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The excitation spectrum of interacting polariton waves in the infrared region of frequencies of dielectric
crystals has been studied using the double-time Green’s-function method. The Dyson equation describing
the spectrum of interacting polariton fields is derived in a general form, and then the polarization operator
and the polariton Green’s function are evaluated in two successive approximations. Use has been made of
two “equivalent” renormalized Hamiltonian representations, which are correct in the lowest and first ap-
proximations, respectively. The polariton Green’s function is expressed, in the second approximation, in terms
of the renormalized polariton frequencies, where the frequency of each polariton mode contains anharmonic
corrections to all orders. Expressions are developed for the frequency shift and spectral width of the funda-
mental absorption bands. It is shown that the renormalization of the polariton frequencies directly affects
the temperature dependence of the frequency shift and width of the infrared absorption bands. The retarda-
tion effects reduce the magnitudes of the anharmonic coupling functions. In the region of wave vectors where
retardation may be neglected, the phonon excitation spectrum has been considered and compared with the

results derived from previous studies.

I. INTRODUCTION

N the infrared range of frequencies of dielectric crys-
tals, polaritons are defined as quasiparticles which
consist of long wavelength transverse photons dressed
by the harmonic field of optical phonons, and they
propagate in the medium with energies and wave
vectors that satisfy the linear Maxwell equations.!
Mathematically, polaritons are elementary excitations
which satisfy dispersion relations derived from the exact
diagonalization of the Hamiltonian that consists of the
harmonic Hamiltonians corresponding to the optical
phonon and transverse electromagnetic field, respec-
tively, plus the interaction between them in the zero
approximation, i.e., when scattering processes® due to
phonon-photon interactions are neglected. The diago-
nalization can be done by means of either a canonical
transformation® or the Green’s function method.* Since
the total Hamiltonian consists of the lattice Hamil-
tonian plus the phonon-photon interaction Hamiltonian,
the theory of polaritons is equivalent to considering
retardation effects in lattice dynamics.*~® We refer to
the review article by Kwok* for the discussion on retar-
dation effects in the harmonic approximation. The exis-
tence of polaritons has been demonstrated by Henry and
Hopfield” through Raman scattering experiments on
GaP.
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The propagation of polariton modes in the medium is
damped. In pure crystals and at finite temperatures, the
damping is mainly due to the polariton-polariton inter-
actions. Burstein ef al.® have recently presented a theory
of Raman scattering by polaritons. They introduced
a phenomenological dispersion relation for the polariton
spectrum and pointed out that the damping constant is
the inverse of the lifetime of the transverse optical pho-
nons. This hypothesis is not justifiable, because in the
range of wave vectors were retardation effects are im-
portant only polariton modes exist and not optical pho-
nons; therefore, the lifetime of polaritons may differ
considerably from that of optical phonons.

In the present study, an attempt is made to develop
a general microscopic theory regarding the excitation
spectrum of interacting polaritons in dielectric crystals.
The expression for the total polariton Hamiltonian is
developed in Sec. II consisting of the harmonic and
anharmonic parts with respect to the polariton operators
which describe the polariton-polariton interactions.
Using the polariton Hamiltonian, the Dyson equation
for the polariton spectrum is derived in Sec. III by con-
sidering the equations of motion for the polariton
Green’s function with respect to both time arguments.
The expression for the polarization operator is found to
have two kinds of terms: The first group consists of the
sum of terms linear with respect to the anharmonic
coupling functions multiplied by the average values of
commutators involving polariton operators with equal-
time arguments. The second group is composed of a
series of terms which are quadratic with respect to the
anharmonic coupling functions and they are propor-
tional to two-, three-, and many-polariton Green’s
functions.

The polarization operator and, hence, the polariton
Green’s function are evaluated in two successive ap-
proximations by means of constructed equivalent re-
normalized Hamiltonians which are correct in the lowest

8 E. Burstein, S. Ushioda, and A. Pinzcuk, Solid State Commun.
6, 407 (1968).
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and first approximation, respectively. In the first ap-
proximation the polariton Green’s function is expressed
in terms of the frequencies for the polariton modes which
are only partly renormalized, while in the second ap-
proximation, the frequencies for the polariton modes
are correct to the second order. In this case, the fre-
quency of each polariton mode in the new representation
includes anharmonic corrections to all orders and the
resulting elementary excitation may be called the
“dressed” or the “physical polariton.” In the limiting
case where retardation effects may be neglected, the
expression for the polarization operator is reduced to
that for the bare phonon spectrum and is compared
with those derived by Wehner® and Kowk.*

The polariton excitation spectrum is discussed in Sec.
IV by considering the expression for the spectral repre-
sentation. In the transparent range of frequencies for
the crystal expressions for the scattering amplitudes are
derived which describe all the possible polariton-
polariton scattering processes. Formulas are developed
for the frequency shift and spectral width of the funda-
mental absorption bands. It is found that one of the
effects arising from the renormalization of the frequency
modes is to change the temperature dependence for the
polariton and, consequently, the phonon excitation
spectrum. Comparison has been made with those results
derived for the phonon spectrum by means of diagram
techniques.’® In general, retardation effects are found
to reduce the magnitudes of the anharmonic coupling
functions; rough estimates indicate that, for example,
the square of the cubic and quartic anharmonic func-
tions, | V3|2 and | V4|2, can be reduced by as much as 12
and 6%, respectively, owing to retardation. The actual
effects on the excitation spectrum arising from the re-
normalization of the frequency modes as well as the
effects due to retardation can be established only by
direct computation of the quantities in question; this
will be the subject of a later publication.

II. POLARITON HAMILTONIAN

The Hamiltonian of the coupled system, crystal plus
radiation, can be written in the form

Je=3C;+3C,+3Ciy, 1)

where the lattice Hamiltonian, in terms of phonon
annihilation and creation operators, is known to bel?

=2 wi*(axitari+3)
P

+2 >
n=3 k1j1,k2j2,**, knin
X (@i ta—sih): *  (@xninta-rinl) . (2)
In (2), the first term describes the Hamiltonian of the
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free phonon assembly, and the remaining terms describe
the interactions between them. w;® is the energy of the
bare phonon of wave vector k and polarization j. We
use %=1 throughout. The Hamiltonian for the radiation
field is®
3C, =" ckbntbi, 3)
o)

where bxx and by’ are the annihilation and creation
operators for the bare photon of momentum k and trans-
verse polarization X (=1, 2); ¢ denotes velocity of light
in vacuum. The interaction Hamiltonian due to the
electromagnetic field can be represented as?

5017=Z

113 xC

Zy Z2
AR(,1)) - p(yx AR,k 4
(R({,)) p(,)+ZI£2MKC2 RK)), (4)

where A(R(/,x)) is the vector potential of the electro-
magnetic field evaluated at the instantaneous position

R@,x) =X(l,K)+U(l,K)‘= X@)+XO)+Ux). (5)

Here, X(I,x) is the equilibrium position of the «th ion in
the /th unit cell, U(/,x) is the displacement from the
equilibrium position, and Z, is the effective charge of
the xth ion. We consider IV unit cells in volume V, and
there are 7 atoms per unit cell. The displacement, mo-
mentum amplitude, and vector potential can be ex-
pressed in the second-quantized representation, re-
spectively, as!®?

1\ _ elk|kj)
U(Z’K)=< ) 2 (axita—xie™*®,  (6a)
2M N kj (wkjo)lﬂ
1/M\V2 )
0 =) elel )
I\2N kj
X(akj—a_kjf)e“"xa), (6b)
and
2\ /2
ARC))=2 (———) E(kN) (biatd-sal)e™ REO . (6¢)
w \Vck

In Eq. (6), e(x|ky) is the polarization vector for the
phonons and satisfies the usual orthonormality and
closure relations; £(k\) denotes the unit photon polari-
zation vector. We substitute the expression for R(,«)
from Eq. (5) into (6¢) and expand the exponential in
powers of the displacement amplitude U(/,x) from the
equilibrium position X(/,x). The first term in this ex-
pansion corresponds to the usual long wavelength ap-
proximation, i.e., the vector potential is evaluated at
the equilibrium position. In this approximation, the
interaction Hamiltonian (4) can be easily expressed in
the form

wp? 1
31,0 = — 3 —(birtb_iah) (Brat+b-ic2)
kN ck

kj

W O\ 1/2
<——> xi(BN) (bt b)) (@xi—a—x;),  (7)

kc

i
— ¥
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where the coupling constant x;(k\) is expressed as

) 47N 1/2572 Zy
Xy =(—
! < 14 ) =14/M,

Xe~®xWe(k|k7)-E(kN)], (8)

from which it follows that photons interact only with

5C17,=—Z°°: >

n=38 q\,k1j1,*** kn—17n—1

X (akn_u'n-1+ aTkn—lJ'n—l) =+ i Z

N1, 9202

n=3
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the transverse optical phonons. It is easy to see that
the plasma frequency of the ions satisfies the relation

A

4T N
w,,2=——1;— 2 —=3 |x(kN) |2 )

X

The higher-order terms arising from the interaction
Hamiltonian (4) can be written in the general form

Ga(qN kg1 ko g2, - Kn17n1) (bortb-aD) (Bkyis — 0syiy ) (Gigis+asgin?) - - -

FACTISR DTN Y IEEN SPY |

k373, Kndojind2

X (bgyngt0—gyn 1) (Bagnat0—gang?) (@igisFCiaiah) (- * * Cicp_ginatCtcn_gina?) 5

(10a)

where the coupling functions ¢.(q\,k1j1,ke7s, + -, kn—17n—1) and ga(qul1,qeMe,ksss, « * ,Kn27n—2) result from terms
in the expression (4) which are linear and quadratic with respect to the vector potential, respectively, and are

equal to
7 Z 2N\ /2 '
bn(@\ K1y kege, - o Kn1fn1) =0 2 (M - ) e X E(qN) - e(k|kij) JLa- ek kijn) ] - - [q- ek kn1jn-1)]
Ol
X M) ) ot i O A ko), (105
n—2)!
. . ZANN
gn(@ih1,g2Ne ks gs, -+ < Ko fn2) =32 <2 )e*(qu).x OLE(quhr) - E(q2Ma) ]
& «C.
47‘.22“2 1/2 (i)n—z
X( ) (ZM N~ 2 w0015, * * 0k _sin-g) [ (@1F02) - €(k [ Raga) ] - -
V2q1q2 (n—Z)!
X[ (01+4a2) - e(k | knsjn2) JA(q1+qe+ks ket - - +knz). (10c)
The interaction Hamiltonian (10a) describes all the polariton representation as
possible photon-phonon scattering processes. The func- 5o =const-+ oy, (12)

tion A(k) appearing in (10) is equal to unity when k is
equal to a reciprocal-lattice vector, and vanishes
otherwise.

It is now well known that the quadratic parts of the
Hamiltonian can be diagonalized with a canonical trans-
formation to exhibit the independent polariton modes.
Hence we diagonalize the Hamiltonian consisting of the
harmonic parts of (2) and (3) for the lattice and the
radiation field, respectively, plus the interaction be-
tween them, (7), by using the canonical transformation®

ax= [uskp)ey+oi*(~Kpdars']  (11a)

and
bin=2 [ur(kp)ax,+n*(—kp)a,'], (11b)

where #;, v;, and uy, v) are the transformation amplitudes
for phonons and photons, respectively, and are deter-
mined by solving a set of four simultaneous equations;
p designates the polariton bands. In the long-wavelength
approximation the Hamiltonian is now expressed in the

kp

where wy, are the energies of excitation derived from the
solutions of Maxwell’s equations

c*k* =wi,*é(k,wx,) (13a)
i(k) [*
R VR

i ()2 —wk,

The polariton operators ax,’ and ax, satisfy Bose com-
mutation relations, while the summation in (13b) is over
those phonon branches which interact with the photons
of the electromagnetic field. Because of the presence of
anharmonicity both in the expression for the lattice
Hamiltonian as well as in that for the coupled photon-
phonon field, polaritons are no longer independent but
interact with each other. To derive the expression for
the polariton interaction Hamiltonian, we express both
the anharmonic lattice Hamiltonian and the photon-
phonon interaction Hamiltonian in the polariton rep-
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resentation with the result

ICing= Z Z { V"l(khkzy e !k

n=3 k1,k2,++*,kn

W) ArAr A

kn

_d’n(kl’kﬁy sk -4 kn} ’
where the following notation has been introduced:

v"(klyk% °tc ’k") =V"(k1:k2> e )k")

n)BklA k:A k3 " (14)

+gn(klrk2)' v kn) ) (15&)
V"(klykZ; e :kn) = Z UJl(kl) UJ!(k2)
.71 J2, JTL
XU (kn) Va(ksjykege,- - - Kngn), (15b)
Znlkrkay « k) = 2 Uy (k1) Uny(k2) Uig(ks) - - -
A1, A2,73,° ¢ In—2
X Ujy_o(kn)gn(kihi,kohg, k373, - - Kngn2), (15¢)
Gnlkray -« kn) = > Ui (k) Ung(ko) Ujs(ks) - - -
A2, 71,92, *in—1
X Ujpy(kn)pn(krjs,kohe,Ks gz, - - JKnfn1), (15d)
Uj(k) =u(k)+vi(—Fk)
_ ’:l:(wkjo)zwkjllzxj(k)\) /dw%(k,w))"”2  (159)
(k%) 2 —wi? \ dw? o=k

Ui(k) =u;(k) —vi(—Fk)
<wk, \(wk,"wk)l/ 2 ;(k\) /dw?‘e(k )
N W / wi2— (wi;)? \ dw?

—1/2
) , (15f)
w=wk

V2 fdee( o)\
Ux(k).=m(k)+'l’x(—k)=(w—> (“—d'_2—> , (15g)

AkEak+a_kf, k= (k,p) .

In (15a)-(15d), Va(kiji,ksjs, < <,knjn) is the anhar-
monic potential for the phonon field,’® while the
coupling functlons ¢n(k1j1,k2)\2,ksj3,---,k,.j,,,_l) and
gn(kl)\l,kz)w,ka]z, n]n—2) are glVCI’l by (IOb) and
(10c), respectlvely The quantltles Valkrks, -+ k2),
n(kryks, -« ka), and Zn(k1,ks, + - kx) are the anharmonic
coupling functions corresponding to the polariton field;
their explicit expressions can be easily derived from
(15b)-(15d), respectively, by making use of (15e)-
(15g). For example, the expression for Va(kiks,- « +kn)
becomes

Vn(kl,kz,~ ..

BkEak —Ol_kT,

skn)
(GRS - @iy) M2
— 0k L (@rein®) 2 —wis™ ]+ * [(@kpin) 2 — k]

dow?é(ky,w)\ /2
St (ke)(he)- 5 (ke) (——-——) -
dw? p—

dw?e(Kn,w)\ /2
x(#_) Valkjskajs, - - Jnjn).  (16)
dw? wmwk,

. . 0, .o
.—_-(1)”[( 0)2 Wikpjn Wk1Wke
Wiy
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In the range of wave vectors where retardation effects
can be neglected, i.e., in the limit when w; — wx;® and
é(k,wr) — 1, then

$ﬂ(k1’k2" * 7kn) - 0, gﬂ(klak%' v ,kﬂ) - O,
Valkyks,: -« kn) = Valkijikaga,- - - Kngn)

and the interaction Hamiltonian (14) describes the
anharmonic phonon field.

III. DYSON’S EQUATION

In this section we derive the Dyson equation and,

. consequently, the polarization operator describing the

polariton spectrum. The retarded polariton Green’s
function is defined as't

Gk, t—1)=({4s; Ax"))
= —i0(t—1){[4:(0),4x" ()], (17a)

where the angular brackets denote the average over the
canonical ensemble appropriate to the total Hamiltonian
3¢; the factor 6(f) is the usual step function, and the
operators A, and A ' are in the Heisenberg represen-
tation. In (17a) and in what follows, the time argu-
ments of the operators have been suppressed for con-
venience. The Fourier transform of the polariton
Green’s function with respect to the argument £ satisfies
the equation of motion

wG(kyw)=(1/2r){{Ar, A Y1er
+{([4r3¢]; Ap")). (17b)
Using (12), (14), and (17b), the equation of motion
for the polariton Green’s function is found to be

GUO-I(k7“’)G(k)w)= 1+ «F(k); Ak'f» ’ (18)

where

Wk
Goo(kyw) =—(0?—wi2) " 1oxk (19)
™

is the unperturbed polariton Green’s function and

Fo=2S % [Oalky by -+, bacr, —k; )
=3 k1 kg, s e ket
XApAry Ay y—m—1)n(ks, ko, « -+, kn—s, —F)
XBiyArg +*Arnal, (20a)
Ol oy =y bny, —k; @) =0Vo(kyy kay -+ +y Bnoty, —F)
+ (w/wr)Pnlksy k2, + -+, by, —k), (20b)
nGn(Bs, Bay -+ Bus, —F)
=2 2 Un(—k) Ung(k1) Ujg(k2) - - -
AL N2, 78,000,002
X Uj,o(bn-1)g(—kry,karo, ke gs, -« + JKn17n—2)
+®-2) X Uni(k1) Ung(k2) Ujo(—F) - - -
MLA2,78, 00 n—2
X Ujp_o(kn—1)g(kih, kohe, —ks, - -+, kuo1ja—2).  (20c)

u P, N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.:
Soviet Phys. ——Uspekl:u 3, 320 (1960) ]
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Considering the equation of motion for the Green’s
function that appears on the right-hand side of (18) with
respect to the argument ¢ and substituting the resulting
expression into (18), we derive Dyson’s equation

G (fy02) = Goo(k,e0) + Goo(y0) P (ky0) Goo (k)
= Goo(k,w)+Goo(k,w)H(k,w)G(k,w) )

where the polarization operator II(k,w) is equal to

(21)

. I (kyw) = P(k,w)[1+Goo(ky) P(ki) T, (22)

an

P(lyw)=3[(CF (&), Be' 1)+ (wo/eor) (CF (k), At 1) Jir
+(Fk); F'(%))). (23)

In the range of frequencies w far from the zeros of the
denominator appearing in the expression for the polari-
zation operator (22), we may expand the denominator
of (22) in a power series of P(k,w) as

T (k,w) = P(k,w)[1—Goo(kyw) P(leyw)+ - - - ].

In what follows, we shall retain only the first term in
the expression (24). Then Dyson’s equation (21) may
be written as

G(k,w) = (wr/7) b [w? —@r2 —2wi P (kyw) T, (25)
where the energies @, are determined from the solu-
tions of the equation

@2 =wi? (wr/2m)[{[F (k),Bx']-)©

(24

+(w/we)((F k), A" 1)@ Jomap, 1=, (26)
and P(k,w) is given by
P(kyw)=(1/2m)((F(k); F(k))). (27)

The solutions of the Eq. (26) determine the frequencies
@y, for the renormalized mode % in the lowest approxi-
mation of perturbation theory, and the renormalization
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is caused by the terms arising from the evaluation of the
commutators.’? The polarization operator P(k,w) will
be calculated in successive approximations, i.e., it may
be written as

P(k,w)zP(o)(k,w)—i—P(l) (k1w)+ ) (28)

where the superscripts (0) and (1) indicate that the
various Green’s functions that appear in (27) must be
evaluated in the lowest and first approximation, re-
spectively, in the manner which shall be described

below.

A. Lowest Approximation for P(k,w)

In the first approximation the Green’s function (25)
may be written as

GO (k,w)= (wr/7) b [ w? —@r®— 20 P O (k,w) 1. (29)

From Eq. (29) we observe that when P© (k,w) is taken
equal to zero, then the zeroth-order renormalized polari-
ton Green’s function is given by

G©® (k,w) = (wk/r)8kk/|:w2 —'(:)k2]—1 .

The excitation spectrum described by (30) results from
an equivalent zeroth-order renormalized Hamiltonian

which has the form

@x?
JCren(O) =C0n5t+i Z l:(—‘) 1kTA k-{—thkTBk:] . (31)

k Wk

Therefore, the Hamiltonian (31) must be used for the
evaluation of P©(k,w). Because of the form of the
Hamiltonian (31), only the Green’s functions appearing
in (27) with n=n" give contributions while terms with
n#n' disappear. In the Appendix, an example is carried
out where the various two- and three-polariton Green’s
functions are evaluated via the Hamiltonian®(31). Sub-
stituting (AS) and (A9) into (27) we obtain

(30)

PO(kw)=2 ¥ {[QsP(k1, ka, —F; ) (@r,F@re) —20Q05 (k1 bz, —F; ) (kg i) (02 — (@, Fikg) 2
k1,k2

H[ s (ay ko, — 5 ) (@1 —okg) — 2005 (k1 ks, —k; @) J(Frg— eg) [0 — (@1, —re) 211}
+2 X ALQD (s, by ks, —k; ) (@ory+argtion,) — 200, by B, —k; ) L+ ragt Feasa Teres)

k1,k2,k3

X [0?— (@1 F@ryt-dug) 2T HL0a O (B, Fay ks, — iy @0) (o —Grg—na) — 20Q4(kr, kgy ks, — k5 )]

X (LA Teg g — ey Mg — My Tig) [00% — (@y — @y —1eg) 2] A Gy <> —Goig) +(@g <> —ok5) }

The coupling functions

0@ (lr, ks, —k5 @), Qs (kn, ks, —F; ),
04(i)(k17 kg, k3) __'1(7 w) )

12In (26), w=u5; and the superscript (0) indicate that the polari-
ton occupation numbers, N,=(A4,'4,), resulting from the calcu-
lation of the commutators have to be evaluated by means of the
zeroth-order Green’s function (30) or the renormalized Hamil-

+(terms with n>4). (32)

tonian (31); for example, N, = (wy/®,) cothiba, In this ap-
proximation the correlation functions with #>4 have to be de-
coupled in the usual way into products of polariton occupation
numbers, N, and hence, only correlation functions with even
number of operators give nonzero contributions. In this manner,
the second term on the right-hand side of (26) can be easily ex-
pressed as a function of the polariton occupation numbers and oy,
including terms up to any desired value of #, then the final solution
for the frequencies @; has to be derived from Eq. (26) by
computation.
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and Qu(ks, ks, ks, —k: w) are given by the expressions
(A10a)-(A10d) in the Appendix, respectively. In Eq.
(32), (@r,«> —an,) and (@r, <> —ay,) for the quartic
anharmonic terms indicate that there are two further
terms obtained by changing the signs of @k, and &z, in
the first terms, respectively. Hence, the excitation spec-
trum in the first approximation is described by the ex-
pression (29) with P© (k,w) given by (32) and is a func-
tion of the frequency modes, the &z’s, which are renor-
malized in the lowest order of perturbation theory. In
this approximation (29) may be written as

GO (kyw) = (wr/T) b [ —@r? — 20, ReP O (k,w)
—2w; ImP @ (k,w) T, (32a)

where ReP©® (k,w) and ImP©®(k,w) indicate the real
and imaginary parts of (32), respectively. If ImP @ (k,w)
is small but finite, ImP @ (k,w)<Kw; and varies slowly
with w in the vicinity of frequencies w~az, then the
energy spectrum described by (32a) is a Lorentzian line
peaked at w~@; with a width of the order of ImP©®
(k,&x) in energy units.

An alternative approach to calculating the Green’s
function

G(kyw) = (wr/m) 811 [0® —i® — (wr/m) P (o) T

is the following: If the frequency &y is replaced by @ in
the expression for the Hamiltonian (31), where Q is the
polariton energy of excitation which has yet to be de-
termined self-consistently, then using this Hamiltonian
to evaluate (32b) we find

G(k,w) = (wr/T)0pp[w? — U2 — 2w, ImP(kw) 1, (32c)
where 2y is determined by the solutions of the equation

Q;ﬁ—w;ﬁ —P1(k,Nq; w= Qk)
—2wp, ReP(k, w=9k)=0.‘ (32(‘1)

(32b)

The function Pi(k, N4; w=Qy) results from the evalua-
tion of the last term on the right-hand side of (26) in the
manner described in Ref. 12 and is a function of the
polariton occupation numbers, N = (w,/Q,) coth3B8Qq,
and the frequency Q. The function P(k, w= Q) is given
by the expression (32) if all the frequencies @,, @,, and
@, are replaced everywhere by Qi,, Qr,, and Q,, respec-
tively. It is easily seen that when ImP(%,w) is small but
finite then the excitation spectrum described by (32c)
is reduced to that of (32a). In the limiting case when
ImP(k,w) tends to zero for any value of w=y, then the
energies of excitation Qi corresponding to a quasi-
particle with infinite lifetime, are determined by the
solutions of the equation

Q2 —wi2—Pr(k, Ng; 0= Q) —20:P(k, 0=Q) =0. (32€)

In principle, Eq. (32¢) can be solved self-consistently by
means of computing methods to obtain numerical re-
sults. In practice, not only the frequency i but also
all the frequencies 2, Qiy, * -+, Q,_, have to be deter-
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mined self-consistently, therefore, for the general solu-
tion of (32e) one has to deal with an infinite number of
variables (frequencies). Hence, approximate methods
have to be developed for the calculation of (32c).

B. First Approximation for P(k,0)

In the case when the imaginary part of P©®(k,w)
tends to zero for some frequency, say ex (&), then the
expression (29) takes the form

GO (kyw) = (wr/m) b [w?—e’ T, (33)

where the energies of excitation e are determined by

the roots of the equation

2 —an? — 2P O (B,e1)=0. (34a)

Considering that when the system resonates in the
neighborhood of frequencies w~&; the expressions (32a)
and (32c) coincide, then far from resonance the inclusion
in (34a) of the term 2wiP @ (k,ex), in which all the fre-
quencies @ have been replaced by their corresponding
values at resonance &, may give a reasonably good
value for €. In view of (32e), one may argue that the
frequency e determined by the solution of the equation

€k2 —wkz —-Pl(k,Nq(eq); w= ek) '—2ka Q) (k,ek) =0 (34b)

is a better approximation to € than that obtained by
the solution of (34a). In fact, this is generally true; the
only disadvantage of (34b) is that much more effort is
required for the computation of e than that for the cor-
responding solution of (34a). Although the last term in
(34b) is only an approximation to the corresponding
term in (32e¢), it will be improved in the next approxi-
mation. The solutions of (34) corresponding to the fre-
quencies e, imply that the bare polariton is dressed by
the anharmonic interaction of the others and the
resultant dressed quasiparticle with energy e, may be
called “physical polariton.” The excitation spectrum
described by (33) results from an equivalent renormal-
ized Hamiltonian which is correct in the first approxi-
mation, i.e.,

€ 2
FCren™ =const+3% > [(1—)/1 wt4 k+kakTBk:| . (35)

k Wk

Therefore, the polariton Green’s function in the second
approximation turns out to be

G® (kyw) = (wi/m) 8 [0 — e — 20, PV (kyw) ]2,

and the polarization operator P® (k,w) has to be evalu-
ated via the first-order Hamiltonian (35). A comparison
between (31) and (35) shows that the expression for
P®(kw) can be derived from that of P©(kw) [Eq.
(32)] by replacing the renormalized frequencies correct
to the lowest order, viz., @k, @k, and @y, by €x,, €x,, and
€x;, respectively, where the energies of excitation ey, ex,,
and e, are obtained from the solutions of the Eq. (34)
for each particular mode. Then the expression for

(36)
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P®(k,w) is found to be
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PO(kw)=2 3 {[0sF(ks, ks, —k; ) (et ens) —20Q5 (ka, k2, —F; @) ) (maytmie) [0? — (er,+erg) 21
ki,ke

+L0s P ks, B, —k; ) (€ry— €rg) — 2005 (B, ko, —F; ) J(nug— 1) (02 — (e, — €xg) 211}
+2 X ALQD (B, ko, ks, —; @) (erytengters) —2004(kr, Fa, ks, —F; )]

k1,k2,k3

X (L 1ramig 1oy (02— (ery +€xyF-€80) 2T [0 (B, ks, ks, —F5 @) (ery— €rg—€xs)
—2“’@4(]31; ks, ks, _]_3; w)](1+77k277k3_’7’01’7’6:'—7716177702)[0-’2_(Ekx’_'ekz'—eka)z]—l

+(exg > —ery)+(eny > —exy) }+(terms with n>4),

where 7x,= cothiBe;,, the coupling functions are given
by the expressions

0u e, by —k; )=} [Qs(lzl, by —k; )

k1, ko
XQs*(ki', ko', —k; @) (Oky110ka kot Oky7 20107 1)
ekl g 7 7 ’
F4| — )bs(k1, ko, —R)Ps* (R, ko', —F)
Wiy
€y €lg Wiy Wie
X<_6k1'k16k2’k3:l:—6k1’k25k2'k1 ) 5 (37b)
Wiy Wiy €k1€kg
s (ky, ko, —k; )
=2 3 Qs(ki, ko, —k; w)gs*(kt/, k', —F)

k1’ kg’

€y €kg Wiy Wkg
X\ —0ky k1 Og ko= ——0ky kaOka'ty , (37¢)

k1 Wi €1€kg

Qu® (ky, by, ks, —k; )

-t ¥

k1’ ko’ kg’

XQ*ky, ko, ks, —k; )6

[Q4(k1, ko, ks, —k; w)

€k \ . -
+9(_—1>¢4(k1, k, ks, —R)ba* (ki ke, k', —F)

Wy

(3% €L €k, Wiy WheWh;
X(—l5123:!:—"'5213:|:—15321>]<—1—j—3>, (37d)

Wiy Wke Wk €11 €kg€kg

Q‘i(kb ko, k3, —k; w) =% Z ‘54(k1a ks, ks, —k)
ky’ ko' k3’
WkoWks

XQ4*(k1,7 k‘l/a k3/7 _k: w)(

)a, (37¢)

€fg€lkg

and the Kronecker symbols &, 8123, 8213, and 6301 have
been defined by Eq. (A9d). The expression (37) for the
polarization operator P™® (k,w) is a function of the fre-
quencies of the dressed polariton modes (physical

(37a)

polaritons), and therefore the Green’s function G® (k,w)
describes the excitation spectrum of dressed interacting
polariton modes. We observed that in (37), and similarly
in (32), the square of the anharmonic coupling functions
Qn and ¢, as well as their products Q.¢,* are multiplied
by factors having the general forms

(wr @y * * Wh_y/ €Rs€Ry” * * €8y _y)
and
(kawkzwka' ' "*’kn_l/‘*’klszeka' v ekﬂ—l) y

respectively, where # is the number of modes contained
in each particular term. They result from the evaluation
of the Green’s functions having the forms

<<A ’clAkz' : 'Akn—l; Ak1'TA ke’f' : 'Ak’n_lt» ’
«kaA szkz' : 'Akn—1; Ak’n—xf' : 'Aka’TA kz’TBkl’f» ’
(B Ay - Argys Ary Ay - Ayy)),

and they give an account of the nondiagonal contribu-
tions arising from the renormalized first-order Hamil-
tonian (35). Considering that the ratio (wi/ex) is either
greater than or less than unity, depending on whether
the energy shift is negative or positive, respectively, we
conclude that both factors result in increasing or in
reducing the square of the amplitudes of the anharmonic
coupling functions that appear in the expression for the
polarization operator. Another important effect arising
from the aforementioned factors is that they are tem-
perature-dependent. We remark that the expression
(36) for G®(k,w) can be obtained directly from (32b)
if use is made of the same approximations that have been
done for the derivation of (36). The poles of the Green’s
function G?¥ (k,w) give the energies of excitation for the
polariton spectrum correct in the second approxima-
tion. The results obtained can be improved by going
into higher-order approximations but, as far as our
problem is concerned, the second approximation is suffi-
cient to describe the polariton excitation spectrum be-
cause the interactions appearing in the expression (14)
for 3Ciny are weak.

It should be pointed out that in our calculation for
P(k,w) given by (27) terms with n>#n' vanish; this is
due to the Hamiltonian representation employed at
each successive approximation. The derived results can
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be improved if use is made of the complete expression
for the polarization operator as given by (23) at each
successive step. For example, we may write G® (k,w) as

G (k,w) = (wi/m) ki w?— e —20: T D (k,w) T (38)
with
I (kyw) = PO (kyw)[1—Goo(kyw) P D (kyw)+- -1, (39)
and PM(kw) is expressed by (37). The second, third,
-++, terms in the expansion (39) will contribute small
corrections to the dominant first term. The small correc-

tions obtained by this procedure at each successive step
will compensate the terms appearing in (27) with #’'sn

Wity %50
PAO(be) =18 T |Vilks, b —k)P( & )

k1,k2 ekloekzo

(fk10+5k20)
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because both corrections are of the same order of
magnitude.

In the range of wave vectors where retardation effects
are not important and may be neglected, the expressions .
(36) and (37) can be reduced to those corresponding to
the bare phonon spectrum by taking the proper limits
when wi — wi® and &(k,wi) — 1 then $alks ks, - +,ka) —0
and Vu(ky,ks, + - ykn) — Va(ka,ke,: « « k). In this case for
the bare phonon spectrum we have
G5 ® (kyw) = (wi®/m) 11 [0* — (x")?

—2w"Py® (kw) 1, (40a)
where

(er,"—€xy")

Opogg®)| e (g — )| e — |} 448 Valles, o, bs, —B) |2
X{(nkl s )|:O)2_(Ek1o+€kzo)2:|+(nk " )l:wz_(éklo_ékzo)z]]+ kl.‘kL;.ksI ks, By ko, —B)|

(wklowkzowks

€5, €x, €xy

F3(1 4752278 — 1, ks — 72, "12°) [

n1,"= coth3Be,® and k=kj. The energies of excitation,
ex’, are determined from the solutions of the equation

(ex9)2 — (@1%)2 —2wi2P @ (k,ex?) =0, (40c)

and the expression for P3@(k,ex%) is obtained from
(32) with w=ex®, ¢nlkr,ks,: - ,kn)=0, Vaulka,ka,: -+ k)
= Va(k1 ks, - - ,ks) and the &’s are replaced by the
@1Y’s where

(@10)% = (wi?)?

For? i no 2

n=3 k1,k2,+*,bn—1
X <|:A rdrg A kn_1:BkT]—>t=t’ =650

The expression (40b) for P3®(k,w) consists of terms
which are proportional to two-, three-, and many-
phonon Green’s functions having the form of

«A ’01‘4 kg" " A kn—15 4 kx'TA ka’f -4 kn—l’T>> .

Wehner® and more recently Kwok* have developed
methods for calculating the various many-phonon
Green’s functions by employing the functional deriva-
tive technique of Martin and Schwinger.!® Although
their expressions for the many-phonon Green’s functions
have a form similar to those appearing in (40b), they
differ with respect to the expressions for the renormal-

V'n.(kl, k2, Tty kn—l’) —k)

(40d)

13 P, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

0
> [ (1 +7Ik1077kz0+7lk2077k:«0+"7k10’7k30)[

(er,"+ex’+ €xs’) ]

w?— (er,"+ €0+ ex,?)?

(1" — €xs — €8”)

:H +(terms with #>4), (40b)

w2— (eklo__ ek’o — €"’80)2

ized frequencies €. Complete agreement with the
results of Wehner® and Kwok* is achieved only if the
Eq. (40c) is replaced by

()2~ (@1%)*+2wi°P s (kyw1) (41)

also in the expression for Py (k,w:?) all the frequencies
@x? have been replaced by w;® which are correct in the
harmonic approximation. Having these approximations
in mind, the one phonon Green’s function (33) with
e — € as well as the two- and three-phonon Green’s
functions appearing in (40b), which are correct in the
first approximation, become identical to the corre-
sponding ones derived by Wehner,® but the expression
(40a) for G»® (k,w) is correct in the second approxima-
tion. In conclusion, the developed formalism based on
successive approximations, apart from its simplicity,
succeeds in the renormalization of the frequencies for
the phonon modes.

In discussing the polariton spectrum we have dealt
only with the diagonal part of the polariton Green’s
function with respect to the polariton branch index
p (=p'). To include nondiagonal contributions one can
easily derive the following equation:

Gpp’ (k:w) =Gpp(k:w)
X[Zapp’ +1I' é HP' P”(k:w)GP"P'(k,w)] ’ (4'2)
pII p/

which can be solved by iteration.
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IV. EXCITATION SPECTRUM

To study the excitation spectrum, we make use of the
spectral function J;(w) given by the relation!
Ji(w)=2(1—¢f*)"! ImG(k, w+1in), (43)
where Im stands for the imaginary part and » is a small
positive quantity, n — 04-. Substituting the imaginary
part of (37) into (43), we obtain
Zwk‘\ 2wk1*k(”(w)(eﬂ“’—1)“1

]k(”(w) =<’— ’ (44)
g /[wz—Vk2]2+4wk2(rk(l)(w))2
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where v, are the energies of excitation determined by
the solutions of the equation

Vk?‘ —6k2 —Zkak(Vk) = 0, (45)
Ap(w)=ReP; P (w) is the real part of the polarization
operator given by the expression (37), but now the
principal value over the summations must be taken.
In (44), TP (w)=ImP® (k,w) is the imaginary part of
the polarization operator in the first approximation and
is equal to

P(l)(k7w) =m Z {[{63“_)(/?1) k2, _k; w)[a(w+ek1+€k2)“6(“"'5161—'5192)]
k1,k2

=205 (s, ks, —; @)[8(w+eryFex) +0(00— €1, — ex) T} (i +18,)

FL0s (R, ko, —k; 0)(6(w+ ery — €ry) —6(w — €, +€xy))

=205 ks, b, —k; @)(8(w0+ €1, — exy) +0(0— e+ €1)) 1 —12) |

+r > {[@4(+)(k1, ko, k3, —k; ) (0(w+ex,+ exyte€ry) — (w0 — €, — €6, — €xy))

k1,k2, k3

—2Qu(ks, ko, ks, —k; 0)(6(w+ ety eryteny) (0 — ety — ra— k) T+ 00smr0 1175+ i705)
FLOO (s, ks, ks, —k; ) (3(w+er,— exy—€ry) — (0 — exy €y t-€x5))
=204k, ko, ks, —k; 0) (Bt € — ey — et;) 80— ety +ergFera)) (L kaies — s My — M)

The spectral function (44) describes the polariton exci-
tation spectrum in the whole range of frequencies w.

AsT'W(k,w) goes to zero, the spectral function J,® (w)
tends to a delta-shape distribution, i.e.,

Je® (w) = 2wi(efo — 1)76(w? —vi?) , (47)

where v; are the energies of the elementary excitations
determined by the solutions of (45) with Ax(vi)=P®
(kwr). The excitation spectrum given by (47) corre-
sponds to the transparent range of frequencies of the
crystal and the expression for P®(k,vi), as shown by
(37) with w=uw;, is the scattering amplitude in energy
units describing the scattering processes that occur
among the dressed polariton modes far from resonances.
Integration of (47) over w at t=1' leads to the expression
for the polariton distribution function correct in the
second approximation as

<A kTA k> @)= (wk/vk) COth%,BVk .

In the limiting case where T'x (w) may be considered
to be very small but finite, I's™ (w)<Kws, the spectral
function (44) has a steep maximum at the frequencies
w?=y;?, provided that 9TV (w) /w1 and (9/0w)Ar(w)
1. If it is further assumed that in the neighborhood of
w?~w;? the function I'y®(w) varies slowly with w, i.e.,
T ®(w) =TV (vg), then (44) reduces to that describing
the spectrum of the fundamental absoprtion band

Zwk\ Zwkrk(l)(vk)(eﬁ"’——l)‘l

. (48
7 ) (@ =) 40 (1O () 4

Jk<2>(w)z(

(exg <> —exg) (e & —ery) )} +(terms with n>4). (46)

The function (48) is a Lorentzian line with a maximum
at w*=y,?, the energy shift is equal to (vx®—ws?)!/? and
the width is of the order of I'+V(v;) in energy units,
provided that the frequency v satisfies at least one of
the arguments of the delta function appearing in (46).
It should be pointed out that in evaluating (48) from
(44) the w dependence of the functions I'y™(w) and
Ar(w) has been neglected. If the variation of I'y®(w)
and Ay(w) with respect to w is taken into consideration
then, apart from the appearance of the combination
bands which arise from the derivatives of the delta
functions with respect to w, there will appear new peaks
and possibly the shape of the absorption band may
change as a result of the w-dependent terms in the cou-
pling functions of (46) and Aj(w). Therefore, for an
accurate calculation of the excitation spectrum (44) for
a specific crystal the w-dependence of I'tV(w) and Ax(w)
must be examined with care. Further, the possibility of
observing these new peaks depends on the numerical
value of the quantity ($n/ws)-

For values of frequencies w not near vz, that is, in the
vicinity of the edges of the polariton absorption bands,
we may discard (T'x®(w))? from the denominator of
(44) with the result

Zwk\ZwkI‘k“)(w)(eﬂ“’—l)‘l
m /[wz—ek2—2kak(w)]2 '

Jk<2><w>=< (49)

If now the expression T (w) given by (46) is written



182
as
IO (w) = y1(k,w)+ w?y2(k,w) +wyskw),  (50)

where the functions v1(%,w), v2(k,w), and v3(k,w) depend
on w only through the delta functions that appear in
(46), then substitution of (50) into (49) leads to

szk['Y 1(k,w) +oya(k,w) Fwys(l,w) J(ef—1)"
20w Ak(w) ]?

. (51a)

[w2_€k2_.
For large w the expression (51a) may be written as
4wy ?
Ji®(w)~ (————)(e*"“’-—-l)—1
™

X[:w_z'yg(k,w) +w_373(k;w) +w_471(k)w)] )

where the functions va(k,w), vs(k,w), and vy1(k,w) consist

(51b)

Wiy "y
DOk =% T [Valhs by —B (=)
k1,k2 6k106k2
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of the anharmonic coupling functions of the general
form ]¢n|2 Vubn, and | V|2, respectively. Therefore,
o 2y2(k,w) is the dominant term in the neighborhood of
the edges of the polariton fundamental absorption
bands, where w?—e,2>>2wAx(w), indicating the impor-
tance of the function |$,|?; such behavior could be ob-
served for large values of .

For the renormalized bare phonon spectrum, the
spectral function (44) becomes

J @ (k,w)
3 Zwk\ 20T, O (kyw) (e —1)71
_(T/[wz——(uk°)2]2+4(wk°)2(r‘b(”(k,w))2 ’
where the energies of excitation »;? are given by the
solutions of the equation
(192 — (ex%)? —20rAx% (%) =0, (53)

with Ap(w)=ReP® (k,w) and the imaginary part of
Py (k,w)=TpM(k,w) is given by

52)

XA (1,0 710s”) [8 (00 €, "+ €2%) — 8(0 — €1, — €8,) T4 (11 — 12, [ 80+ €8,° — €1,") — 8 (00 — e +-e€x,") ]}

+2r ¥

k1,k2, k3

| V4(k1> k2; k37 _k) I 2(

wkl"wkz%ks“
—————— K (1475, "00 "0+ 10, "106")

€y €kg €kg

X [5(w+ek10+€k20+ Ekso) - 5("-’ —ex —ery"— ekao)]+3(1 +7Ik3077k30 - 771010771630 - 77k107lk20)

X[é(w-[—ek,"—ekzo—ek;") -—5(w—ék10+€k20+6k30):]} + (terms with %> 4) .

The renormalized phonon spectrum described by (52)
is completely different from that derived by means of
diagram techniques.* The main difference is due to the
appearance of the complete renormalization of the fre-
quencies for each particular mode in the expression
(52). Agreement with the results of previous studies!?:!4
is achieved only when all the renormalized effects are
ignored, i.e., all the s in the expressions appearing
in (52) have to be replaced by the w:”s. Formulas
(52)-(54) are reduced to those derived by Kashcheev'®
if the factors
(wklowkzo/ekloekzo)
and
(wk10""/020“”630/5/0106762057630)

are taken equal to unity and the energies of excitation
ex’s are replaced by @,%s with the expression for @;°
including only quartic anharmonic contributions for
each particular frequency mode.

As far as the temperature dependence for the excita-
tion spectrum (44) or (52) is concerned, the renormali-

14V, N. Kashcheev, Fiz. Tverd. Tela 5, 1358 (1963) [English
transl.: Soviet Phys.—Solid State 5, 988 (1 3)].

16V, N. Kashcheev, Fiz. Tverd. Tela 5, 2339 (1963) [English
transl.: Soviet Phys. —Solid State 5, 1700 (1964 1

(54)

zation effects are twofold: firstly, the renormalized fre-
quencies for the polariton (or the bare phonon) modes
are temperature dependent and, secondly, the factors of
the general form

(0k, @y * * Why/ €ky€Ry” * * ERy)
and
" €k,)

(€ry0kyky" * * Whon/ Wk Ryl *

that appear in the expressions for the real and imaginary
parts of the polarization operator change the tempera-
ture dependence of the frequency shift and spectral
width of the absorption bands. Therefore, it is evident
that the renormalization effects are important in con-
nection with the temperature variations as well as the
quantitative calculations'® of the frequency shift and
spectral width of the fundamental infrared absorption
spectra of ionic crystals.

It is easy to see from (16) that one of the effects of
taking into account the intrinsic coupling between the
radiation field and the transverse optical phonons,
when k~10% cm™, is to reduce the magnltudes of the
anharmonic couphng functions Va(ki,ks,- < kn). A

18T, P, Ipatova, A. A. Maradudin, and R. F. Wallis, Phys. Rev.
155, 882 (1967).
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rough estimate, for the ratio of the square of the cubic
anharmonic coefficient with and without retardation is
of the order of

le/Vsl2~( (55)

wkawpz )3
)
(COTZ _wk2) 2+wT2wp2

where wp~w;? is the frequency for the transverse optical
phonons. In the absence of retardation w~wyz the right-
hand side of (55) is equal to unity. However, in the long
wavelength region £~ 10° cm™, the frequency wy, for the
two polariton branches may be taken to be of the order
of $wr and wz, respectively, where wz, is the longitu-
dinal frequency for optical phonons. Moreover, if we
consider that for NaCl wz?~2wr? then the right-hand
side of (55) is roughly of the order of 0.12, that is, the
square of the magnitude of the cubic anharmonic coeffi-
cient, | V3|2, is decreased by about 129 due to retarda-
tion. Similarly, the square of the quartic coefficient is
decreased roughly by 69%. Of course, these are only
rough estimates; the computation of the results ob-
tained in the present study concerning the polariton as
well as the phonon excitation spectrum shall be reported
later.

V. CONCLUSION

The present study is concerned with the excitation
spectrum of interacting polaritons in the infrared range
of frequencies of dielectric crystals. The development of
Dyson’s equation describing the polariton spectrum has
made possible the evaluation of the polarization opera-
tor and the polariton Green’s function in successive and
well-defined approximations. The spectral function for
the polariton spectrum has been calculated in the second
approximation and expressed in terms of the renor-
malized polariton frequencies. The temperature-depen-
dent effects on the excitation spectrum arising from the
renormalization of the frequencies for the polariton
modes have been pointed out. The importance of the
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retardation effects have been discussed in detail. In the
case where retardation effects may be neglected the
resulting expressions for the phonon excitation spectrum
have been compared with those appearing in the

literature.
It is hoped that this work will stimulate an interest in

measuring the polariton lifetime by Raman scattering
experiments.

APPENDIX
We wish to carry out the evaluation of the two- and
three-particle Green’s functions by means of [the zeroth-
order renormalized Hamiltonian (31). If we introduce
the operator which is a four-component row vector
Atk e
= (A kx'TA kz’T Akl’kaz’f Bkl'tA kz’T Bkl'TBsz) ’ (Al)
then using (31) we derive the equation of motion for the
Green’s function ({4 (ki,ks); AT(ki,ks))), which is in
a matrix form, as
L(kiko; w)«g(kl,kz); gf(kll,kzl)»
= (1/2m) (A (ks ko), AT (k' k) 1 )i, (A2)
where L(ki,ks; w) is a four-by-four matrix whose non-
zero matrix elements are given by
Lyy=Lyy=L3s= Lyy=w;
Lys=Loy= —wpy; Lay=Lyz= —an,2/wiy;
L31= Lyp= —an,% /e,
The determinant of the matrix L(k1,k2; w) is found to be
detL(k1ks; ) =[w? — @i+ ar,)?]
X[o? = (@, —6r,)*] 5
which gives the poles of the Green’s function
(A (ksyfez); AT (ki )

Solving Eqs. (A2) we obtain the following expression for
the various two-particle Green’s functions:

L= L3y= —Wky)

(A3)

(A4)

1 W W (a’k +‘Z’k )
(A AkyfAk,'f>>=——<, - ’)[(ﬁhm,)-—-f—i—
T \DkyBokg w?— (G, k)
_ . (‘:’kl—‘:’kz)
+(77kz""77k1) - ~ (6k1k1’6k2k2’+6k1k3'6kglq') ) (ASa)
Wt wkx_wk2)2
1 forwrg\ ( . I B _ @y — Dy
((BraA kg Arg1Bayt)) =—( — ) (e Hirg)——————+ (s — k1) » }5k1k1'5kzkz’
T \W ey Wieg. w2-(wk1+&’kz)2 wz—(‘:’kl_wk2>2
. {(“ TP L . e }a Siis, (ASh)
YWy T Nhg) Mk~ Mk ko' k10ky kg y
B ST
1 foorgw (Try+71ks) (kg —1ky)
«AkxAkz; Aks’TBkn'f» ='_( ~ >[ - j j j - ]3k1’5k15kz'k:
2\ @ogy / Lot — (@1, F0rg)? w2 — (@ —g)?
1 fwp,w eyt Ty =Tk
_( ~l >|: j j _2 i ]Bkl'kiskt'kli (ASC)
2w\ Gopy / Lo — (G +@rg)? 02— (g —Oky)?
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where 7x,= coth3Bér, and 8= (ksT)~Y, s being the Boltzmann constant and 7" the absolute temperature. In eval-
uating (AS) from (A2) we have made use of

(A1t A1) O = (0ry/ior,) COth3BaRy  (Biy Bry) @ = (@ry/wr,) cothBisn, ,
and
(A k,TA Icg) 0) = (wkz/ G)k,) COth%,B&')kz

for the distribution functions in the lowest approximation.
Similarly, if the operator At(k(,ky’,ks’) is defined as the row vector

At (Rt ke o5 = (A iy Ay Aiyt Broyt iyt iyt AryBrytArgt Ayt iyt Byt
By By Aryt Ary'Biy'Bry' Bay'Ary'Big' Biy'Biry'Big'), (A6)

then by means of (31) we derive the equation of motion
L(kyko,ks; )((A (Rryks,ks); ATkt oo s")y=1/200(CA (kaykooyfs), A (ki ko' k) ]-Yemrr (A7)

where L(ki,ks,ks; w) is an eight-by-eight matrix having all diagonal elements equal to w while the nonzero off-
diagonal elements are given by

Lig=Lgs=Lyg= Leg= —wr,;; L1s=Los=Lss=Lrz= —wp,; L1ua=Lor=Lys=Lsg= —wp,;
Loy=Lys= Lyy= Lgs= —@n,2/wr,; Ls1=Lss= Lga=Lgy= —&,2/wry; Lar=Lgs=Lno= Los= —@ps%/ops.
The determinant of the matrix L(k1,ks,k3; w) factorizes into

detL (kl,kz’k3; w) = [wZ - (“‘-)kl+a’kz+&ka)2:’[‘02 - ((:’k1+‘:’k2—‘:?k3)2:|
X[w?— (@, — Gyt ‘:’ks)ﬂ[wz — (@rytGors _‘:’kx)2] , (A8)

and describes the poles of the Green’s function ({4 (k1,ks,ks); A1(k( ks’ ks'))). Solving the system of equations (A7)
and after some lengthy algebra, we derive the following expressions for the three-particle Green’s functions:

5 wklwk,w;c, o o o
(A Ardrg; ArytArytAryt)) = “) ){ (A g g T g+ Ty ks

T/ \@y Drg®hy
X (G’kx +‘:’k2+“9k3) [w2 - (‘Bk1+‘5k2+&’ks) 2]—1+ (1 + ﬁkzﬁk: - ﬁkxﬁks - ﬁkxﬁks)

X (&’k: "‘:’ks"a’ka) [“’2 - (a’kx —‘:’ka_d’ks) 2]_1+ (a’kz « “‘:’kz) + (‘I’ka <« —G’k:)} ) (A9a)

WO\ [/ WiyWiy o
«BhA ke ka; Ay TAry Ay T>> = <‘—)< ){ (1 +77k177k:+7)kz”~lka+77k1ﬁka) [wz - (‘I’kx‘l'a’ka"l'a’ks) z]—1

T/ \Dkg@rs

(L4 kg iey — ey Ty — M Tieg) [ 02 — (O —@obg— k) 1 A (g > —kg) +(rg > —ks)},  (A9D)

1 WroWiks o oL o
«kaA keA ks A kx’TA ko' Tka’T» = >{ (1+77k1’7k2+’7k2"lk3+ "7ka"7k1)

m ‘;‘)ka&’ka

a’kl ‘:’kz ‘:’kx
X|—3% 123+—‘—5213+—5321> (@ryFoongtons) [0 — (OryF@rgtong) 21

Wy Wike Wiy
oL s o @y Dy Wry B B B
+ (1 Mg Mes — Ty Ty — 7]70177702) —0123———0213———0321 (wlq _wks"'wka)
Wiy Wk Wiy
X [w? = (@ry — @1y —@re) T4 (Grg > —@rg)+(@ks <> —@r5)}, (A9C)
where
0=0125+ 0213+ 0321, 6128 Oy’ k1O oOig? kg Oreg? igO ey’ iy Oy 1 (A9d)

0213 and 8521 are obtained from 8123 by interchanging %, and & and %, and ks, respectively. In (A9) we have indicated
by (@, <> —@r,) and (@ <> —ar,) that there are two further terms obtained by interchanging @i, and —ay,,
@ryy and —ay, in the first term, respectively.
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If we substitute the two- and three-polariton Green’s functions given by (AS) and (A9) into (27) we obtain
the expression (32) for the polarization operator P©® (k,w), where the coupling functions
@3(i)(k15 ke, —k; w); QA3H:) (kly ke, —Fk; w)’ Q4<i)(k1, ke, ks, —k; ), and Q4(k1: ko, ks, —k; w)

have been defined as follows:

@3&)(]31’ by, —kjw)=1 X [Qs(kl, ks, —k; 0)Qs* (R, ko', —Fk; @) (OnyrkyOky kg 01 k90 he k1)

k1 ko’ L.

d’h o - G’kl Dky W Wiy
+4 -—>¢3(k1, ko, —k)$s* (R, ke, —F) —5k1,klak,k,:t~—5,p,,k,5k2,kl>]<jn—>, (A10a)
k1

Wiy Whe wk@h

Py - (:)k (I)k Wi Wr
QB (ky, ko, —k;0)=2 35 Qs(ky, ks, —k; 0)ds*(k1', k', —F) <'—15k1'klﬁkz'ni—%kl'k@rz’h)(ﬁij) ,  (Al0b)

k1 k2’ Wiy Wiy D Dy

Os®(ky, ko, ks, —k; 0) =1 3 I:Q,,(kl, ko, ks, —k; 0)Qs* (kY k', Ry, —k; w)d

k1’ .k’ k3’
AP ~ , A Dky Dy WieyWheWly
+9 —’_>¢4<k1, kz, ka, —k)¢4*(k1, kz” k3” -—k) —5123i——5213ﬂ:——‘5321>:l —4> , (A10c)
Wiy Wy Wiy Wiy DD gDy
~ . WoWisy
Qulky, ko, b3y, —k;0)=3 3 Pulky, ke, ks, —k)Q (R, ke, ks, —E; w)<———>5. (A10d)
R ke’ s Drealicy

In general, using the Hamiltonian (31) or (35) one can derive the equation of motion

L(klyk%k&' o ’kn; w)<<g(k1)k2:k3’ e >kn); gkf(k1,7k2/,k3’; e 7kn,)>>
= (1/27!’) <[Z(k17k2:]€3’ e 7kn),‘21~f(k1,;k2,ak3,; ot ';kn,>]—>5=l’ ) (All)

where the operator A'(k1,ks,ks,- - - ,k,) is now a row vector having 2” components of the form of

A (krykoykoyks, < ka)= (At Ary - - Agt Ba Ay, - Aw,t AyBit Ayt A5, oo
BleBsz‘ : 'Bk,,_lTAk,,Jr Bklka;‘ . 'Bkn_lTBk"T) (AIZ)

and L(ki,ko,ks,- -+ ka; w) is a 27X 2" matrix with all diagonal elements equal to w while the nonzero off-diagonal
elements are easily established, but they shall not be given here. Solving the system of Egs. (A10) it is possible, in
principle, to calculate polariton Green’s functions for any desired value of #. In practice for # greater than three,
though the calculation of the corresponding Green’s functions is straightforward, the algebra is tedious.



