
tive Lennard-Jones two-body potential of the form

V(r)=4e{(o/r)2—(o/r)%}

and all kinetic and quantum effects are neglected.

The second model, model 2BZ (zero-point), is iden-
tical with 2B except that quantum effects are treated
by the zero-point energy obtained from the Einstein
approximation.

The third model, model 3BZ (three-body), is like
model 2BZ except that interactions within triples of
atoms are described by an additive triple-dipole poten-
tial of the form!+18

»(3 cosfy cosfy cosbsz+1)
Va(h,?’z,?’s) = ’
R123R233R133

where R;; is the distance between atoms ¢ and j, 0 is
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TasLE I. Potential parameters e and o for three models of argon.
E,, E., and E; are the two-body, zero-point energy, and three-
body contributions to the heat of sublimation.

€ g B, E, Eg
Model (cal/mole) (&) (cal/mole) (cal/mole) (cal/mole)

2B 213.5 3.444 —1846
2BZ 236.3 3.400 —2028 182
3BZ 254.2 3.367 —2157 174 137

the angle between R;; and Ry;, and » is a constant evalu-
ated from atomic properties.

These models of argon are subject to several objec-
tions. In particular, the use of the Einstein approxima-
tion for the zero-point energy is not even a correct treat-
ment of the model. There are three-body interactions
other than the triple-dipole. There are also other pro-
posed forms of the pair potential. The purpose of this
paper is to test the effects of variations in the model on
the calculated defect properties of argon and to examine
the diffusion mechanism, not to find a new best poten-
tial. Accordingly, standard models are used.

For each model, it is possible to write down an expres-
sion for the sublimation energy H, at T=0°K. The
sublimation energy must be a maximum at the experi-
mentally observed value of the nearest-neighbor dis-
tance Ro. In model 3BZ, we use the multiplicative con-
stant » calculated by Bell and Kingston®® from first
principles,

»="74.48X 1012 erg A9,

Knowing the experimental parameters®® Ho=1846
cal/mole and Ro=3.7549, it is simple to solve for € and
o in the Lennard-Jones potential. These parameters
are contained in Table I for argon and are essentially
the same as obtained by Chell and Zucker.?® Table I
also contains the two- and three-body contributions to
—H,, designated E; and E; in Sec. II, and the zero-
point energy E,.

As can be seen from Table I, the effect of inclusion of
three-body potentials and zero-point energy, both of
which contribute a soft repulsion, is to deepen and
narrow the two-body well (increase e and decrease o).

B. Computations

All calculations were performed on an IBM 360 com-
puter. For each model, the energy of formation of a va-
cancy was calculated for an infinite lattice. Then the
relaxations around the vacancy were obtained using a
Newton-Rapson procedure to find the configuration of
minimum energy. In this step, the energy was summed
over approximately 400 atoms. Sufficiently many shells
around the vacancy were allowed to relax to assure de-
termination of the vacancy formation energy E,” to
better than 2 cal/mole.

#R. J. Bell and A. E. Kingston, Proc. Phys. Soc. (L.ondon) 88,

901 (1966).
# G. L. Pollack, Rev. Mod. Phys. 36, 748 (1964).
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For monovacancy motion, coordinate space was
searched to find the saddle-point position. The 23 atoms
nearest to the saddle point were allowed to relax and
the vacancy motion energy E,™ was obtained.

In determining the divacancy formation energy E,,’,
the 23 atoms nearest the divacancy were allowed to
relax. For motion of divacancies, the 22 atoms nearest
the saddle point (found by searching coordinate space)

" were allowed to relax to find the saddle-point configura-

tion and divacancy motion energy E,,™.

For each model, determination of the two- and three-
body energies of defect formation and motion involved
simple lattice summing. However, it was necessary to
fall back to the Einstein approximation and absolute-
rate theory to get the zero-point energy contributions.
The Einstein zero-point energy, with and without a
vacancy, is obtained from the Einstein frequencies in
a perfect lattice and in a lattice with a vacancy. For the
jump process, with N atoms, one considers only 38N—1
vibrations, neglecting one mode in the direction of the
jump which is assumed to be the jump process itself.
Then the change in zero-point energy is calculated as
though dealing with an equilibrium system.

C. Results

Using all three models of solid argon, the energies of
formation E,” and motion E,™ of single vacancies were
calculated. These are contained in Table II. The activa-
tion energy for vacancy self-diffusion Q, is the sum of
the vacancy formation and motion energies. The com-
puted values of Q, are also included in Table II.

The results in Table II are in good agreement with
the earlier results of the author using model 2B.!! The
differences with the earlier results are attributable to
the choice of potential parameter and the greater num-
ber of atoms allowed to relax around the saddle point
in this calculation. The agreement with Glyde'*? is
not good. This discrepancy reflects the differences in
the models used and Glyde’s attempt to allow for the
thermal expansion of the lattice (or our failure to do so).

Certain qualitative variations from model to model
are apparent. The inclusion of zero-point energy in-
creases E,7, E,”, and Q, as eis increased in the Lennard-
Jones potential. The energy of formation of a vacancy
in model 2BZ exceeds the heat of sublimation. This
occurs because the decrease in zero-point energy of the
atoms near a vacancy is less than the zero-point energy
of a single atom in the infinite lattice. This possibility

TaBLE II. Some calculated parameters for diffusion via
monovacancies for three models of argon.

EJ/ E,m Qy
Model (cal/mole) (cal/mole) (cal/mole)
2B 1805 1598 3403
2BZ 1905 1619 3524
3BZ 1790 1518 3307
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was pointed out in Sec. II. Inclusion of three-body forces
lowers everything. As shown in Sec. II, the contribu-

tion of three-body forces to the energy of a vacancy

should be equal to Es, the three-body contribution to
the sublimation energy, 137 cal/mole. In the exact cal-
culation, the three-body interaction lowers E,” by 117
cal/mole. E,™ is reduced by 101 cal/mole by the signif-
icant narrowing of the pair potential (decrease in o)

when the three-body potential is considered (see Table

D).

Table III gives E,,’, E,,”, and Q.,, the parameters
for divacancy diffusion; the binding energy of a diva-
cancy relative to two vacancies, Ep, is also tabulated.

“The principal contribution of the triple-dipole potential
to Q,, is the lowering of the divacancy formation
energy.

IV. DISCUSSION

Activation energies Q for self-diffusion have been
measured for argon,®5 krypton,® and xenon.” These
arein Table IV along with the experimental errors stated
by the investigators. Losee and Simmons'+? obtained a
value for the formation energy of a vacancy E,’ in
krypton by comparing bulk and lattice thermal expan-
sion. Their result is also in Table IV, as are estimates?
for E,’ for argon and xenon obtained by corresponding
states arguments from the krypton result.

The determination of self-diffusion coefficients and
vacancy formation energies in rare-gas solids is very
difficult. The problems in this work are perhaps indi-
cated by the spread in the results for the activation en-
ergy for argon.*® The Losee-Simmons'? experiment
does not give entirely unambiguous results because of
the complications of defects other than single vacancies.
In addition, estimation? of values for argon and xenon
by matching corresponding states from krypton data
may introduce some errors. Hence, it is not yet possible
to attach great significance to the experimental num-
bers, and the tabulated-error estimates may be a bit
optimistic.

The vacancy formation energy in argon is estimated?
to be 1270150 cal/mole from experimental data on
krypton. This is significantly less than the calculated
values of E,” for all three models, indicating that none
of the models is satisfactory (see Table II). However,
inclusion of triple-dipole interactions, model 3BZ, ap-
pears to give the best agreement with experiment.

TasBLE III. Some calculated parameters for diffusion via diva-
cancies for three models of argon. Ep is the binding energy of a
divacancy relative to two monovacancies.

E"zl Evzm sz Ep

Model (cal/mole) . (cal/mole) (cal/mole) (cal/mole)
2B 3423 774 4197 187
2BZ 3610 804 4414 200
3BZ 3381 811 4192 199
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TasLe IV. Experimental properties of rare-gas crystals. Q is
the activation energy for self-diffusion. E, is the vacancy forma-
tion energy; estimated values are in parentheses.

Q E,
Rare gas (cal/mole) (cal/mole)
Argon 360041502 (1270)>
38654200°
41204
Krypton 48004200 17704200b¢
Xenon 7350508 (2470)®

a Reference 5.
b Reference 2.
¢ Reference 4.
d Reference 3.
e Reference 6.
t Reference 1.
& Reference 7.

All three activation energies for single-vacancy diffu-
sion in argon, Q,, in Table II are in reasonable agree-
ment with the more recent experimental data?%
3600-3900 cal/mole. The calculated activation energies
for divacancy diffusion on Table III appear to be in
disagreement with experiment. However, we note that
Qo, for model 3BZ—which includes triple-dipole interac-
tions and gave the best E,—is 4192 cal/mole and
agrees as well with experiment as does the single-
vacancy activation energy for the same model, 3307
cal/mole.

Examining the triple-dipole contribution to vacancy
formation and motion energies, we have found that
calculated self-diffusion energies for a single-vacancy
and a divacancy mechanism are in equally good agree-
ment with experiment when triple-dipole interactions
are considered. However, the calculated vacancy forma-
tion energy in argon is in disagreement with the value
estimated by Losee and Simmons by comparison with
krypton. We shall now consider briefly other many-body
interactions: four-dipole interactions?*~3° and Jansen
three-atom superexchange forces.’*3% We shall find
that consideration of these forces greatly improves the
agreement between the experimental and calculated
vacancy formation energy and between the experimental
self-diffusion activation energy and that calculated for
a divacancy mechanism; these many-body interactions
worsen the agreement between the experimental activa-
tion energy and that calculated for single vacancies.
Jansen® has previously pointed out that superexchange
forces lower the vacancy formation energy to give rea-
sonable agreement with experiment.

Bade?®28 and Lucas??:?® have both investigated four-
dipole interactions. The major contribution to the four-
dipole interaction comes from terms involving three
atoms.?® We may crudely estimate the effect of the four-
dipole interaction on vacancy formation and motion by
comparison with three-dipole interaction. The four-
dipole interaction?® is about one-third as large as the
three-dipole in argon and it is attractive rather than
repulsive. Inclusion of the four-dipole interaction would
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raise E, by about 40 cal/mole and Q, and Q., by about
70 cal/mole.

Jansen®! has pointed out that it is necessary to con-
sider electron exchange at the small separations charac-
teristic of solids. He has shown that electron exchange
appreciably affects the total interaction in solid rare
gases. Three-atom electron-exchange interactions may
reduce the binding energy by as much as 259, in solid
argon.? The exact numerical contribution of the three-
atom electron-exchange interactions is not certain and
may be smaller than this.®* We may again estimate the
effect of these interactions on vacancy formation and
motion by comparison with triple-dipole interactions.
This estimation may be even less justified here than it
was with four-dipole interactions; here the basic origin
of the effect is different from that of the triple-dipole
interaction and the magnitude is much larger. Like
triple-dipole interactions, Jansen exchange interactions
make a repulsive contribution to the binding energy.
Comparison with triple-dipole effects indicates that the
vacancy formation energy is greatly reduced, by as
much as 400 cal/mole, if we use the numbers given by
Jansen® for argon. The divacancy formation energy
may then be reduced by about 800 cal/mole. The Jansen
exchange interactions may reduce E,™ by about 350
cal/mole and probably have only a small effect on E,,™.

We may combine our calculated results and the esti-
mated effects of four-dipole and Jansen exchange inter-
actions to get rough values of vacancy formation and
motion energies. These work out to be

E,’~1430 cal/mole,
Q,=22620 cal/mole,
Q4,~3510 cal/mole.

These estimates are, of course, very uncertain. However,
we see that qualitative consideration of the various
many-atom interactions reduces the vacancy forma-
tion energy to a value comparable with the result
12704-150 estimated by Losee and Simmons.? We also
see that these interactions reduce the diffusion activa-
tion energy for single vacancies to a value well below
the experimental results (see Table IV). However, the
estimated activation energy for divacancy diffusion is
in surprisingly good agreement with the most recent
experimental result for argon obtained by Parker ef al.,
3600200 cal/mole.

These results suggest that diffusion in rare-gas solids
at high temperature may in fact be primarily via diva-
cancies and not by single vacancies, as is usually as-
sumed. This possibility was previously pointed out by
the author.!*

The concentration of divacancies is usually thought to
be too small to contribute appreciably to self-diffusion,
even at temperatures near the melting temperature.
Losee and Simmons'? found that the concentration of
vacant sites in solid krypton is 3)X 1072 near the triple
point. This is much larger than found by Simmons and
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Balluffi®* for a number of metals. The divacancy concen-
tration may be obtained from

[vz:l___ [vjzeASB/Rg—AEBIRT ,

using reasonable estimates of ASp and AEg, the binding
entropy and energy of divacancies. ASgp has been cal-
culated by Schottky et al.#* for several fcc metals to be
about 1 entropy unit. In this work we have calculated
AEp to be about 200 cal/mole for argon. Hence, near
the triple point, we estimate the divacancy concentra-
tion to be ~6X 1075, Losee and Simmons? suggested the
divacancy concentration may be even larger. In order
for divacancy diffusion to dominate at high tempera-
tures, the divacancies must move more than 50 times
faster than single vacancies, as there are 50 times more
single vacancies than divacancies. Comparing only our
estimated motion energies, divacancies move about 10
times faster than single vacancies at the melting tem-
perature of argon. If the motion entropy is more than
2 entropy units larger for divacancies than for single
vacancies, the divacancies may be the major self-diffu-
sion mechanism at higher temperatures. It is quite
possible that the motion entropy for divacancies is sig-
nificantly larger than that for single vacancies as the
divacancy saddle-point configuration is much less con-
strained than the single-vacancy saddle point.

The argument given above certainly does not prove
that divacancies are responsible for self-diffusion in
solid rare gases at high temperatures. It merely demon-
strates that this is plausible, based on current knowledge
and making some reasonable assumptions. If divacancies
do account for self-diffusion in rare-gas solids at high
temperatures, it is because the relatively scarce diva-
cancies move very rapidly. At lower temperatures, the
activation energy must be the determinant of the diffu-
sion mechanism and hence single-vacancy diffusion
would dominate. If diffusion at temperatures near the
melting temperature is primarily via divacancies, the
apparent activation energy for self-diffusion should
show some temperature dependence. Experimental data
are not yet available over a sufficient temperature range
and are not yet sufficiently accurate to test for a tem-
perature dependence in the activation energy.

V. CONCLUSIONS

In this paper, we have calculated the Axilrod-
Teller'™ 9 triple-dipole interaction contribution to the
formation and motion energies of vacancies in solid
argon. The triple-dipole interactions lower the forma-
tion energies of single vacancies and divacancies and
the activation energies for self-diffusion by either of
these. Calculated activation energies for both mecha-
nisms are in reasonable agreement with experiment but

40R. O. Simmons and R. W. Balluffi, Phys. Rev. 129, 1533

(1963).
41 G. Schottky, A. Seeger, and G. Schmidt, Phys. Status Solidi

4, 439 (1964).
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the calculated vacancy formation energy is much too
high.

Consideration of Jansen exchange forces®3% and
four-dipole interactions?¢—3 lowers both the energy of
formation of a vacancy and the activation energy for
divacancy self-diffusion to give good agreement with
experiment. The agreement between experiment and
calculation suggests that diffusion in rare-gas solids may
be primarily via divacancies at high temperatures.

It was shown that it is not implausible that the rela-
tively scarce divacancies move sufficiently rapidly com-

MANY-BODY SELF-DIFFUSION

IN RARE-GAS SOLIDS 891
pared to single vacancies to be responsible for the ob-
served self-diffusion in solid rare gases.
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Electronegativity difference is redefined as a scaling parameter, generalizing the concept of valence dif-
ference. A procedure for its evaluation is developed in terms of the dielectric constants of diatomic crystals.
A simple alternative to the Clausius-Mossotti theory of the electronic dielectric constant is developed in terms
of this concept. The effect of d-electron states and of hydrostatic pressure are discussed, and procedures for
their approximate evaluation are developed. The treatment is extended to 68 crystals of the diamond, zinc-
blende, wurtzite, and rock-salt types; values of the electronegativity parameter are tabulated for these

crystals.

I. INTRODUCTION

HE concept of the relative electronegativity of

the elements is an old one which arose in connec-
tion with oxidation-reduction potentials in the eigh-
teenth century. Thomson appears to have been first
to discuss a microscopic dielectric model.! With the
advent of quantum mechanics, interest in dielectric
models of electronegativity seems to have waned, ap-
parently because of difficulties with extensive numerical
solutions to Schrodinger’s equation, which a theory of
dielectric functions seemed to require.

Attempts have frequently been made to place the
concept on firm ground either semiempirically or
through one-electron quantum theory formulated in
terms of atomic orbitals.? Pauling® defined electro-
negativity as “the power of an atom in a molecule to
attract electrons to itself.” But his, and all other,
efforts to render this definition more precise have met
with only partial success. It may be correct to say that

* Submitted in partial fulfillment of the requirements for the
degree of Ph.D. in Physics, University of Chicago, Chicago, Ill.

Fannie and John Hertz Foundation Fellow. .
1 Present address: Bell Telephone Laboratories, Murray Hill,

N.J.
iT]. J. Thomson, Phil. Mag. 27, 757 (1914), especially p. 769;
also, G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916?.

2 The standard review article remains H. O. Pritchard and
H. A. Skinner, Chem. Rev. 55, 745 (1955).

3L, Pauling, J. Am. Chem. Soc. 54, 3570 (1932).

many currently regard the concept as qualitatively
useful but not refinable quantitatively.

Here we reexamine the concept of electronegativity
in the light of modern theory of the dielectric properties
of crystals. We use a phase-space model that is con-
sistent with the results of many of those extensive
numerical calculations that were unmanageable before
the widespread availability of computers.

Previous discussions of electronegativity have cen-
tered primarily on the binding or cohesive energies of
atoms or molecules. Thus, Mulliken* defined atomic
electronegativity as the average of the ionization poten-
tial and the electron affinity, Xm,o=2%{«+E.), and
defined the relative electronegativity difference of two
atoms « and 8 as

Xop=Xa—Xs. (1.1)
The relation (1.1) is necessary if X4 is to be transitive,
Xaﬂ+Xﬂ1=Xa7- (1-2)

Pauling observed that the energy D, binding the atoms
a and B in the system a-8 is generally larger than the
mean of the energies D.. and Dgg binding the systems
a-a and B-B. Thus he defined the “extraionic energy”
A

A=Dag—3(Daa+Dge),

4R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).

(1.3)



