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Energy-Band Structure and Electronic Properties of SnTe

SOHRAB RABII

3fonsanto Conspuny, St. Louis, 3fissouri 63166
(Received 23 December 1968)

The energy-band structure' of SnTe is calculated using the augmented-plane-wave method, taking into
account the relativistic corrections. The resulting wave functions at L are used to calculate momentum
matrix elements. These matrix elements are then used in a k y perturbation calculation in the presence
of a magnetic 6eld to obtain band parameters at point L in the Brillouin zone. Nonparabolic expansions
for the conduction and valence bands at L are obtained using Cohen's model. The eGect of strain on the
energy levels at L is calculated using the deformation-potential theory. The results indicate a complicated
shape for the valence band at L, with two maxima at each side of L on the face of the Brillouin zone. A
record set of apparent maxima is found in the Z direction at k= (m/u) (-'„-„0).This is consistent with the
"two-valence-band" model suggested to explain the experimental results. We are investigating the possi-
bility that these extrema may be saddle points. The conduction- and valence-band-edge symmetries at L
are opposite to those of the lead chalcogenides, as are the band-gap deformation potentials at this point
(—8.68 eV for SnTe and 11.55-17.24 eV for the others). This is in agreement with the experimentally pro-
posed "band-inversion" model.

I. INTRODUCTION
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'N recent years, a large body of experimental informa-
l - tion on the properties of SnTe has been accumulated.
These results have led to a great deal of fragmentary
information about the electronic structure of this
material. However, there have been only two theoretical
investigations of SnTe. Lin et a/. have carried out an
energy-band calculation using the "empirical pseudo-
potential" method and have obtained the imaginary
part of the frequency-dependent dielectric function.
Herman et al. ' have recently employed the orthogonal-
plane-wave (OPW) method at several points in the
Brillouin zone, coupled with an interpolation scheme to
connect these points together. They worked directly
w'ith a relativistic wave equation at six points in the
zone and made identifications of their theoretically
allowed transitions with optical and electroreflectivity
data. In the present work, energy levels and wave func-
tions are calculated at 12 points in the Brillouin zone,
which leads to the most detailed picture of the bands so
far obtained. The wave functions are then used to cal-
culate matrix elements of momentum and strain at L,
resulting in effective masses, g factors, and deformation
potentials at this point.

The first-principles augmented-plane-wave (APW)
method has been used successfully in a similar study
of the lead chalcogenides, which have the same crystal
structure (fcc-NaC1) as SnTe. This consideration, along
with the availability of the computer codes, led to the
choice of this method for the present work. The details
of the APW method and of the Hamiltonian which is
used are given elsewhere. '4 The unperturbed calcula-
tion, which uses only the potential and the kinetic

energy terms, is followed by two successive perturba-
tions referred to as "relativistic perturbations, " which
add the mass-velocity, Darwin, and the spin-orbit
interaction terms to the Hamiltonian. Because of com-
putational limitations, the wave functions in the rela-
tivistic perturbation in case of the lead chalcogenides' '
were limited to 10 APW's. At points of high symmetry,
this number is quite suKcient to achieve satisfactory
convergence. This is not necessarily true at points on
lower symmetry lines. The early work on SnTe, ' with
only 10 APW s in the relativistic functions, in fact, led
to a spurious set of maxima in the valence band in
L111] directions. The relativistic program was then
modified to accommodate up to 20 APW's. This
modification led to the disappearance of the spurious
maxima and to shifts of up to 0.5 eV in the 6 direction.
The wave functions are used to calculate matrix ele-
ments of momentum and deformation potentials at L.
The momentum matrix elements are then used in a
k p perturbation to obtain effective masses and g
factors at L. Cohen's nonparabolic model is applied to
the conduction and valence bands at L, and new values
for the effective masses are obtained. The experiments
on Hall effect, thermoelectric power, optical properties,
Shubnikov —de Haas measurements, and superconduc-
tivity led to proposed models for the electronic processes
in SnTe. These models are discussed in the light of the
informations supplied by the present work on the sym-
metries and positions of various band extrema and their
calculated parameters.

II. ENERGY BANDS

The crystal potential used is of the familiar muKn-
tin type which includes the Slater free-electron ex-
change. The contributions of up to the second nearest
neighbors are included. Table I gives the numerical

~ L. E. Johnson, J. B, Conklin, Jr. , and G. W. Pratt, Jr., Phys.
Rev. Letters 11, 538 (1963}.' S. Rabii, Bull. Am. Phys, Soc. 13, 413 (1968).
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TABLE I. Numerical values in atomic units for some of the
constants involved in the calculation.

Lattice parameter c
Radius of Sn sphere
Radius of Te sphere
Constant potential outside spheres

11.9016
2.9484
3.0024-1.0156

values for some of the constants involved in the cal-
culation. The energy bands are calculated in the three
important directions [1117,[0107, and [1107 (Fig. 1).
The energy levels at L, which correspond to the valence
and conduction bands, have L6 and L6+ symmetries,
respectively, which is the reverse of the lead chalco-
genides. '4 There is another set of apparent maxima in
valence band in the [1107 direction, which is 0.3 eV
above the L6 level. Although this indicates an indirect
gap, it is possible, owing to sensitivity of the L6 level
to small changes in the constant potential in the region
outside the sphere (hereafter referred to as V,), that for a
di8erent choice of this parameter the L6 maxima will

actually be above the Z 5. Furthermore, as we shall see
later, the I p perturbation indicates that the actual
maxima are not at L but very near to it on the face of
the Brillouin zone in the direction perpendicular to the
[1117. These two humps may, even with the present
choice of V„be above the Z 5 1evel. The possibility
should be borne in mind, as pointed out by Herman
et al. r that the [1107 extrema may turn out to be
saddle points. However, in the absence of any concrete

evidence for this and in view of the strong experimental
evidence for the existence of a second valence band
(Sec. V C), this possibility is set aside pending the out-
come of our continuing investigations.

In order to study the e6ect of V, on the energy levels
at L, these levels are calculated for four diferent
values of this parameter (Fig. 2). If we put the Le
level aside, the rest of the levels shift together, so that
the various gaps are preserved. The upward motion,
to a great extent, is simply a reQection of the change of
the reference point which is V,. However, the L6 level

moves down and this leads not only to change in the size
of the gap but also to a reversal of the order of the L6
and L6+ levels. The sensitivity of L6 to changes in V,
is due to the nature of its charge density. Table II gives
charge density distribution for the three points under
consideration. Ahnost 52% of the charge for the Le
level is in the constant potential region, so that its
position will change drastically with a change in V,.
The L6 level lacks any appreciably S-type charge
distribution.

The value of —1.0156 for V. was obtained by averag-
ing the crystal potential in the region outside the
spheres. Any change in its value will be in a direction
to raise L6 towards L6+ level . Thus it is open question
whether the gap is at L or between Z and L. The cal-
culated values of the energies at diferent points in the
Brillouin zone along with the relativistic corrections
are tabulated in Table III.
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where

iek 'Esp X'Rpg

+2psSg H — H g, (1)
2m2c ~ E„—+q

III. k y PERTURBATION

A k p perturbation is applied to the I-6 and L6+
levels corresponding to the valence and conduction
bands to calculate an E-versus-k expansion for these
bands and thus obtain effective masses and g factors.
Following the formalisms of Luttinger and Kohn, 7 and
Roth, ' and the notation of Ref. 4, the matrix element
of the effective Hamiltonian in the presence of a mag-
netic field is given by
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TABLE II. Charge-density distribution of three
important levels in the Brillouin zone.

PIane-wave l =0
region Sn Te

Lg+ 0.280 0.388 0.000
Lg 0.515 0.000 0.169
Zy 0,342 0.185 0.019

l=i
Sn Te

0.000 0.263
0.226 0.000
0.174 0.196

l=2
Sn Te

0.038 0.000
0.000 0.072
0.019 0.046

l=3
Sn Te

0.000 0.031
0.018 0.000
0.006 0.014

1-4 and letters c and e are included in the sum over p
in Eq. (1), since the energy separation of the rest of the
levels from the conduction-valence-band complex is of
the order of 0.4 Ry or larger. However, because of
spin-orbit mixing, all these levels enter into the com-
position of each other and must be taken into account.
Tables IV and V give the spin-orbit mixing of the
levels included in the sum over p in Eq. (1). Since there
is more than one single group level of the same sym-
metry, a second subscript is used to distinguish these
levels. This subscript coincides with the numbering of
the spinor function, in the spin-orbit seculare quation,
which arises from the particular single-group level.
Thus Wig, 34& is the matrix element of 2x„between 1-1

level, which gives rise to ninth spinor function, and the
L3, which gives rise to the fourth spinor function.

The relationships between the single-group matrix
elements are given in Ref. 4. These matrix elements
are then used to obtain the double-group matrix ele-
ments of m operator between the Gnal spin-orbit-
mixed levels (Tables VI and VII). The matrix elements
not listed are either zero or can be obtained from those

r J.M. Lnttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
s L. M. Roth, Phys. Rev. 118, iS34 (1960).

sr =p+(h/4mc') o X(V V) —(2m'c') '(P') p
(2~see) —&(P p)p —(4mscs) r(Pr)P. (2)

Figure 3 shows the energy levels that enter into the
k p calculation. Only the levels denoted by numbers

-.76I95 -.8507 -I.OI56 Ry -I.I800
Constant Potential Outside of Spheres

Fxo. 2. Variation of the energy levels at L vrith change in the
constant potential outside the APW spheres.
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Fzo. 3. Energy levels taken into account for k p perturbation.
Only the levels marked as I-4, c, and e are used in the sum over
ph zq. (t).

given by application of the time-reversal operator and
the point-group symmetry of the group of k vector. The
Slater system of atomic units is used. For computational
ease, the matrix elements of m/m=2sr are calculated
instead of ~.

The resulting matrix elements of the effective
Hamiltonian in the presence of magnetic Geld for
(Ls,v) and (Ls+,c) levels are

(Ls], pv
~
Xgff ( Lsr )v) =E(Ls—p)+(@'/2'nr)

g L
—0.42KIs+14.14(lr s+s„s)j

——,'ps(7. 50)H„(3)
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TA&IE III.The calculated energy levels for SnTe in units of Ry. E~g, Eg', and Eg are the eigenvalues for the nonrelativistic, relativistic
without spin-orbit interaction, end the full relativistic Hamiltonians, respectively. The wave vectors are in units of m/e.

Level Z'g@

F(0,0,0)
F» —0.029
Fy —0.034
Fg' —0.230—0.257

—0.039 F8+—0.111 F6+—0.230 Fv—0.264 Fg+—0.264 Fv+—0.291 Fg—0.343 F6—0.684 Fs—0.743 F6—0.894 F6+—1.502 F6+

—0.039—0.111—0.230—0.264

—0.265 —0.308

—0.655 —0.704

—0.738
FI —1.409

—0.894—1.502

(d)
L(1,1,1)
L, +0.108 +0.093

L3' +0.087 +0.074

+0.097
+0.090
+0.077
+0.072
+0.022—0.103—0.504—0.525—0.568—0.617—0.679—0./20—1.155—1.411

L4+ L5+I6+

L4 ~L5
L6

L6+
L4,Lg
L6
L6+
L6
L4+,Lg+
Ls+'
L6+
LQ

L2' +0.062 +0.023
Lg —0,065 —0.103
L3' —0.486 —0.515

LI —0.485 —0.571
L2' —0.562 —0.615
L3 —0.551 —0.698

—1.155—1.411
(g)

Lg —1.095
L&' -1.291

X(0,2,0)
X2 +0.180
X4' +0.174
X4' —0.054
X6' —0.137

+0.166
+0.141—0.123—0.197

, +0.166
+0.142—0.120—0.158—0.238—0.509—0.809—0.854—0.996—0.998—1.385

Xv+
Xg
X6
X6
Xv
Xv+
X6
Xv
X6+
X6
XQ

X& —0.504 —0.509
Xg' —0./95 —0.831

E(4,$,0)
E& +0.019
Ee +0.027
Ee —0.143
Kg —0.231
E4 —0.2/2
Ej —0.366
Eg —0.709
E4 —0.761
E3 —0.937
EI —1.006
Ej —1.254

+0.014—0.012-0.198—0.287—0.320—0.394—0.766
0 799—0.964—1.076—1.383

+0.014 Eg—0.012 E5—0.198 Eg—0.282 Eg—0.324 E5—0.396 E5—0.762 Es—0.803 Eg—0.964 Eg—1.076 E5—1.383 Es

XI —0.894 —0.996
X4' —0.970 —0.996
Xj —1.257 —1.385

—0.156

Al —0.262
Al —0.403

—0.283—0.436

AI —0.415 —0.475
Ag —0.563 —0.642—0.657 —0.704

Ag —0.941
AI —1.366

Ag +0.098
A3 +0.023

—0.100—0.480

Al —0.480
Ag —0.562—0.652

—1.034-1.466

(e)

+0.056
+0.010

—0.137—0.509

—0.561—0.619—0.698

—1.081 —1.145—1.300 —1.417

—0.165—0.168—0.282—0.423—0.442—0.481—0.637—0.685—0.728—1.034—1.466

+0.056
+0.013
+0.007—0.137—0.498—0.518—0.560—0.620—0.680—0.720—1.145—1.417

A4)A5
Ae
A6
A4)Ag
A6
A.6

A6
A4)A5
A6
As
Ae

Ae
A4,A5
A6
A.6

A4)Ag
A.6
A.6

A4, Ag
A6

A6

+0.119—0.086
+0.120—0.084—0.088—0.220—0.469—0.489—0.529—0.626—0.683—0.724—1.100-1.440

—0.075

—0.220—0.481
Ag —0.189—0.450

—0.455 —0.527
AI —0.561 —0.629
A3 —0.655 —0.701

—1.100—1.440

ikl

Ag —1.022
A.I —1.332

A6

A4,A5

A6
A4,Ag
A6
As
Ae
A4, Ag
A.6

Ag
A.e

+0.048
+0.043—0.115—0.502—0.523—0.567—0.620
-0.679—0.719—1.153

A4,A5

A.6
A4,A5
Ae
A.6
A.e
A4,AS
A6
A6

Ae +0.059

Ag —0.075 —0.115—0.484 —0.513

—0.483 —0.569—0.562 —0.619
A3 —0.651 —0.698

ZQ, m,o)
ZI —0.120
Zp —0.227
Z, —0.225
Z3 —0.346
Z4 —0.401
Zl —0.424
ZI —0,537
Z4 —0.634—0.719
Zj —0.885

(c)

—0.168—0.234—0.261—0.366—0.433
-0.473—0.613—0.683—0.759—1.009

—0.168 Z5—0.234 Zs
—,0.261 Z5-0.366 Zg—0.431 Z5—0.475 Z6—0.611 Z6-0.685 Z6—0.759 Z5—1.009 Zg,

Z8,x,0)
ZI +0.014
Zp —0.179
Z3 -0.170
Z, —0.322
Z4 —0.448
Zg —0.462
Zg —0.533
Z4 —0.637
Z, —0.794
ZI —0.974

—0.020—0.185—0.208—0.348—0.482—0.534—0.59/—0.685—0.828—1.067

—0.019 Z5—0.185 Zg-0.208 Zg—0,348 Z6—0.480 Zg—0.536 Z5—0 595 Z5—0.688 Z5—0.828 Zg-1.067 Zg

Z(1,1,0)
ZI +0.097
Z, —0.135
Z3 —0.122
Z, —0.285
Z4 —0.425
Zl —0.412
Zg —0.592
Z4 —0.669
Z~ —0.843
Zg —1.016

+0.062—0.141—0.162—0.319—0.464—0.481—0.651—0./13—0.875—1.102

+0.062 Zg—0.141 Zg—0.162 Zg—0 319 Z5—0.462 Zg—0.483 Zg—0.649 Zs—0.715 Zg-0.875 Z;—1.102 Zg

a(0,1,0)
+0.084
+0.027
+0.026—0.014

+0.082
+0.018—0.020—0.030

—0.234 —0.280

—0.333—0.439—0.661—0.739

—0.408—0.444—0.716—0.779

+0.082
+0.018—0.019—0.023—0.036 a,

0257 ~s—0.303—0.407—0.444—0.716-0.754—0,808—1.010 h, g,—1.453
—0.904 —1.010—1.351 —1.453

(Leg, we%,g(iLeg, v) = —~2ps(5.62)H',

«-+, l~. !L.", )=~(L", )+V!2 )

g j2.34~,2—23.42(a, '+a„')g

—k~s(4 oV)&* (5)

(Ieg+ciX.(gIL62+,c)=,'I p(7.33)e-
where H+ =IJ',&iH„.

In view of the strong interaction between the ( L~,v)
and l,L,+,c) levels, Cohen's nonparabolic rnodei9 was
applied to these bands. By evaluating Cohen's Eqs.

9 M. H. Cohen, Phys. Rev. 121, 387 (1961}.



I = (Ax/m) (L„-,s mt Lsr+,c),

Q = (Ass/m) (Lst,s
(
ss

(
Lss+,c&,

Es E(Ls+——,c) E(Ls—,s) .

(9)

(10)

(11)

Thu4 the energy relation for the conduction and valence
bands becomes

(11)—(19), we obtain

Ax (Lst—,tIissIis)(isiss[Lsr-, s& Ax
&s= +—Z — (/)

2m m s E(L;,s) —E„m
(L +,ct li&(~l tL +c& &

+—Z (8)
2m m s E(Ls+,c) E„—

TABI,E VI. Single-group matrix elements of momentum at I,
For computational ease, the given values are for sr/sss or two times
the matrix elements of momentum in a,u.

~18,21

~18,22

3518,28'

~19421

~19423

~iIO, 21

~IIO, 22

~110,28

0.861
0.442—0.121—0.299
0.292
0.417—0.034—0.267—1;335

~214 811

~21,S13"
~22, 31P
~22, S13"

~23, 818
j/128, s18"
~18,3P
~18,86

3f19,84&

~19436

—0.543
0,019
1.100
0.003
0.001
1.111-0.174—0.159—1.191—0.311

~IIO, S4"

~110,86

~84, S11'
~84, SIS'
~36„311'
~36, 818

~84& 811

~34, S18"

~36, 311"
~36.318

—0.298—1.062—0383—0.193
0.484
1.350
0,833—0.426
0.392
0.762

TABLE VII. CalCulated mOmentum matriz elementS (sr'=sr/
m=2m) betvreen the spin-orbit-mixed double-group levels atI 1n a.u.

E, =0.9x,'—4.64(4I '+» ') —0.025

&{[1.3844,'—18./8(x s+x„')+0.025]'
+0.075x.'+0.396(x,'+x ')}'", (12)

g,&I-,ej ~,'j I&I+,C)
(L6I Pj~z'jL62+, c)
(LSI-,~ j ~.' j L&I+,4)
(L6I,@jan 'jL62+,4)
{L,I-;j«jL&+,3)

—0.273
—0.199

0.103
—0.719
—0.074+0.52 1i

{L6I-,v j
~g' j Lg+, 3)

(L6I+,C j ms' j L61,2)
(LSI sd j X'a jL62 42)
'(L61 sC j %'a jL4,1)
(L&I+,~ j .'jL5-, 1)

0.S21 —0.074i
—0.087

0.779
0.078 —0.S69i

—O.S69+0.078i

where + s,nd —correspond to c and s, respectively, and
ft'44s/2m has been set equal to unity.

If we denote the. function inside the { ) brackets
in Eq. (12) by f, the relationships

gf s $2f
(s=x, y, s), (13)

BK; l9K; BKi

Parabolic
m)*/m mg*/m

—2.381 0.071
0.427 —0.043

Nonparabolic
mi*/m mg'/m

—0.513 0.075
04258 —0.044

lgil

7.50 5.62
4.07 7.33

TABLE VIII. Calculated effective masses and g factors at J.

TABLE IV. Composition of the double-group
levels used in the k' y perturbation.

[L4,1)=D[L4 (Lss'))

IL41 12)=&1]Lsl (Lss'))+&s[Lsl (Lss'))+&slLsl (Lss'))

(Lsi+,&)=%[Lsi+(Lis))+%
~
Lsi (Lis))

+Its ~Lsi+(Liis))+Iis|Lsi+(Lsii&)

(Lsi,s)=As(Lsi (Lsi'))+As|Lsi (Lss'))
+AslLsi (L»'))+A4ILsi (L44'))

ILsi+4) =&IL4+(L»1))

IL4+P) =F1ILsi'(Lis))+F4 ILsi+(L»s))
+F4 ] Lsi"(Lsii))+F4( Lsi+(Lsis))

TABLE V. CoeKcients of spin-orbit mixing for the
double-group levels used in k.p perturbation.

A1 —0.081
A2 —0.987—0.067
A4 —0.125

B1 —0.072
B2 —0.985
Bs —0.078
B4 0.133

C1 —0.126
C2 0.991
Cs —0.032
D —1.000
F 1.000

F1 —0.130
F2 0,047
Fs 0.990-
F4 0.038":

result, where A, =A „=—9.28 and A, =1.92. The
effective masses fors4=0 can be obtain'ed using Eq. (13).
Table VIII gives a comparison between the parabolic
and nonparabolic effective masses at 1.along with the g
factors. Ke can see that the nonparabolic effects are
substantial for the longitudinal effective mass, while

they are practically negligible in transverse directions.

The first partial derivatives of O'E, „/f)44, s are ail zero
at x=o. By looking at the second partial derivatives,
we see that except for m~ *, the rest of the effectivc
IQRsscs lncI'cRsc In magnitude Rs' wc IQovc RwRy fI'OIQ

point I..The E-versus-x surface for the valence band has
a saddle shape in the neighborhood of L (Fig. 4). The
curvature in the transverse direction is very steep, and
thus there should be two maxima very close on either
side of I. on the face of the Brillouin' zone. The same
situation exist for the conduction band. Thus the con-
stant-energy' surfaces for SnTe are considerably more
complicated. than they are in the case of the lead
chalcogenides.

IV. DEFORMATIOÃ POTENTIALS

By using the formalism of Ferreira" in treating the
strain as a perturbation on the APK energy levels, the
deformation potentials at I are calculated for the
isotropic strain and three uniaxial strains along [001],
[111],and [111]directions (Tables IX and X). It is
known' " that the isotropic and [111]strain at L do
not split any energy levels. However, the rhombohedral
[111]and tetragonal [001]strains lead to the splitting
of the doubly degenerate 1-3+ levels. Table XI gives the
deformation potentials for the double-group levels that
form the valence-conduction-band complex at I.

"L, G. Ferreira, Phys. Rev, 137, A1601 (1965).
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Fn. 4. Energy dispersion for valence band at I in the
longitudinal and transverse directions.

optical absorption in SnTe in the 0.35-0.42 eV range
along with its positive curvature in this region (in
contrast to the negative curvature in the case of PbTe, '~

which has simple bands) to the complex shape of the
valence band. The present theoretical results indicate
such complexity not only for the valence but also for the
conduction band.

There is general experimental agreement" "on the
existence of a direct energy gap of about 0.3 eV at
4.2'K and 0.2 eV at 300'K. The calculations give a value
of 0.67 eV for E,' in Fig. 5. Preliminary calculations
based on Eq. (12) indicate that E, is about 0.53 g7.
This is in good agreement with experiment, considering
the sensitiveness of the gap to the value of the constant
potential and the uncertainty in the experimental
results.

B. Baud Iuvefslou

V. DISCUSSION AND CONCLUSIONS

A. Baud Edges

The calculated energy bands for SnTe indicate that
two sets of valence-band maxima occur, one at I. and
the other in the Z direction. However, the results of the
lr y perturbation at I. indicate a more complicated
situation, namely, that the valence band rises very
steeply in energy in the transverse direction. Thus the
valence-band energy expanded about I- will have a
saddle shape, and there would be two true maxima on
the face of the Brillouin zone on each side and very
close to the point I..

The valence constant-energy surfaces at L, neglecting
the nonparabolic eGects, will be hyperboloids of revolu-
tion about the L111j direction. The conduction band
at I.has a very similar shape to that of the valence band
when inverted. Figure 5 shows the energy-dispersion
curves near I for the longitudinal and transverse direc-
tions. Burke and Riedl" attribute the large value of

$

Eg
~e

//

FIG. S. Conduction- and valence-band edges at I, Solid curves
indicate the bands in longitudinal direction L111j and broken
curves in the transverse direction {on the face of the Brillouin
zone).

"J.R. Burke, Jr. and H, R. Riedl {private comlnunication}-

A signi6cant difference between the energy bands of
SnTe at I. and those of the lead chalcogenides is due to

Tanra IX.Matrix elements of isotropic and Dit jnniaxiai strains
betvreen the single-group states at I. in eV.

Single-group
states Iso.

Single-group
states Iso.

L21 L21

&22',L22'

~28',L28'

&21',L28'

+22 s~28

L84',L84'

~se',Lse'

L84',l-se'

4.38
—6.70
-22.81

0
0
0

—4.52
-16.36

0

—1.08
4.06

-11.35
—05$

6.13
—6.17

3./2
—9.40

3.16

LI8,1.18

LI9,LI9
~IIop~110

LI8,L19

~18pz lle

~les~IIO

L'sllpLrsll

LSISQSIS

.I811&I818

9.53
—15.54
—23.86

0
0
0

—4.62
—16.73

0

—0.04
1.89

—13.97
—1.51

2.18
8.28
2.28

—8.45
—6.28

"W. W. Scanlon, in SoM State Physics, edited by F. Seitz and
D. Yurnbull {Academic Press Inc., New York, 1959), Vol. 9,
p. 115.

'8 L. Ksaki and P. J. Stiles, Phys. Rev. Letters N, 1108 {1966).
'4 R. B. Schoolar, H. R. Riedl, and J. R. Dixon, Solid State

Commun. 4, 423 (1964).

a reversal of the order of the Le and L6+ levels, which
correspond to the conduction and valence bands. The
6rst implication of this band inversion is that these two
bands will tend to cross each other away from 1.. How-
ever, because of symmetry requirements, this crossing
is forbidden, and the avoidance of crossing leads to the
two maxima oG J. The second implication is that the
deformation potential for the gap between these two
bands will change sign from that of the lead chalco-
genides. This is shown theoretically by the fait that
Drso (cond. —val. ) at I. for SnTe is —8.68 eV while for
the others, 4" it ranges from ii.SS to 17.24 eV. Al-
though, in the case of SnTe, this calculated value should
be diferent from the true deformation potential for
minimum gap E,. The band inversion was first pre-
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TanLp X. Matrix elements of Li ifj and L001$ uniaxial strains between single-group states at L in eV.

Single-group states

La (Lal),La (Laa)
Lu (Lal'), La (Las')
La (Laa'), La (Las')

La (Lai'), La (L$4')

Lu (Lai'), La (&$$')

Ls (L23'),Ls (L34')
L3-(L23'),L2 (L3e')

L3 (L23'),Ls (L34')
I,a (Las'), La-(Lss')
Li (L34'),Li (Lss')

L;(L.,'),L;(L3 ')
Ll (Lss )3L1 (L3$ )
La (L$4'),La (Lss')

6.09
1.01

—2.74
—2.48
—6.21

4.53
5.44

—2.95
13.73

—0.80
0.09
4.66

—1.98

4.42
2.29

—3.6D
—6.26

2.12
6.31

—1.74
—1.85
—5.95

2.09
4.41

—10.14
1327

Single-group states

(Lla)3Ll (Llu)
Li (Lls),L1 (Llls)
LI+(LIs),L1+(L110)

Li+(Lis) Li+(Lail)
Ll (Lls) yL1 (L313)
Ll (L19)sL1 (L311)
L1+{L1()),L1+{L313)
Li (Llla) piL1 (Lsl 1)
L1+(L110),L1+{L313)

(Lull}3La (Lail)
Ll (L311)sL1 {L313)
La (Lais)1La (L$13)
La (L311)pLa (L313)

2 3 72
10 17
4.17

—0.29
0.88

—4.36
8.50

—4.25
—12.78
—1.32

2127

3.87
0.99

—2.41
—0.33

5.20
-3.67

0.67
—7.26
—1,27
—0.40

6.42
1.19
1.77

—9.14
—5.86

dieted by Dimmock et al."on the basis of data from
luminescence at 42'K, optical absorption at 300'K in
Pb,Sn~,Te, and tunnelling in SnTe a.t 4.2 and 300'K.
Further experimental evidence is supplied by Dixon and
Bis'~ as a result of resistivity and Hall coeScient meas-
urements on Pb Sn~ Te alloys as a function of tem-
perature. They obtain breaks in the resistivity curves
a.t temperatures which are in agreement with tempera-
tures predicted for band crossing as a function of
composition.

C. Two-Band Model for Ualence Band

A two-valence-band model for SnTe, was proposed by
Allga, ier and Scheie" to explain the temperature de-

pendence of the Ha.ll coefIjtcient. A great deal of sub-

sequent experimental results" " have been accumu-
lated that point to the validity of this model. This
behavior of the Hall coeKcient, which reaches a peak at
about 700'K, has been interpreted by Andriev" as a
two-band effect including interband scattering. Further
experimental support comes from the carrier-concentra-
tion dependence of the thermoelectric coeKcient and of
the ratio Rr/E7'r. au ""A very abruPt rise in the thermo-

electric power n occurs at the same carrier concentra-
tion at which there is a kink in the ErjZar curve. This
can be attributed to the entry of the Fermi level from
one band into another, i.e., a break in the density of

'3 B. F. Bilenkii, A. G. Mikolaichuk, and D. M. Freik, Phys.
Status Solidi 28, KS (1968).

6 J.0. Dlmmock& J. Melngallls& and A. J. Strauss& Phys. Rev.
Letters 16, 1193 (1966).

» J.R. Dixon and R. F.Bis, Phys. Rev. 176, 942 (1968).
'3 R. S. Allgaier and P. 0. Scheie, Bull. Am. Phys. Soc. 6, 436

(1961).
'9 R. S. Allgaier and B. B. Houston, Jr., in Proceedings of the

Intenutional Conference on the Physics of Semkotufuctors, Eeet'
(The Institute of Physics and the Physical Society, London, 1962),
p. 172."R.F. Brebrick and A. J. Strauss, Phys. Rev. 131,104 {1963).

V, I.Kaidanov, I.A. Chernik, and B.A. Efimova, Fix. Tekh.
Poluprovodnikov 1, 869 (1967) t English transl. : Soviet Phys-. —
Semiconductors 1, 723 (1967)j.

'«A. A. Andreev, Fix. Tverd. Tela 9, 1560 (1967) )English
transi. :Soviet Phys. —Solid State 9, 1232 (1967)7.

Tmx.E XI. Deformation potentials in eV, for the spin-orbit
mixed double-group levels that make the valence-conduction
band complex at L.

Spin-orbit
mixed-double-

group level

i L4,L$,1)
Le-,2&

Le+,c)
Le,u&

L4+,L3+,3)
Le+,4)

—4.52
—4.57
—15.33
—6.65
—4.62
—4.91

3.72
3.50

—0.21
3.10
2.28
1.62

—3.25
—3.20
—8.04
—3.65

3.31
—3.54

D001

1%51

—1.64
—6.08
—1.96
—1.54
—1.86

7.84 —4.12
7.54 —4.04
7.35 —7.56
7.98 —4.88
5.73 —3.45
4.89 —3.27

"R. S. Aligaier (private communication).
'4 R. Tsu, %. E. Howard, and L. Esaki, Phys. Rev. 172, 779

(1968).

states. "Some of the above behavior could be explained
on the basis of a single nonparabolic band. However,
the absence of similar behavior of R(T) in $$-type lead
chalcogenides, in view of the similarity of their valence-
and conduction-band shapes at 1., renders this explana-
tion implausible.

The theoretical band calculation (Fig. 1).shows)a
second set of apparent valence maxima in the

C
110$

direction that may provide the second band of the two-
band model, although in the absence of a k y perturba-
tion for this maxima, we cannot make a detailed analy-
sis. Tsu et a/. 24 have identi6ed the second band as a
lower-lying valence band at I.with a separation of 0.34
eV. However, this does not agree with the calculated
bands which give the separation at I. a lower limit of
0.84 cV. Furthermore, their symmetry assignments to
thc band do not agree with any of the theoretical
studies of SnTe or the lead chalcogenides. The results
of the nonparabohc approximation given in Sec. III
indicate that even in a two-band model, one cannot
safely neglect the nonparabolic effect in the bands at I-,
especially since the correction is sizable in the trans-
verse direction (Table VIII) and since the maxima
occur in this direction.
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Shubnikov —de Haas measurements"" have shown
the complicated nature of the primary valence band by
the large number of cross sections observed, and seem to
con6rm the existence of the second valence band, since
a new cross section appears at higher carrier concentra-
tions. However, the symmetry of this cross section does
not seem to point to a (110) surface.

The nonsimple valence band, high carrier concentra-
tion ( 10"cm '), and high static dielectric constant of
1200&200 '~ could be responsible for the appearance
of superconductivity in SnTe,"according to Cohen's"
theory of superconductivity in multivalleyed degenerate
semiconductors. The existence of the large number of
valleys (20 valleys, if the g maxima are taken into

"J.R. Burke, Jr., R. S. Allgaier, and B.B.Houston, Jr., Phys.
Rev. Letters 14, 360 (1965).

'6 J.R. Burke, Jr., B.B.Houston, Jr., H. T. Savage, J.Babiskin,
and P. G. Siebenmann, J. Phys. Soc. Japan Suppl. 21, 384 (1966).

~' G. S. Pawley et al., Phys. Rev. Letters 17, 753 (1966).
"'R. A. Hein et al. , in ProceeCings of the Ninth Internationa/

Conference on Lom-Temperature Physics, Co/umbus, Ohio, edited
by J. G. Daunt et al. (Plenum Press, Inc. , New York, 1965),p. 604.

» M. L'. Cohen, Phys. Rev. 134, A511 (1964).

account) should enhance the conditions of supercon-
ductivity by providing a large number of states at the
Fermi level for intervalley carrier scattering, especially
since these transitions, as a consequence of large
momentum transfer, are less screened than the intra-
valley processes. Furthermore, the transition tempera-
ture rises with increasing carrier concentration, which
further supports the above conclusions.
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Local and Nonlocal Magnetoylasma Effects in n-Tyye Lead Telluride*
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Measurements of the derivative of the microwave absorption coefficient as a function of static magnetic
field H have been carried out in high-mobility (1.0X10' cm'/V sec) n-type lead telluride at 70 GHz and
4.2'K. The measurements were taken in the Voigt (qo J 8, where q0 is the incident radiation wave vector)
and Faraday igo~~H) conhgnrations, as well as in intermediate geometries, where a mixed Voigt-Faraday
situation applied. The sample surface, a f110}plane, was fixed perpendicular to q0, and 8 was rotated in a
{100}plane which contained qp. The data were analyzed using well-known local theory and a simplified
rionlocal theory for the Azbel-Kaner and Doppler-shifted cyclotron resonances. The observed local magneto-
plasma effects agreed with those predicted from the (111)-ellipsoid model and included the hybrid resonance
which has not been previously reported in lead telluride. The values deduced for the transverse mass m&

and the mass ratio E=m~/mg were mg/m0=0. 043+0.04 and X=9.7&1.4 at a carrier concentration of
8.1)(10' cm '. Two weak, low-field resonances were identified as the first and second Azbel-Kaner subhar-
monics of a tilted-orbit cyclotron resonance. The values of the magnetic field at which the resonances and
dielectric anomalies were observed in the Faraday geometry were shifted 4—19%relative to the corresponding
values in the Voigt geometry, and some of these shifts agreed with the predictions of the simple Doppler-shift
theory. Analysis of the Voigt dielectric-anomaly data gave a value of 10' for the static part of the lattice
dielectric constant. A similar value has been obtained in microwave-helicon experiments, while other methods
of determination have given values near 400.

1. INTRODUCTION

~

'HE free-charge carriers of a solid form a plasma
J. which in the presence of electromagnetic radia-

tion and a static magnetic field sustains the electro-

~ Based upon a dissertation by the author submitted to the
Physics Department of the University of Pennsylvania in partial
fulfillment of the requirements for the Ph.D. degree. ~ork
supported by the U. S. Once of Naval Research under Contract

magnetic waves known as magnetoplasma modes. These
modes exhibit a variety of interesting properties which
depend upon the band structure of the material and
the degree of nonlocality in the internal current —, .

electric-6eld relation. In the limi't where the current-

No. NQNR 551(51) and the dissertation has been issued as
Technical Report No. AD 652 620.
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