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Excitation Spectrum of Interacting Polaritons in Dielectric Crystals*
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The excitation spectrum of interacting polariton waves in the infrared region of frequencies of dielectric
crystals has been studied using the double-time Green s-function method. The Dyson equation describing
the spectrum of interacting polariton 6elds is derived in a general form, and then the polarization operator
and the polariton Green's function are evaluated in two successive approximations. Use has been made of
two "equivalent" renormabzed Hamiltonian representations, which are correct in the lowest and erst ap-
proximations, respectively. The polariton Green s function is expressed, in the second approximation, in terms
of the renormalized polariton frequencies, where the frequency of each polariton mode contains anharmonic
corrections to all orders. Expressions are developed for the frequency shift and spectral width of the funda-
mental absorption bands. It is shown that the renormalization of the polariton frequencies directly a6ects
the temperature dependence of the frequency shift and width of the infrared absorption bands. The retarda-
tion eGects reduce the magnitudes of the anharmonic coupling functions. In the region of wave vectors where
retardation may be neglected, the phonon excitation spectrum has been considered and compared with the
results derived from previous studies.

I. INTRODUCTION

'N the infrared range of frequencies of dielectric crys-
tals, polaritons are defined as quasiparticIes which

consist of long wavelength transverse photons dressed

by the harmonic field of optical phonons, and they
propagate in the medium with energies and wave
vectors that satisfy the linear Maxwell equations. '
Mathematically, polaritons are elementary excitations
which satisfy dispersion relations derived from the exact
diagonalization of the Hamiltonian that consists of the
harmonic Hamiltonians corresponding to the optical
phonon and transverse electromagnetic 6eld, respec-
tively, plus the interaction between them in the zero
Rpproxlmatlonq I.c.

q
when scRttcI'lng ploccsscs duc to

phonon-photon interactions are neglected. The diago-
nalization can be done by means of either a canonical
transformation' or the Green's function method. 4 Since
the total Hamiltonian consists of the lattice Hamil-
tonian plus the phonon-photon interaction Hamiltonian,
the theory of polaritons is equivalent to considering
retardation effects in lattice dynamics. ' ' We refer to
thc review article by Kwok4 for the discussion on retar-
dation CBccts in the harmonic approximation. The exis-
tencc of polaritons has been demonstrated by Henry and
Hop6eld~ through Raman scattering experiments on
GaP.
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The propagation of polariton modes in the medium is
damped. In pure crystals and at finite temperatures, the
damping is mainly due to the polariton-polariton inter-
actions. Surstein ef a/. have recently presented a theory
of Raman scattering by polaritons. They introduced
a phenomenological dispersion relation for the polariton
spectrum and pointed out that the damping constant is
the inverse of the lifetime of the transverse optical pho-
nons. This hypothesis is not justifiable, because in the
range of wave vectors were retardation effects are im-

portant only polariton modes exist and not optical pho-
nons; therefore, the lifetime of polaritons may differ
considerably from that of optical phonons.

In the present study, an attempt is made to develop
a general microscopic theory regarding the excitation
spectrum of interacting polaritons in dieIectric crystals.
The expression for the total polariton HamiItonian is
developed in Sec. II consisting of the harmonic and
anharmonic parts with respect to the polariton operators
which describe the polariton-polariton interactions.
Using the polariton Hamiltonian, the Dyson equation
for thc poIRI'lton spectrum ls dcI'lvcd ln Scc. III by con-
sidering the equations of motion for the polariton
Green's function with respect to both time arguments.
Thc cxplcsslon foI' thc polarlzRtlon opclRtol ls found to
have two kinds of terms: The 6rst group consists of the
sum of terms linear with respect to the anharmonic
coupling functions multiplied by the average values of
commutators involving polariton operators with equal-
time arguments. The second group is composed of a
series of terms which are quadratic with respect to the
anharmonic coupling functions and they are propor-
tional to two-, three-, and many-polariton Green's
functions.

The polarization operator and, hence, the polariton
Green's function are evaluated in two successive ap-
proximations by means of constructed equivalent re-
normalized Hamiltonians which aIe correct in the lowest

8 E. Surstein, S. Ushioda, and A. Pinzcuk, Solid State Commun.
6, 407 (1968).
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and first approximation, respectively. In the first ap-
proximation the polariton Green's function is expressed
in terms of the frequencies for the polariton modes which
are only partly renormalized, while in the second ap-
proximation, the frequencies for the polariton modes
are correct to the second order. In this case, the fre-
quency of each polariton mode in the new representation
includes anharmonic corrections to all orders and the
resulting elementary excitation may be called the
"dressed" or the "physical polariton. " In the limiting
case where retardation effects may be neglected, the
expression for the polarization operator is reduced to
that for the bare phonon spectrum and is compared
with those derived by Wehnero and Kowk. 4

The polariton excitation spectrum is discussed in Sec.
IV by considering the expression for the spectral repre-
sentation. In the transparent range of frequencies for
the crystal expressions for the scattering amplitudes are
derived which describe all the possible polariton-
polariton scattering processes. Formulas are developed
for the frequency shift and spectral width of the funda-
mental absorption bands. It is found that one of the
CGects arising from the renormalization of the frequency
modes is to change the temperature dependence for the
polariton and, consequently, the phonon excitation
spectrum. Comparison has been made with those results
derived for the phonon spectrum by means of diagram
techniques. "In general, retardation CGects are found
to reduce the magnitudes of the anharmonic coupling
functions; rough estimates indicate that, for example,
the square of the cubic and quartic anharmonic func-
tions,

I Vs I' and
I
V41', can be reduced by as much as 12

and 6%, respectively, owing to retardation. The actual
CGects on the excitation spectrum arising from the re-
normalization of the frequency modes as well as the
effects due to retardation can be established only by
direct computation of the quantities in question; this
will be the subject of a later publication.

3 &In,&u2, "i&nafs
V (ktjt, ksjs, ,k j.)

X(ak„;+a k„;t).. . (ak„;„+a-k„;„t). (2)

In (2), the first term describes the Harniltonian of the

' R. Wehner, Phys. Status Solidi 15, 725 (1966)."R.F. Wallis, I. P. Ipatova, and A. A. Maradudin, Fiz. Tverd.
Tela 8, 1064 (1966) )English transi. : Soviet Phys. —Solid State
8, 850 (196|)g.

G. POLARITON HAMILTONIAN

Thc Hamiltonian of thc coupled system clystRl plus
radiation, can be written in the form

x=x(+x,+xi„
where the lattice Hamiltonian, in terms of phonon
annihilation and creation operators, is known to be'0

K( =Q rok;e(ak;tak;+-', )
lrj

whcI'c 5gg Rnd Age Rl c thc RnnlhjLtatlon Rnd CI'cRtloi1

operators for the bare photon of momentum k and trans-
verse polarization X (= I, 2); e denotes velocity of light
in vacuum. The interaction Hamiltonian due to the
electromagnetic 6cld can be represented as'

z. Zg
x(,=g A(R(l, s)) y(l, s)+Q — A'(R(l, s)), (4)

«M„c «2M„c~

where A(R(l, K)) is the vector potential of the electro-
magnetic field evaluated at the instantaneous position

R(l,s) =X(l,s)+U(l, s) =X(s)+X(l)+U(l, lr) . (5)

Here, X(l,s) is the equilibrium position of the sth ion in
the 7th unit cell, U{l,lr) is the displacement from the
equilibrium position, and Z„ is the effective charge of
the ~th ion. We consider lV unit cells in volume V, and
there are r atoms per unit cell. The displacement, mo-
mentum amplitude, and vector potential can be ex-
pressed in the second-quantized representation, re-
spectively, as'0'

) '~s e(s I
kj)

U(l, lr) =
I

P (a,+a,t)e'k xi'l '(6a)
2M„iV)» (&ek,')'i'

i 3f„'I'
y(l, s) =— Q e(a I kj)((0k')'"

i 2X

Rnd
X(ak —a k t)ek'xi'& {6b)

2tre')"'
A(R(E,K)) =p

I
$(kX)(bkk+b kkt)ek' ""'. (6c)

Vck)

In Kq. (6), e(lrlkj) is the polarization vector for the
phonons and satisfies the usual orthonormality and
closure relations; $(kX) denotes the unit photon polari-
zation vector. We substitute the expression for R(l, lr)

from Eq. (5) into (6c) and expand the exponential in
powers of the displacement amplitude U(l, s) from the
equilibrium position X{l,s). The first term in this ex-
pansion corresponds to the usual long wavelength ap-
proximation, i.e., the vector potential is evaluated at
the equilibrium position. In this approximation, the
interaction Hamiltonian (4) can be easily expressed in
the form

CO~

(f'kk+f —kk )(bkk +f'—kk)

1 d,s) I/2

z (k~) {f'»t+&-»)(a» —a-»') (7)
2k~k ke )

free phonon assembly, and the remaining terms describe
the interactions between them. vol,

o is the energy of the
bare phonon of wave vector k and polarization j. We
use 5= 1 throughout. The Hamiltonian for the radiation
6eld is'

Z e~bkktf'kky
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where the coupling constant 2:j(kX) is expressed as

krA 'l" ~ Z„
x;(kX) =

the transverse optical phonons. It is easy to see that
the plasma frequency of the ions satisfies the relation

4m% Z„'
QM„ -P "=P ~;(k~)~2.

V «M„
x "*'"'L ( lkj) 4(»)j, (8)

The higher-order terms arising from the interaction
from which it follows that photons interact only with Hamiltonian (4) can be written in the general form

san=3 q& &u1, , "&ss-j.jr'-X
An(qllpkljlpk2j2p ' ' 'pkn —lan —1)(~qk+fl qx -)(okljl o-k»'1 ) (tlkqj2+ jl klj2—) ' ' '

&&(ok. »..1+»".»..1)+Z
qtX1, qshe

Rsje ~ ~ ~ k+4~j»4s

gn(qllllpqql12yk8$2y ' ' ' ykni-2 jn—2)

X(bq, k, +& q,)„t)(bq,12+&~,)„')(ok„;+ok„;t)( .ak„„„,+a k„„„,t), (10a)

where the coupling functions p (qk, kl jl,k2jl, ,k„ lj~l) and gn(ql'hl, q24, kqjq, ,k„ 2j~2) result from terms
in the expression (4) which are linear and quadratic with respect to the vector potential, respectively, and are
equal to

~Z2X &I2

p„(q&kljlkljq, ,k lj. 1)=22 e"x'"'L((q&)'e(~lkljl)hl:q'e(kl»jl)j'''Lq'e(klk. -lj.-l)3
M„V

(2)
n-2

(2M„E) &" '& "(a)-klj'-')'"(cga)k '(uk ' &uk j ') 'j'L(q+kl+k2+ +k. 1) (10b)
(22-2)!

Z„'Ey
fn(qlXlpq2X2)kq J2&

' ' ' ~kn —2Jn—2) =g ~s'«1+q' 'x~"'L((qlhl) ((q2X2)j
2N „ci

4~2@ 2 1/2 (2)n—2

X (2j!Il S)-&" ""(k
' k. ' 'k ) '"L(ql+q2) e(k~k g)j

V'qlq2 (22 —2)!
x[(ql+q2) e(~

~
k„2j 2)jX(ql+q2+kq+kq+ . .+k 2) . (10c)

The interaction Hamiltonian (Ma) describes all the
possible photon-phonon scattering processes. The func-
tion A(k) appearing in (10) is equal to unity when k is
equal to a reciprocal-lattice vector, and vanishes
otherwise.

It is now well known that the quadratic parts of the
Hamiltonian can be diagonalized with a canonical trans-
formation to exhibit the independent polariton modes.
Hence we diagonalize the Hamiltonian consisting of the
harmonic parts of (2) and (3) for the lattice and the
radiation Geld, respectively, plus the interaction be-
tween them, (7), by using the canonical transformation'

o»=Z L~j(kj)~»+2j*( kj)~k'3 —(1»)

b»=& Lqjk(kj)~"+»*(—kj)~k, '], (11b)

where I,, e;, and Ng, ~) are the transformation amplitudes
for phonons and photons, respectively, and are deter-
mined by solving a set of four simultaneous equations;
p designates the polariton bands. In the long-wavelength
approximation the Hamiltonian is now expressed in the

polariton representation as

Xq =Const++ Mknnkntokn )
kp

(12)

where ~j,p are the energies of excitation derived from the
solutions of Maxwell's equations

c k =Mk E(k hlk )

(xj(k) ['
q(k, a)k,)=1++

OJg~
—

GOjIt p

(13a)

(13b)

The polarlton operators 0,'gp Rnd Agp satj.sfy Bose coDl-
mutation relations, while the summation in (13b) is over
those phonon branches which interact with the photons
of the electromagnetic Geld. Because of the presence of
anharmonicity both in the expression for the lattice
Hamiltonian as well as in that for the coupled photon-
phonon Geld, polaritons are no Ionger independent but
interact with each other. To derive the expression for
the polariton interaction Hamiltonian, we express both
the anharmonic lattice Hamiltonian and the photon-
phonon interaction Hamiltonian in the polariton rep-



resentation with the result

n 3 k1,k2, ",kn
{V (kl, ko, ,k )As,As, As

—y.(kl»o, " »-)&s As Ass "Asd {14)

where the following notation has been introduced:

V (kl, ks, .,k ) =V (kl, ko, ,k )

+g (kl, ko, ,k.), (15a)

V.(k„k„",k.) = Z U;, (k ) U;,(k )"
91)22o ' own

X U;„(k.)V.(kIjl,ko jo, ,k j ), (15b)

g.(kl, ko, ",k.) = p Uk, (kl) Uso(ko) Ut (ko)
~1&~2&23 ' ' ' Pn—2

X U;,(k.)g (kl)cl, ko) o,kojo, ,k j o), (15c)

P (kl, ko, ,k ) = Q U;, (kl) Us,{ko)U;,(ko)
~2) jli22o' ' ' IPn-I

XU;,(k )ct (kljl, koXo, kojo, ,k j I), (15d)

U;(k) =N;(k)+s;( —k)

[(cokt') 'cos)'I's;(kX) f'doo'E(k, co)
(15e)

(cokl ) cds E dco co &os

Ut(k) =N;(k) —sI(—k)

~kIo) (~k o~s)I&ox;(k)~) (d~'e(k, ~))-I&s
, (»f)

cos ) cos (ookI ) 4 dco I (y (ys

(ck I~' dco'c(k, co) -'~'
U,{k)=N, (k)+.,(-k) =

~

— ', (15g)
+s dco cu res

As =—ccs+co k ~ Bs=Qs —co k ~
k=. (k&p).

In (15a)—(15d), V (kljl, kojo, ,k„j„) is the anhar-
monic potential for the phonon 6eld, '0 while the
collPllllg fullctlolls $„(klgl, koko, koJo, ~,k„J~ I) alld

g„(kIXI,ko4, kojo, . ,k„j„o) are given by (10b) and
(10c), respectively. The quantities V„(kl,ko, .,k„),
$„(kl,ko, ,k„), and g„( ,kI,ko, k„) are the anharmonic
coupling functions corresponding to the polariton 6eld;
their explicit expressions can be easily derived from
(15b)-(15d), respectively, by making use of (15e)—
(15g). For example, the expression for V„(kl,ko, k„)
becomes

V (kl, ko, ,k )

CO&Ijl 0)&2~'2 ' ' '07&„~„COJI;IQPk&' ' 'OPk„g. 0 . 0. . . . 0 . . . 51/Q

—(t) n

Mg —(dP Mjg
' 0 —(dk ' g —Mk

dcooc(kl, oo))
Xx;,(kl)oc;,(ks) x;„(k )

dco

dcooe(k„,co))
—II'

X —
~

V (kljl, kojo, ,k j ). (M)
dco ) &y gys

In the range of wave vectors where retardation effects
can be neglected, i.e., in the limit when ~k —+ co~ and
e(k,cos) -+ 1, then

g„(kl,ko, .,k„)-o 0, g„(kl,ko, ~,k„)~ 0,
V„(kl,ko, ,k„)—+ V (kl jl,ko jo, ,k„j )

and the interaction Hamiltonian (14) describes the
anharmonic phonon 6eld.

IIL DYSON'S EQUATIOÃ

In this section we derive the Dyson equation and,
. consequently, the polarization operator describing the

polariton spectrum. The retarded polariton Green's
function is de6ned as"

G(k, t—t') —= ((As., As.t))
= —o8(t —t'){[As(t),As t(t') 1 ), (17a)

where the angular brackets denote the average over the
canonical ensemble appropriate to the total Hamiltonian
X; the factor 8(t) is the usual step function, and the
operators Ak and Ak t are in the Heisenberg represen-
tation. In (17a) and in what follows, the time argu-
ments of the operators have been suppressed for con-
venience. The Fourier transform of the polariton
Green's function with respect to the argument t satisfies
the equation of motion

coG(k, co) = (1/2or) ([As,As tQ),=,
+({LAs~3-' A")) (17b)

Using {12), (14), and (1"Ib), the equation of motion
for the polariton Green's function is found to be

Goo I(k,oo)G(k, co) = 1+((F(k);As t)), (18)
where

40k

Goo(k, co) =—(oo —cos ) 4s

is the unperturbed polariton Green's function and

&(k)=2 g P [{).(k„k„",k. „—k; )
n~3 k1,k2 ~ ~ ~,kn-1

XAs, As, As„,—(n —1)ct„(kl, ko, ., k„o, k)—
XA,As, .As„,j, (20a)

Q (kl, ko, , k I, —k; co)—=e V„(kl, ko, , k„ I, —k)

+(co/cos)P. (kI, ko, ., k I, —k), (20b)

ng. (kl, ko, , k I, —k)

—=2 Q Us, (—k) Us, (kl) U;,(ko) ~

&I &2 Z3 "~ in-2

X Ujz o(kn —l)g( ksc~ko)coyko Joy' ' ' y4—Ijm—2)

+(N —2) Q Us, {kl)U)„(ko)U;,(—k) ~

~1I~2ol8» ' ' ' own-2

X U;,(k I)g(kl)cI, koXo, —kjo, , k„ Ij o). (20c)
"D. N. Zubarev, Usp. Fiz. Nauk 71, 7j. (1960) LKnglish transl. :

Soviet Phys. —Uspeichi 8, 320 (1960)j.
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Considering the equation of motion for the Green's
function that appears on the right-hand side of (18) with
respect to the argument t' and substituting the resulting
expression into (18), we derive Dyson's equation

G(k, cd) = Gpp(k, cd)+Gpp(k, cd)P(k cd)Gpp(k, cd)

= Gpp(k cd)+Gpp(k, cd)II(k cd)G(k, cd), (21)

where the polarization operator II(k,cd) is equal to

II(k,cd) =P(k,cd)L1+Gpp(k, cd)P(k, cd)7
—', (22)

and

P(» )= lL(LP(k), B"]-&+(/ )(LP(k) ~"7-)7 =

+«P(k)' P'(k)» (23)

In the range of frequencies or far from the zeros of the
denominator appearing in the expression for the polari-
zation operator (22), we may expand the denominator
of (22) in a power series of P(k, cd) as

II(k cd) =P(k cd)(1—Gpp(k cd)P(k cd)+ .7. (24)

In what follows, we shall retain only the first term in
the expression (24). Then Dyson's equation (21) may
be written as

G(k,~) =(~k/~)Skk L~' —~k' —2~kP(k, ~)]-', (25)

where the energies cok are determined from the solu-
tions of the equation

cdk'= cdkk+ (cdk/21r) j &LF(k),Bkt] )&p&

+(~/~k)(LP(k), 4k"]-&"']-==..c=c, (26)

and P(k, cd) is given by

P(k,~)=(1/2~)(y'(k); P'(k)&& (27)

The solutions of the Eq. (26) determine the frequencies
elk for the renormalized mode k in the lowest approxi-
mation of perturbation theory, and the renormalization

is caused by the terms arising from the evaluation of the
commutators. " The polarization operator P(k, cd) will

be calculated in successive approximations, i.e., it may
be written as

p(k cd) -P p (k cd)+P & ) (k cd)+. . . (28)

where the superscripts (0) and (1) indicate that the
various Green's functions that appear in (27) must be
evaluated in the lowest and first approximation, re-
spectively, in the manner which shall be described
below.

A. Lowest Approximation for P(k, cd)

In the first approximation the Green's function (25)
may be written as

G&'& (k,cd) = (cdk/m. )bkk Lcd' —cdk' —2&dkP &p& (k,cd) 7 '. (29)

From Eq. (29) we observe that when P &Pi(k, cd) is taken
equal to zero, then the zeroth-order renormalized polari-
ton Green's function is given by

G&p&(k cd) = (cdk/s)bkk [cd' —cdk'7-'. (30)

The excitation spectrum described by (30) results from
an equivalent zeroth-order renormalized Hamiltonian
which has the form

03k

Xylem' =const+k p 1k&-4k+cdkBk Bk . (31)
Mk

Therefore, the Hamiltonian (31) must be used for the
evaluation of P"'(k, cd). Because of the form of the
Hamiltonian (31), only the Green's functions appearing
in (27) with n =n give contributions while terms with
n&n' disappear. In the Appendix, an example is carried
out where the various two- and three-polariton Green's
functions are evaluated via the Hamiltonian'(31). Sub-
stituting (A5) and (A9) into (27) we obtain

P"'(k)cd) =2 Q {Lgp&+'(ki, kp, —k; cd)(cdk, +cdk,) 2&dQp&+'(ki, —kp, —ki cd)](rlk, +gk, )[cd' (cdk, +c—dk,)'7 '
kI, k2

+LQp '(ki, kp, —k; cd)(cdk, —cdk,) —2&dQp' '(ki, kp, —k; cd)7(7/kk —sk, )Lcd' —(cdk, — c)d'k]k'j
+2 Q {LQk&+'(ki, kp, kp) —ki cd)(cdk, +cdk, +cdk, )—2&dQ4(ki, kpi kpi k; cd)](1+iik,nk, +nkp»+gk, gk, )

k1,k2, k3

x Lcd' —(cdkc+cdkk+cdkk)'] '+LQ4' '(k» kp~ kp) —ki cd)(cdkc —cdkk —cdkk) —2&dQc(kii kp~ kp~ —k) cd)]

X (1+'gkk'gkk 'skc'cjkk 7/kc7fkk)Lcd (Mkc cdkk cdkk) 7 +(cdkk ~ cdkk)+(cdkk ~ cdkk))

+(terms with n&4) . (32)

The coupling functions

Op&+i(ki, kp, —k; cd), Qp&~&(ki, kp, —k; cd),
04&+&(ki, k., kk, —k; cd),

"In (26), ~=ek and the superscript (0) indicate that the polari-
ton occupation numbers, E~=(A,~A, ), resulting from the calcu-
lation of the commutators have to be evaluated by means of the
zeroth-order Green's function (30) or the renormalized Hamil-

tonian (3I); for example, E~(')=(~~/e~) coth-', 8e~. In this ap-
proximation the correlation functions with e)4 have to be de-
coupled in the usual way into products of polariton occupation
Ilumbers, 1V~(0), and hence, only correlation functions with even
IIumber of operators give nonzero contributions. In this manner,
the second term on the right-hand side of (26) can be easily ex-
pressed as a function of the polariton occupation numbers and ef„
including terms up to any desired value of e, then the final solution
for the frequencies ek has to be derived from Eq. (26) by
computation.
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and Q4(ki, k2, k4, —k: ~) are given by the expressions
(A10a)—(A10d) in the Appendix, respectively. In Eq.
(32), (co&„+-+ —cd») and (co»~ —~&„) for the quartic
anharmonic terms indicate that there are two further
terms obtained by changing the signs of c™o~,and coI„ in
the drst terms, respectively. Hence, the excitation spec-
trum in the first approximation is described by the ex-
pression (29) with P &'&(k,c0) given by (32) and is a func-
tion of the frequency modes, the orl, 's, which are renor-
malized in the lowest order of perturbation theory. In
this approximation (29) may be written as

G i (kgb) = ((d&/ir)i&/&~PC0 coi,. ——
2&a&, ReP &(k,cd)

—2a&i ImP&'&(k, a&)$ ', (32a)

where ReP&" (k,cd) and ImP&'&(k, &o) indicate the real
and imaginary parts of (32), respectively. If ImP &o& (k,co)

is small but finite, ImP&" (k,c4)«coc and varies slowly
with co in the vicinity of frequencies ar ~I„ then the
energy spectrum described by (32a) is a Lorentzian line
peaked at or cog, with a width of the order of ImP&')

(k,~&) in energy units.
An alternative approach to calculating the Green's

function

mined self-consistently, therefore, for the general solu-
tion of (32e) one has to deal with an infinite number of
variables (frequencies). Hence, approximate methods
have to be developed for the calculation of (32c).

B. First Approximation for P(k, aa)

In the case when the imaginary part of P&0&(k,&o)

tends to zero for some frequency, say e&, (Wco&), then the
expression (29) takes the form

G&'&(k, ~) = (~&/~)S» L~' —e.'j-', (33)

where the energies of excitation eI, are determined by
the roots of the equation

e&,
' —a)g' —2a)gP &'& (k, e&.) =0. (34a)

Considering that when the system resonates in the
neighborhood of frequencies ~ c4i the expressions (32a)
and (32c) coincide, then far from resonance the inclusion
in (34a) of the term 2~ P&&'&(k, e ),&in which all the fre-
quencies QI, have been replaced by their corresponding
values at resonance o™r&, may give a reasonably good
value for e&,. In view of (32e), one may argue that the
frequency e& determined by the solution of the equation

G(k,co) = (cog/m. )8&t,.p LcP —cd&.
' —(ori/ir)P(k, a))1 '

c&,
'—

(u&,
' —Pi(k)$, (e,); (o = e&) —2(oiP &'& (k, e&) =0 (34b)~32b

is the following: If the frequency c™oj,is replaced by QI, in
the expression for the Hamiltonian (31), where Q&, is the
polariton energy of excitation which has yet to be de-
termined self-consistently, then using this Hamiltonian
to evaluate (32b) we find

G(k,~)= (~„/~)S».E~' Q,2 —2~, I—mP(k, ~))-i, (32c)

where QI, is determined by the solutions of the equation

Q&,
2

c4&,
' Pi(k, X—„(o—= Q&,)

—2coi ReP(k, cd= Qq) =0.' (32d)

The function Pi(k, E„&0=Q&,) results from the evalua-
tion of the last term on the right-hand side of (26) in the
manner described in Ref. 12 and is a function of the
polariton occupation numbers, E,= (&o,/0, ) coth-,'PQ„
and the frequency Qi. The function P(k, co = Q&) is given

by the expression (32) if all the frequencies cd&,„&o», and

cv&, are replaced everywhere by Q&„QI,„and QI,„respec-
tively. It is easily seen that when ImP(k, ru) is small but
finite then the excitation spectrum described by (32c)
is reduced to that of (32a). In the limiting case when

ImP(k, c0) tends to zero for any value of co= Q&„ then the
energies of excitation QI„corresponding to a quasi-
particle with in6nite lifetime, are determined by the
solutions of the equation

Q&,
' cog' Pi(k, N,—; a) = Q—i) —2coiP(k, cd = Q4) =0. (32e)

In principle, Kq. (32e) can be solved self-consistently by
means of computing methods to obtain numerical re-
sults. In practice, not only the frequency QI, but also
all the frequencies QI,„Q&„., QI,„,have to be deter-

is a better approximation to Ql, than that obtained by
the solution of (34a). In fact, this is generally true; the
only disadvantage of (34b) is that much more effort is
required for the computation of eg, than that for the cor-
responding solution of (34a). Although the last term in

(34b) is only an approximation to the corresponding
term in (32e), it will be improved in the next approxi-
mation. The solutions of (34) corresponding to the fre-
quencies eI, imply that the bare polariton is dressed by
the anharmonic interaction of the others and the
resultant dressed quasiparticle with energy eI, may be
called "physical polariton. " The excitation spectrum
described by (33) results from an equivalent renormal-
ized Hamiltonian which is correct in the first approxi-
mation, i.e.,

X„„&'&=const+-,' g —
~A&, tAi+cd484&B&, . (35)

k Q)g)

Therefore, the polariton Green's function in the second
approximation turns out to be

G"&(k,co) = (coi/ir)c&i&, t oP —cg' —2co&,P&i&(k ar)j ', (36)

and the polarization operator P&"(k, c0) has to be evalu-
ated via the first-order Hamiltonian (35). A comparison
between (31) and (35) shows that the expression for
P&i&(k, ra) can be derived from that of P&"&(k,cd) PEq.
(32)j by replacing the renormalized frequencies correct
to the lowest order, viz. , co~„~I,„and ~p„by ej,„e~„and
el,„respectively, where the energies of excitation ej,„e&„
and 4&,4 are obtained from the solutions of the Kq. (34)
for each particular mode. Then the expression for
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P&"(k,as) is found to be

&"'(k ~) =2 2 (LQs"'(ka ks —» ~)(sa.+sas) —2~Qs'+'(ka ks —k ~)j(v a+n a)t ~' —("+sa)sj-'
k», k2

+I ~- (k, k, —k; )(,—,) —2 Q ' &(k, k, —k; )j(g,—g,)L '—(,—,)'j—'}
+2 Q (fga'+'(ks, ks, ks, —k;o))(ea, +sas+eas) 2—o&Q4(ka, ks, ks, —k;a&)j

k», km, ki

X(1+pa,gas+gasgas+ga, ga, )L(os —(~a,+sa,+sa,)sj '+LQs' '(4, ks, ks, —k; ~)(sa, —~a,—sa,)

—2~Q4(ka, ks, ks, —k; ~)](1+pa,ga, na, n—a, ga, g—a,)P~' (sa,—sa, —~a,)'j '

+(sas~ —aas)+(eas++ —
&as) }+(terms with n) 4), (37a)

where ga, =coth-, Pea„ the coupling functions are given
by the expressions

Qs'+&(ks, ks, —k; ~) =-', Q Qs(k&, ks, —k; (o)
k»', kp'

XQs (ka q ks ~ k~ &)(4s'as4s'as+4s'as4s'az)

polaritons), and therefore the Green's function G&s&(k, &o)

describes the excitation spectIum of dressed interacting
polariton modes. We observed that in (37), and similarly
in (32), the square of the anharmonic coupling functions
Q and p as well as their products Q„p„are multiplied
by factors having the general forms

k»QPkg' 'GPk„» 6k»6k~ 6k„»

+4 Ps(kg, ks, —k)Ps*(ka', ks', —k)
COk»

&k» &kg (dk»GOk&

X 4 a4a~ 4 a4a (37b)

Qs'+&(ks, ks, —k; co)

=2 Q Qs(ka, ks, —k; o))Ps*(ka', ks', —k)

6k»CiOkmCdkg' COk » GOk»gk&eke' ' '
Qk

respectively, where n is the number of modes contained
in each particular term. They result from the evaluation
of the Green's functions having the forms

((&a,~a, &a„„'&a &a &a„,t)},

k»', k2', kg~
Qs(ka, ks, ks, —k; (o)

XQs*(ki', ks', ks', —k; +)8

+9 Ps(ks, ks, ks, —k)y4*{ka', ks', ks', —k)
OPk»

&k» eke COk»GPkg(Okg

X ~u3~ @is~ — ~nj. (37d)
+k» ~k»~k~~k3

Q4(ka, ks, ks, —k; (a) =-', Q &4(ka, ks, ks, —k)
k»r, ky', kg'

MkMk3
XQ4*(ka', ks', ks', —k; co) 8, (37e)

&kg&kg

and the Kronecker symbols 8, 8~~3, 82~3, and 83~~ have
been defined by Eq. (A9d). The expression (37) for the
polarization operator 8&"(k,~) is a function of the fre-
quencies of the dressed polariton modes (physical

&k» &kg (Ok&Mk&

X 4s'as4s'as+ has'as4s'as (37c)
~ &as&as

Q4&+&(ks, ks, ks, —k; as)

and they give an account of the nondiagonal contribu-
tions arising from the renormalized first-order Hamil-
tonian (35). Considering that the ratio (&oa/ea) is either
greater than or less than unity, depending on whether
the energy shift is negative or positive, respectively, we
conclude that both factors result in increasing or in
1cduclng thc square of thc amplitudes of thc RnhRrIQOIllc

coupling functions that appear in the expression for the
polarization opclRtol. Another lmpoltRnt cGect Rrlslng
from the aforementioned factors is that they are tem-
perature-dependent. Kc remark that the expression
(36) for G"&(k,o&) can be obtained directly from (32b)
if use is made of the same approximations that have been
done for the derivation of (36). The poles of the Green's
function G&"(k,&o) give the energies of excitation for the
polariton spectrum correct in the second approxima-
tion. The results obtained can be improved by going
into higher-order approximations but, as far as our
problem is concerned, the second approximation is s~-
cient to describe the polariton excitation spectrum be-
cause the interactions appearing in the expression (14)
for 3'.;„g are weak.

It should be pointed out that in our calculation for
I'(k, or) given by (27) terms with ssWn' vanish; this is
due to the Hamiltonian representation employed at
each successive approximation. The derived results can
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be improved if use is made of the complete expression
for the polarization operator as given by (23) at each
successive step. For example, we may write G&2&(k,au) as

G&2&(k,(v) = (cog/s)bye L&o' —eP —2a)&II&'&(k,&o)P' (38)

with

II&"(k,Gu) =P &'&(k,&0)LI—Go&&(k,M)P &'&(k,&0)+ g, (39)

and P&'&(k,~) is expressed by (37). The second, third,
~ ~ ~, terms in the expansion (39) will contribute small
corrections to the dominant 6rst term. The small correc-
tions obtained by this procedure at each successive step
will compensate the terms appearing in (2'/) with n'We

because both corrections are of the same order of
magnitude.

In the range of wave vectors where retardation eGects
are not important and may be neglected, the expressions.
(36) and (3'I) can be reduced to those corresponding to
the bare. phonon spectrum by taking the proper limits
when u&, —+ a»0 and ~(k,&0&) ~ I then @„(k&,k2, ~ ~,k„)~0
and V„(kq,k2, ,k„)~ V (k&,k2, ~,k„).In this casefor
the bare phonon spectrum we have

G~&'&(k,~)= (~~'/~) S..&~' —(e.')'
2'&,'P—

&,&»(k &d)P' (40a)
where

/&os~ 44q )P,&»(k,~) = I8 P ( V,(k„k„—k) [ ~

ky, k2

SkI 6kg EaI
X (ns, "+na,') — +(na, ' g~,')-

&a — —~a —~a

+48 Q ~V4(k&, k2, ka, —k)~s
kg, k, k3

Q)a& 40a& 0)a3 ~aI ~a~ ~as

~a3

~aI —~a~ —~a3

+3(I+a~,'g&:,' —»&,'g~, '—»&,'»&,') +(terms with e&4), (40b)
~' —~a,' —~a,'—~a,' '

n,=8 kI, k2 ~ ~ ~ kts-I.
V (k&, k2, , k r, —k)

a „„a„tj), , „=„-,o. (4od)

The expression (40b) for P&,&»(k,&o) consists of terms
which are proportional to two-, three-, and many-
phonon Green's functions having the form of

((A&„A&„Ag„„A&,;tA&,;t Ap„, t)).
%ehner' and more recently Kwok4 have developed
methods for calculating the various many-phonon
Green's functions by employing the functional deriva-
tive technique of Martin and Schwinger. " Although
their expressions for the many-phonon Green's functions
have a form similar to those appearing in (40b), they
di&er with respect to the expressions for the renormal-

»&„=coth2Peq, and k=kj. The energies of excitation,
eko, are determined from the solutions of the equation

(e&,')' (u&,')' —2co&,'P b&—'& (k, e&,') =0, (40c)

and the expression for P&&&'&(k, a~0) is obtained from
(32) with (o= e&0, y„(k&,k2, ,k )=0, V (k&,km, ,k )
=V„(k&,k2, ~ ~,k„) and the &i~'s are replaced by the
kk s where

ized frequencies ek'. Complete agreement with the
results of Wehner' and Kwok4 is achieved only if the
Eq. (40c) is replaced. by

(~~')'- (~a')'+2~a'P& "&(k,~a'), (4I)

also 1n the expression fol P &,
& & (k,My ) ail the frequencies

cuba' have been replaced by euko which are correct in the
harmonic approximation. Having these approximations
in mind, the one phonon Green's function (33) with
~a —+ ~a as well as the two- and three-phonon Green's
functions appearing in (40b), which are correct in the
6rst approximation, become identical to the corre-
sponding ones derived by %ehner, ' but the expression
(40a) for G&, &'&(k, ru) is correct in the second approxima-
tion. In conclusion, the developed formalism based on
successive approximations, apart from its simplicity,
succeeds in the renormalization of the frequencies for
the phonon modes.

In discussing the polariton spectrum we have dealt
only with the diagonal part of the polariton Green's
function with respect to the polariton branch index

p (=p'). To include nondiagonal contributions one can
easily derive the following equation:

Gpp (k, )=&0G„(k,co)

&(fh„+m Q II, ,"(k a))G,-, (k,a))g, (42)

» P. C. Martin and J. Schwinger, Phys. Rev. 115, j.342 (j.959}. which can be solved by iteration.
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To study the excitation spectrum, we make use of the
spectral function J&,(&d) given by the relation"

J4((o) = 2(1—es")—' ImG(k, (o+iI&), (43)

where Im stands for the imaginary part and g is a small
positive quantity, I&

—+ 0+. Substituting the imaginary
part of (37) into (43), we obtain

2(u4 244&„.l'&, &I&((o)(e&'"—1) '
J&, &2&((u)=,(44)

L(a' —I I']' +4&0)P( 14& 1&(40))'

where ul, are the energies of excitation determined by
the solutions of the equation

P&4
—

4&4
—2&4&4+14(&4) = 0i (45)

44&1(~)=RCP&,&1&(o&) is the real part of the polarization
operator given by the expression (37), but now the
principal value over the summations must be taken.
In (44), I'4&I&(ru) = ImP&I&(k, &u) is the imaginary part of
the polarization operator in the 6rst approximation and
is equal to

~" (k,-)=- ~ nQ. (k., k., -k;-)L~(-+...+...)-~(--.„-,.)]
kI, I&,'2

—2Q3"'(ki, k1, —k; ~)L~(~+41,+4a.)+~(~ .1, —~.,)]}(q1,+n1,)
+LQ*&-&(k., k., -k;-)(~(-+.„-.„)-~(-- „+.„))
—2Q3' '(ki kI —k ~)(~(~+~1,—~1,)+~(~—~1,+~~,))](g~,—g1,))
+~ Z (LQ4'+'(ki, k., k4, —k; ~)(&(~+~~,+41,+",) &(~ —~a, —~., .~,))

kI, k2, k3

—2Q4(ki, 4, ka, —k; ~)(&(~+4k,+~&„+~~,)+&(~ ~a, ~k—, 4&,))](—1+F4,n1,+n4, g4, +n4, ga, )

+LQ4& '(ki, k2, k3, —k; co)(f'&((a+4&„44, e—&„)
—f'&(a& —4&„+e—i,+4&„))

—2Q4(ki, k1, ka, —k; co)(f&(&d+41, 41, —e&,)+—f&(u& ei, +—4&,+e&,))](1+»&,»1, »1,,»k, —»I,»&,)—
+(41,~ —44,)+(4&„~—41,)}+(terms with &4& 4) . (46)

Tile spcctlR1 fuIlctioI1 (44) &lcscl'lbcs tllc polRlltoI1 exci-
tation spectrum in the whole range of frequencies co.

As I'&I&(k, cu) goes to zero, the spectral function J&,&'&(~)

tends to a delta-shape distribution, i.e.,

Ji.&'&(&0) =2(o4(es"—1) IB(co'—I I'), (47)

where vI, are the energies of the elementary excitations
determined by the solutions of (45) with AI(P4) =P&"
(k,&4). The excitation spectrum given by (47) corre-
sponds to the transparent range of frequencies of the
crystal and the expression for P&I&(k,i I), as shown by
(37) with &o=I I, is the scattering amplitude in energy
units describing the scattering processes that occur
among the dressed polariton modes far from resonances.
Integration of (47) over ~ at t= f leads to the expression
for the polariton distribution function correct in the
second approximation as

(Apts&, )&'&= (&04/I &,) c th-',op I

In the limiting case where I'&, &I& (co) may be considered
to be very small but finite, I'4&I&(&d)«ar&„ the spectral
function (44) has a steep maximum at the frequencies
aP = I &,', provided that BI'&.&'& (&d)/&t&d«1 and (4&/&&40) 64(co)
&&1. If it is further assuIned that in the neighborhood of
&o' I I' the function I'4&1&(&o) varies slowly with cv, i.e.,
I'I&I& (~) = I'4&1& (I q), then (44) reduces to that describing
the spectrum of the fundamental absoprtion band

2~& I'&1&I&(~s)(cs"—1) '
J4 "&(~)=, . (48)

(~' —~4')'+4~4'(I'I "&(~~))'

2404 244&.I"1&I&((v)(es"—1)—'
JI&2&(~)—

4r LN —41, —2Mg64(M)]
(49)

If now the expression I'I&" (co) given by (46) is written

The function (48) is a Lorentzian line with a maximum
at 44'= I p, the energy shift is equal to (I &,

' —~1')I&' and
the width is of the order of I'&, &I&(p&,) in energy units,
provided that the frequency vl, satis6es at least one of
the arguments of the delta function appearing in (46).
It should be pointed out that in evaluating (48) from
(44) the &0 dependence of the functions I'1&I&(or) and
A1(&o) has been neglected. If the variation of I'1&I&(a&)

and A1(44) with respect to a& is taken into consideration
then, apart from the appearance of the combination
bands which arise from the derivatives of the delta
functions with respect to co, there will appea. r new peaks
and possibly the shape of the absorption band may
change as a result of the u-dependent terms in the cou-
pling functions of (46) and D&,(co). Therefore, for an
accurate calculation of the excitation spectrum (44) for
a specific clystal tile &4&-dependence of I I& &

(&4&) all&i ky(&d)

must be examined with care. Further, the possibility of
observing these new peaks depends on the numerical
value of the quantity (4 /cv4).

For values of frequencies cv not near vy, that is, in the
vicinity of the edges of the polariton absorption bands,
we may discard (I'4&I&(~))' from the denominator of
(44) with the result
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as
I'g, (")((o)=yr(k, (o)+(o'79(k (o)+(o+3(k,(o), (50)

where the functions yt(k, (o), ys(k, (o), and y(((k, (o) depend
on co only through the delta functions that appear in
(46), then substit, ution of (50) into (49) leads to

y, &&( )=( ")

2(os[pc(k, (o)+co'ys(k, (o)+(ops(k, (o)](ee"—1) '
X- . (51a)

t
(o' —es' —2~a&s((o)]'

For large (o the expression (51a) may be written as

4GOk

js(s)((o)~ (ee~ I)—t

Xt (o '7s(k, (o)+(o '7s(k, co)+co—'y, (k,(o)7, (51b)

where the functions ys(k, (o), 7s(k, (o), and yt(k, (o) consist

of the anharmonic coupling functions of the general
form ~Q ~', V„p„, and

~
V ~', respectively. Therefore,

(o 'ys(k, (o) is the dominant term in the neighborhood of
the edges of the polariton fundamental absorption
bands, where co' —es'))2(os')„((o), indicating the impor-
tance of the function

~ p„~ '; such behavior could be ob-

served for large values of co.

For the renormalized bare phonon spectrum, the
spectral function (44) becomes

Js(') (k,(o)

2(o),' 2 (os'I's("(k, (o) (ee 1)—'

L~2 (v„o)2]2+4((o„o)s(P s(l) (k (o))&

where the energies of excitation vk' are given by the
solutions of the equation

(vs')' —(es') ' —2(og'As'(vs') = 0, (53)

with &s'((o)=RePs"'(k, (o) and the imaginary part of
P&")(k, (o) = I'&" )(k, (o) is given by

I' s"'(k, (o) =9rr P ~
V,(kt, k„—k)

~

'
kI, k2 6k& Ikey

X ((r)k, '+))s.') L()((o+es,'+ os, ') tl ((o —es,' —ss,')—]+(ss,' —r)s, ') t b((o+ es, '—ss, ') —6((o—es'+ os,')])
GOk G)k Mk

+24s. Q ~
V4(kl k2 ks —k)

~

' ( (1+r)),'r)s, '+r)s, 'r)s, '+))s,'r)s, ')
kI, k2, k3

XL()((o+esr +es& +os,') &((o e),'—es,'—e&,'—)]+3—(1+r)&, r)s, ' r)s, r)s,' —,r)')))'s)—

XP((o+es es& e) )()((.o es +e) + e)s])+(tel ms with B)4) . (54)

The renormalized phonon spectrum described by (52)
is completely different from that derived by means of
diagram techniques. The main difference is due to the
appearance of the complete renormalization of the fre-
quencies for each particular mode in the expression
(52). Agreement with the results of previous studiesm "
is achieved only when all the renormalized effects are
ignored, i.e., all the ek"s in the expressions appearing
in (52) have to be replaced by the (os"s. Formulas
(52)—(54) are reduced to those derived by Kashcheev"
if the factors

Mk2

k& k2 k3

are taken equal to unity and the energies of excitation
6k 's are replaced by cok"s with the expression for cok'

including only quartic anharmonic contributions for
each particular frequency mode.

As far as the temperature dependence for the excita-
tion spectrum (44) or (52) is concerned, the renormali-

I4 V. N. Kashcheev, Fiz. Tverd. Tela 5, 1358 (1963) t English
transl. : Soviet Phys. —Solid State 5, 988 (1963)g.

"V. N. Kashcheev, Fiz. Tverd. Tela 5, 2339 (1963) C
English

transl. : Soviet Phys. —Solid State 5, 1700 (1964lj.

zation effects are twofold: firstly, the renormalized fre-

quencies for the polariton (or the bare phonon) modes

are temperature dependent and, secondly, the factors of

the general form

MkIMk2 Mk7s 6k

aild
6kI&k2Mk3 Mk7s Mk

that appear in the expressions for the real and imaginary

parts of the polarization operator change the tempera-
ture dependence of the frequency shift and spectral
width of the absorption bands. Therefore, it is evident
that the renormalization effects are important in con-

nection with the temperature variations as well as the
quantitative calculations" of the frequency shift and
spectral width of the fundamental infrared absorption
spectra of ionic crystals.

It is easy to see from (16) that one of the effects of
taking into account the intrinsic coupling between the
radiation field and the transverse optical phonons,
when k 10' cm ', is to reduce the magnitudes of the
anharmonic coupling functions V„(kr,ks, ' .,k„). A
"I.P. Ipatova, A. A. Maradudin, and R. F. Wallis, Phys. Rev.

155, 882 (1967).



rough estimate, for the ratio of the square of the cubic
anharmonic cocKcicnt with and without retardation is
of the order of

I&./I I'- I, (55)
Cd+ —

COIc Ng G)y

where cop eI,' is the frequency for the transverse optical
phonons. IIl thc RbscQcc of 1ctRrdRtloQ aoI,~up thc right-
hand side of (55) is equal to unity. However, in the long
wavelength region k 10' cm ', the frequency ~I, for the
two polariton branches may be taken to be of the order
of ~~~& and col„respectively, where ~i is the longitu-
dinal frequency for optical phonons. Moreover, if wc
consider that for NaCl ~L2 2~p', then the right-hand,
side of (55) is roughly of the order of 0.12, that is, the
square of the magnitude of the cubic anharmonic coeK-
cient, ( Vs

~
', is decreased by about 12/o due to retarda-

tion. Similarly, the square of thc quartic coeKcient is
decreased roughly by 6'Po. Of course, these are only
rough estimates; the computation of the results ob-
tained in the present study concerning the polariton as
well as the phonon excitation spectrum shall be reported
later.

V. CONCLUSION

The present study is concerned with the excitation
spcctrunl of lntcI'actlQg polRrltons ln thc lnfI'Rfcd rRQgc
of frequencies of dielectric crystals. The development of
Dyson's equation describing the polariton spectrum has
made possible the evaluation of the polarization opera-
tor and the polariton Green's function in successive and
well-dcGned Rpproxlmatlons. Thc spcctlRI function for
the polariton spectrum has been calculated in the second
approximation and expressed in terms of the renor-
malized polariton frequencies. The temperature-depen-
dent effects on the excitation spectrum arising from the
rcnormalization of the frequencies for the polariton
modes have been pointed out. The importance of the

reta, rdation cGects have been discussed in detail. In the
case ~here retardation effects may be neglected the
resulting expressions for the phonon excita, tion spectrum
have been compared with those appearing in the
literature.

It ls hoped thRt this w'olk will stimulate RQ lntcrcst 1Q

measuring the polariton lifetime by Raman scattering
experiments.

APPENDIX

%c wish to CRrry out thc evaluation of . thc two- Rnd

three-particle Green's functions by means of [the zeroth-
order renormahzed Hamiltonian (31). If we introduce
tbc opclRtoI' which ls R fouI'-coInpoQcnt ro%' vcctol

Zt(ks', ks')

=(&k,'&k,' &k,'A, ' &ks'~k, ' &k, tf4,'), (A1)

then using (31) we derive the equation of motion for the
Green's function ((A(ks, ks); At(ks', ks')}}, which is in
a matrix form, as

L(ks, ks, a)((A(ks, ks); Xt(ks', ks'))}
=(1/2 )(fJ(k,k ),At(k ',k ')j ),=, (A2)

where L(ks, ks, ~) is a four-by-four matrix whose non-
zeI'o matrix cleIDents RI'c glvcn by

L'll L'22 L'33 L'44 +j L'l2 L'34 ~kgb

Lss=Lss= —ssksi Lss=Lss= —asks /&a»
Lss= Lss= —

4&ks /~ks ~

The determinant of the matrix L(ks,ks, as) is found to be

detL(k&, ks; ~)= t aP —(a a,+a0k,)'j
XL~' —(~k,—~k,)'j, (A4)

which gives the poles of the Green's function

((S(ks,ks); Zt(ks', ks'}}).

Solving Eqs. (A2) we obtain the following expression for
the various two-particle Green's functions:

aSksaSks (~as+&as)
((A,A „3,.A, ))=— (g,+y,)

asks&As ~- as (&as+0)as)

MP~
—

(VIVE&

+(Vks 8ks) (4gks'Asks'+4sks'4sks') (ASa}

I~I ~+kg a~+~I ~
((+as~ski ~ks' ~As' )) ('Sks+'Sks) +('Ns gky) '4ykg'4sks'~' —(~k, +~k,)S ~S—(~k, —~as)S

~ks+aSks COk&
—

Cd&+—(8ks+nks} (8k, gk, ) — —4;k,4;k„(ASb)
(~ki+&4s) —(~ks —

asks}

1 (asks~ (8»+ lks) (8 as Sks)—
((~k,~a. ', &k, t&a, t)) =—

I + — b,;b„b„,„+
~as~ sjks+'gks 'Vks 'Sks

+ 4s'ks4s'ks y (ASC)
ssks -+ (ssks+asks) ~ (~ks ssks)-



where 31kt= coth2pa&kt and p= (sltT) ', tcs being the Boltzmann constant and T the absolute temperature. In eval-
uating (AS) from (A2) we have made use of

(&k,'&k,)"'= (~kJ~k,) «th2p~k„g4, 'A, )(6'= (~kg'c85, ) coth2p~kt t

(A k,tea, ) (8& = (cak,/c8k, ) coth23pc55,

for the distribution functions in the lowest approximation.
Similarly, if the operator 2 (kl', k2', kS') is defined as the row vector

(kl tk2 tkS )=(~kt' ~kt' ~ k' 3+at' +53' +kt' ~kt' flk3' +kt' +at' +33' flat'
'J3k, '&k, '&k, t &k, t&, tf4,' A, '&k &k A A A ), (A&)

then by means of (31) we derive the equation of motion

L(kltk2tkS j )((+(kltk2tk3) j + (k1 tk2 tkS ))) 1/23r(L+(kltk2tk3)t+ (kl tk2 tk3 )j—)t=t' t (A7)

where L(kl, k2,k3, c0) is an eight-by-eight matrix having all diagonal elements equal to c0 while the nonzelo off-
diagonal elements are given by

J312 I35 L(4V L'68 k jj L 13 J325 I46 I78 kg p L'l4 I2V L 36 I58

L21—L58—L24 —LSS— ct)kt /ct)kt j L81=L52 —L64 Lsv= c053 /c053 j L41—L68 L72 L35 ~kt /ct)33

The determinant of the matrix L(kl, k2, ks, co) factorizes into

detL(kl, k2, kS,' co) = Cc62 —(c6kt+c853+c553)'jL55' —(~53+k)53—c853)'j

XI:~2—(~k, —~at+~at)SX~S —(~53+~53—~kt) j t (Ag)

and describes the poles of the Green's function ((A(kl, k2, k3); A. t(kl', k2', ks'))). Solving the system of equations (A7)
and after some lengthy algebra, we derive the following expressions for the three-particle Green's functions:

Ct)kt(053(t) kt I

((Ak,AS,Ak„Ak, teak, tAk, t)) = —
i i((1+pa,gk2+na, gk, +Sik,nkt)

4tl ) coktct)52ct)ktl

X(~k,+~k,+~k,)f~' —(~k,+~k,+~k,)'j '+(1+gk,~k, ~k,ik, Hk,8 k,)—
x(~» —~58—~kt)L~' —(~kt —~k8—~kt)'j '+(~53~ —~k2)+(~at~ —~kt)) t (A9R)

N8 OPIAMIse

((&k ~52~5*' ~k '~k"'~k"'&) = —
I i((1+@A53+~a,853+8585,)L~' —(~k,+~32+~3,)'j-'

43P) ct)k2(d at)

+(1+na28 a, 8k,na3 8a,gk3—)p~' (~—a, ~k, ~k—,)'j '+(ak, c-a ~k,)+(~a,~ —~k,)), (A9b)

((B»A,,A„;2,, tA;&8„ t)) = — —~((1+q»g,+q,q,+q,q»)
4)l ct)k tet) ktl

X t + t + t )(.,+s.+ ~ )L' —(&+a+ ~ )'j'
&k~

Ct)53 Ct)53

+(1+nkSVat nkt ut natnk3) I— —

I)= c)123+ j)218+()821& f)323= bkt'ktc)53'k343'53+ 853'53ftkt'ktftkt'33 t

l)213 Rlld t)823 Rl'c obtalllcd flolll t)123 by 'llltcl'cllRIlglllg kl Rnd k2 Rlld kl Rlld, ks 1'cspcctlvcly. Ill (A9) wc hRvc lllcllcR'tcd
by (48834-5 —c852) and (55534-5 —c553) that there are two further terms obtained by interchanging c852 and —c65„
cur,„and —a I„ in the erst term, respectively.
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If we substitute the two- and three-polariton Green s functions given by (AS) and (A9) into (27) we obtain
the expression (32) for the polarization operator P/3/(k, ~), where the coupling functions

Q3&+&(kl, k2, —k; ra), Q3&+'(kl, k2, —k; 44), Q4&+/(kl, k2, k3, —k; co), and Q4(kl, k2, k3, —k; (o)

have been dined as follows. '

Q3 (kl/ k2/ kj &) 2 Z Q3(kl/ k2/ k j 4//)Q3 (kl / k2 / k j 4//)(~k4'kl~kk'k2+8k/'k2'1k2'k/)
13:I',k2'

GOygI (djc2 GO Ic ICOIc &+4 /f/3(kl/ k2/ k)/f/3 (kl / k2 / k) hk/'k/~k2'kk~ ~k/'k2'lk3'k/ / (A10a)
6)A;~ COA., (dI„

CORI COI, ~

Q3&+&(kl, k2, —k; &V) =2 P Q3(kl/ k2/ k; ~)P3 (kl / k2 / k) //1/'3453k'kk& //k/'k28/2'k/ / (A10b)
k1', k2'

Q4'~'(kl/ k2/ k3, —k;/d) =-,' p Q4(kl, k2/ k3/ kj 44)Q4 (kl/ k2/ k3/ kj k/)~
Jg1', k2', k3'

//4//k& k/kk ///t 3 k/l, k/kk~kk

+9 ~$4(kl/ k2/ k3/ k)/t 4 (kl / k2 / k3 / k)j 8123& 8213% 8321 / (A10c)
+A:3 — &A.&A-. ~~&I 3

&A-.2&k3

Q4(kl, k2/ k3, —k; k/) =4 P /t4(kl/ k2/ k3/ k)Q4 (kl'/ k2'/ k3/ —k; 40)
ky', k2', ka' I ~~1 3

(A10d)

In general, using the Hamiltonian (31) or (35) one can derive the equation of motion

1.(kl, k2, k3, /k„j a&)((A(kl, k2/k3, . ,k„)j Ak (kl', k2'/k3'/ . ,k„')))
= (1//'22r)(LA(kl/kk, k3, ,k„),A (kl', k2 /k3 /' ~ '/k~') j )/=/, (A11)

where the operator At(kl, k2, k3, ,k„) is now a row vector having 2" components of the form of

Akt(kl, k2, k2, k3, . ,k„)—= (Ak, tAk, " Ak„t Bk,tAkkt .Ak„t Ak, tBk,tAk, t .Ak„t

Bk,tBk,t .Bk„,tA k„t Bk,tBk,t Bk„,tBk„t) (A12)

and 1(kl,k2, k3, ~,k; cv) is a 2"X2"matrix with all diagonal elements equal to u while the nonzero oif-diagonal
elements are easily established, but they shall not be given here. Solving the system of Kqs. (A10) it is possible, in

principle, to calculate polariton Green s functions for any desired value of n. In practice for n greater than three,
though the calculation of the corresponding Green s functions is straightforward, the algebra is tedious.


