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The energy-band structure of SnTe is calculated using the augmented-plane-wave method, taking into
account the relativistic corrections. The resulting wave functions at L are used to calculate momentum
matrix elements. These matrix elements are then used in a k-p perturbation calculation in the presence
of a magnetic field to obtain band parameters at point L in the Brillouin zone. Nonparabolic expansions
for the conduction and valence bands at L are obtained using Cohen’s model. The effect of strain on the
energy levels at L is calculated using the deformation-potential theory. The results indicate a complicated
shape for the valence band at L, with two maxima at each side of L on the face of the Brillouin zone. A
record set of apparent maxima is found in the = direction at k= (r/a) (%, £, 0). This is consistent with the
“two-valence-band” model suggested to explain the experimental results. We are investigating the possi-
bility that these extrema may be saddle points. The conduction- and valence-band-edge symmetries at L
are opposite to those of the lead chalcogenides, as are the band-gap deformation potentials at this point
(—8.68 eV for SnTe and 11.55-17.24 eV for the others). This is in agreement with the experimentally pro-
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posed “band-inversion” model.

I. INTRODUCTION

N recent years, a large body of experimental informa-
tion on the properties of SnTe has been accumulated.
These results have led to a great deal of fragmentary
information about the electronic structure of this
material. However, there have been only two theoretical
investigations of SnTe. Lin ef al.! have cafried out an
energy-band calculation using the “empirical pseudo-
potential”’ method and have obtained the imaginary
part of the frequency-dependent dielectric function.
Herman et al.? have recently employed the orthogonal-
plane-wave (OPW) method at several points in the
Brillouin zone, coupled with an interpolation scheme to
connect these points together. They worked directly
with a relativistic wave equation at six points in the
zone and made identifications of their theoretically
allowed transitions with optical and electroreflectivity
data. In the present work, energy levels and wave func-
tions are calculated at 12 points in the Brillouin zone,
which leads to the most detailed picture of the bands so
far obtained. The wave functions are then used to cal-
culate matrix elements of momentum and strain at L,
resulting in effective masses, g factors, and deformation
potentials at this point.

The first-principles augmented-plane-wave (APW)
method has been used successfully in a similar study
of the lead chalcogenides, which have the same crystal
structure (fcc-NaCl) as SnTe. This consideration, along
with the availability of the computer codes, led to the
choice of this method for the present work. The details
of the APW method and of the Hamiltonian which is
used are given elsewhere.?* The unperturbed calcula-
tion, which uses only ‘the potential and the kinetic

1P. J. Lin, W. Saslow, and M. L. Cohen, Solid State Commun.
5, 893 (1967).

*F Herman, R. L. Kortum, I. B. Ortenburger, and J. P. Van
Dyke, J. Phys. Radium (to be published).

3J. B. Conklin, Jr., L. E. Johnson, and G. W. Pratt, Jr., Phys.
Rev. 137, A1282 (1965). .

4S. Rabii, Phys. Rev. 167, 801 (1968).
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energy terms, is followed by two successive perturba-
tions referred to as “relativistic perturbations,” which
add the mass-velocity, Darwin, and the spin-orbit
interaction terms to the Hamiltonian. Because of com-
putational limitations, the wave functions in the rela-
tivistic perturbation in case of the lead chalcogenides®—5
were limited to 10 APW’s, At points of high symmetry,
this number is quite sufficient to achieve satisfactory
convergence. This is not necessarily true at points en
lower symmetry lines. The early work on SnTe, with
only 10 APW’s in the relativistic functions, in fact, led
to a spurious set of maxima in the valence band in
[1117] directions. The relativistic program was then
modified to accommodate up to 20 APW’s. This
modification led to the disappearance of the spurious
maxima and to shifts of up to 0.5 eV in the A direction.
The wave functions are used to calculate matrix ele-
ments of momentum and deformation potentials at L.
The momentum matrix elements are then used in a
k-p perturbation to obtain effective masses and g
factors at L. Cohen’s nonparabolic model is applied to
the conduction and valence bands at L, and new values
for the effective masses are obtained. The experiments
on Hall effect, thermoelectric power, optical properties,
Shubnikov-de Haas measurements, and superconduc-
tivity led to proposed models for the electronic processes
in SnTe. These models are discussed in the light of the
informations supplied by the present work on the sym-
metries and positions of various band extrema and their
calculated parameters.

II. ENERGY BANDS

The crystal potential used is of the familiar muffin-
tin type which includes the Slater free-electron ex-
change. The contributions of up to the second nearest
neighbors are included. Table I gives the numerical

5L. E. Johnson, J. B. Conklin, Jr., and G. W. Pratt, Jr., Phys.
Rev. Letters 11, 538 (1963).
6 S. Rabii, Bull. Am. Phys. Soc. 13, 413 (1968).
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TABLE I. Numerical values in atomic units for some of the
constants involved in the calculation.

Lattice parameter a 11.9016
Radius of Sn sphere 29484
Radius of Te sphere 3.0024
Constant potential outside spheres —1.0156

values for some of the constants involved in the cal-
culation. The energy bands are calculated in the three
important directions [1117, [0107], and [110] (Fig. 1).
The energy levels at L, which correspond to the valence
and conduction bands, have L¢~ and L¢t symmetries,
respectively, which is the reverse of the lead chalco-
genides.®* There is another set of apparent maxima in
valence band in the [1107 direction, which is 0.3 eV
above the Lg~ level. Although this indicates an indirect
gap, it is possible, owing to sensitivity of the L¢~ level
to small changes in the constant potential in the region
outside the sphere (hereafter referred to as V), that fora
different choice of this parameter the Lg~ maxima will
actually be above the Z;5. Furthermore, as we shall see
later, the k-p perturbation indicates that the actual
maxima are not at L but very near to it on the face of
the Brillouin zone in the direction perpendicular to the
[1117]. These two humps may, even with the present
choice of V., be above the Z; level. The possibility
should be borne in mind, as pointed out by Herman
el al.? that the [110] extrema may turn out to be
saddle points. However, in the absence of any concrete
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evidence for this and in view of the strong experimental
evidence for the existence of a second valence band
(Sec. V C), this possibility is set aside pending the out-
come of our continuing investigations.

In order to study the effect of ¥, on the energy levels
at L, these levels are calculated for four different
values of this parameter (Fig. 2). If we put the L~
level aside, the rest of the levels shift together, so that
the various gaps are preserved. The upward motion,
to a great extent, is simply a reflection of the change of
the reference point which is V.. However, the L~ level
moves down and this leads not only to change in the size
of the gap but also to a reversal of the order of the Lg~
and Lgt levels. The sensitivity of Lg~ to changes in V.
is due to the nature of its charge density. Table IT gives
charge density distribution for the three points under
consideration. Almost 529, of the charge for the Lg~
level is in the constant potential region, so that its
position will change drastically with a change in V..
The L¢~ level lacks any appreciably S-type charge
distribution.

The value of —1.0156 for V. was obtained by averag-
ing the crystal potential in the region outside the
spheres. Any change in its value will be in a direction
to raise Lg~ towards Lg* level. Thus it is open question
whether the gap is at L or between = and L. The cal-
culated values of the energies at different points in the
Brillouin zone along with the relativistic corrections
are tabulated in Table III.
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Fic. 1. Energy bands for SnTe in the [1117], [010], and [110] directions.
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III. k-p PERTURBATION

A k-p perturbation is applied to the Lg~ and Lg*
levels corresponding to the valence and conduction
bands to calculate an E-versus-k expansion for these
bands and thus obtain effective masses and g factors.
Following the formalisms of Luttinger and Kohn,” and
Roth,® and the notation of Ref. 4, the matrix element
of the effective Hamiltonian in the presence of a mag-
netic field is given by

0 #%? {“tu 7"/41}
(‘anl'lsceﬁlq)nx»:(En +';n')5ij+“ ; E O—E 0
et miu X7y
+2uS:- H H- , @)
i 2m?c zl":E,."—-}_E,P

where
m=p+(2/4mc?)oe X (VV)—(2m*?)~* (p*)p
— (2m*c®)~(P-p)p— (4m2?) ' (p1)P. (2)

Figure 3 shows the energy levels that enter into the
k-p calculation. Only the levels denoted by numbers

TasLE II. Charge-density distribution of three
important levels in the Brillouin zone.

Plane-wave 1=0 l=1 =2
region Sn Te Sn Te Sn Te Sn Te

Le¢t 0.280 0.388 0.000 0.000 0.263 0.038 0.000 0.000 0.031
L¢~ 0.515 0.000 0.169 0.226 0.000 0.000 0.072 0.018 0.000
Zs 0.342 0.185 0.019 0.174 0.196 0.019 0.046 0.006 0.014

1-4 and letters ¢ and v are included in the sum over u
in Eq. (1), since the energy separation of the rest of the
levels from the conduction-valence-band complex is of
the order of 0.4 Ry or larger. However, because of
spin-orbit mixing, all these levels enter into the com-
position of each other and must be taken into account.
Tables IV and V give the spin-orbit mixing of the
levels included in the sum over u in Eq. (1). Since there
is more than one single group level of the same sym-
metry, a second subscript is used to distinguish these
levels. This subscript coincides with the numbering of
the spinor function, in the spin-orbit seculare quation,
which arises from the particular single-group level.
Thus Mg,34¥ is the matrix element of 27, between L,
level, which gives rise to ninth spinor function, and the
L3, which gives rise to the fourth spinor function.
The relationships between the single-group matrix
elements are given in Ref. 4. These matrix elements
are then used to obtain the double-group matrix ele-
ments of = operator between the final spin-orbit-
mixed levels (Tables VI and VII). The matrix elements
not listed are either zero or can be obtained from those

7 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
8 L. M. Roth, Phys. Rev. 118, 1534 (1960).

BAND STRUCTURE

OF SnTe 823
& Final Bands
8|&
0.8+
0.5+ @
/ e°
0.4t _
LZL.EE-/
o3t 8]
L=
7| / /
0.2} A
L:.L;-/
olT L?;.-/
-76195 -.8307 -1.0156 Ry -11800

Constant Potential Outside of Spheres

Fi1G. 2. Variation of the energy levels at L with change in the
constant potential outside the APW spheres.

given by application of the time-reversal operator and
the point-group symmetry of the group of % vector. The
Slater system of atomic units is used. For computational
ease, the matrix elements of =/m=2x are calculated
instead of =.

The resulting matrix elements of the effective
Hamiltonian in the presence of magnetic field for
|Lg,v) and |Lgt,c) levels are

(LGI_)'D IZC.H l le_,'U> = E(Ls—’v) + (hz/zm)
X[ —0.42k,2+14.14 (k.2 x,2) |
—1us(7.50)H,, (3)

4+
La:Ls

’ L41L!
L3e ~
Le
Lpy — s
Lyjp —————Lg
, Las |
L34 - 2
Le
Lyg———13 ¢
Lpp ———— L v
3 L: 4
Lig—— ¢
Uy ———— L%

NON-RELATIVISTIC FULL RELATIVISTIC

Fic. 3. Energy levels taken into account for k-p perturbation.
Only the levels marked as 14, ¢, and v are used in the sum over

uin Eq. (1).
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TasLE IIL The calculated energy levels for SnTe in units of Ry. Exg, Ex’, and Er are the eigenvalues for the nonrelativistic, relativistic
without spin-orbit interaction, and the full relativistic Hamiltonians, respectively. The wave vectors are in units of =/a.
Level Exr Eg’ Er Level Enr Eg' Er Level Egn Egr’ Egr
@ (b ©
I‘(0,0,0) A(212:2 Z(%,%,O)
T — —0.039 —0.039 Tg* As —0.156 —0.166 —0.165 Agyds 21 — —0.168 —0.168 =;
r, —003¢ —0.111 —0.111 T¢t —0.168 A Z, —0227 —0234 —0.234 =
Y —0230 —0230 —0.230 Ty Ay —0262 —0.283 —0.282 As Z; —0.225 —0261 —0.261 Z;
T —0257 —0.264 —0.264 T+ A; —0403 —0436 —0.423 A4ds =3 —0346 —0.366 —0.366 =
—0.264 T4+ —0.442 A¢ zy —0401 —0433 —0431 =5
Ty —0.265 —0.308 —0.291 T4 Ay —0415 —0475 —0.481 As Z —0424 —0473 —0475 Z;
—0.343 T¢ A —0.563 —0.642 —0.637 As 2z —0.537 —0.613 —0.611 =5
Tis —0.655 —0.704 —0.684 T~ As —0.657 —0.704 —0.685 A4As Zy —0.634 —0.683 —0.685 Zs
—0.743 T¢ —0.728 A Z; —0.719 —0.759 —0.759 =;
n  —0738 —0.894 —0.894 TI¢* A; —0941 —1.034 —1.034 As Z —0.885 —1.009 —1.009 =5
rn —1409 —1.502 —1.502 T¢* A1 —1366 —1.466 —1.466 As
(d © ®
L(I’IJI) A(S:Sy% Z(%ygyo)
Ly  +0.108 +40.093 +0.097 Ls"Lst Ar +0.098 +0.056 -+0.056 As b .014 —0.020 —0.019 =;
+0.090 Lg+ Az +0.023 +0.010 +0.013 Ag A5 22 -—O 179 —0.185 —0.185 =5
Ly +40.087 40.074 +0.077 Ls,Ls™ +0.007 As 23 —0.170 —0.208 —0.208 Z;
+0.072 Lg Ay —0.100 —0.137 —0.137 A T3 —0.322 —0.348 —0.348 =
Ly +40.062 +0.023 +40.022 Ls As —0.480 —0.509 —0.498 A4 A; 2, —0.448 —0.482 —0480 =5
L, —0.065 —0.103 —0.103 Lg* —0.518 A Z —0462 —0.534 —0.536 Z;s
Ly —0486 —0.515 —0.504 L ,Ls~ Ay —0.480 —0.561 —0.560 As Z —0.533 —0.597 —0.595 Z;
—0.525 L¢ A —0.562 —0.619 —0.620 As Zy —0.637 —0.685 —0.688 =
L~ —0485 —0.571 —0.568 Lgt A; —0.652 —0.698 —0.680 AyuAs Tz —0.794 —0.828 —0.828 =;
LY —0.562 -—0.615 —0.617 Lg : —0.720 A¢ Z; —0974 —1.067 —1.067 =5
Ly —0.551 —0.698 —0.679 L Lst Ay —1.081 —1.145 —1.145 A,
—0.720 Lg* A —1.300 —1.417 —1417 As
L —1.095 —1.155 —1.155 L¢*+
Ly —1291 —1411 —1411 L¢
(® () @
X(0,2,0) AE15,18) 2(1,1,0)
X: +0.180 +0.166 .+0.166 X+ Ay +0.168 +40.119 -+0.120 As 2 40.097 +40.062 4-0.062 =5
X/ 40174 +0.141 +0.142 X4 As —0.075 —0.086 —0.084 A4As5 T —0.135 —0.141 -0.141 =
X/ —0.054 —0.123 —0.120 Xg¢ —0.088 A z; —0.122 —0.162 —0.162 Z;
Xy —0.137 —0.197 —0.158 X¢ Ay —0.189 —0.220 —0.220 As z3 —0.285 —0.319 —0.319 =
—0.238 X A; —0450 —0481 —0469 AuAs 2y —0425 —0464 —0462 =5
X —0.504 —0.509 —0.509 X;* —0.489 As 2y —0412 —0481 —0483 =5
Xy —0.795 —0.831 —0.809 X Ay —0455 —0.527 —0.529 As Z; —0.592 —0.651 —0.649 Z;
—0.854 X~ A; —0.561 —0.629 —0.626 As Zy —0.669 —0.713 —0.715 Zj
X; —0.894 —0.996 —0.996 Xt As —0.655 —0.701 —0.683 A4As T3 —0.843 —0.875 —0.875 Z=;
Xy —0970 —0.996 —0.998 X¢ —0.724 As Z; —1016 —-1.102 —1.102 =
X —1.257 —1.385 —1.385 X¢* Ay —1.022 —1.100 —1.100 As
: A —1332 —1440 —1.440 A
® (k) 0]
(2:2: ) A(%%y%%)T%) . A(Oyl)o)
K, 40.019 40.014 40014 K; Az 059 +0.045 +0.048 AgAs Ay’ +0.084 +0.082 +40.082 Aq
K3 +0.027 —0.012 —0.012 K; +0.043 Ag Ay 40.027 40.018 -40.018 Ay
K3 —0.148 —0.198 —0.198 K; A —0.075 —0.115 —0.115 A, Ay 40026 —0.020 —0.019 A
K, —0231 —-0.287 —-0.282 K; As —0.484 —0.513 —0.502 A4As5 As —0014 —0.030 —0.023 As
Ky —0272 —0320 —0.324 K; —0.523 As —0.036 Ay
K, —0366 —0.394 —0.39 K; A; —0483 —0.569 —0.567 As As —0234 —0280 —0.257 Ag
K, —=0709 —0.766 —0.762 K; A —0.562 —0.619 —0.620 As —0.303 Ay
Ky - —0.761 —0.799 —0.803 Kj A3 —0.651 —0.698 —0.679 AgAs Ay —0333 —0.408 —0.407 As
K; —0937 —0964 —0.964 K; —0.719 As Ay —0439 —0444 —0444 A,
Ky, —1006 —1.076 —1.076 Kj; A —1.091 —1.153 —1.153 A Ay —0661 —0.716 —0.716 Ag
K, —1254 —1383 —1.383 Kj; Ay —0.739 —0.779 —0.754 Ag
—0.808 Aq
Ay —0904 —1.010 —1.010 A
Ay —1351 —1.453 —1453 A
(Leryv[3Cett| Loz~v) = —3us(5.62)H, O] (Lertye|3Cott | Los™,c) =3us(7.33)H-, (6)
where H¥=H ,+iH,.
(Lgr+,c| 5ot | Lortyc) = E(Le*,c) + 72/ 2m) In view of the strong interaction between the | Lg—,v)
and |Lg*t,c) levels, Cohen’s nonparabolic model® was
2 2 2 . X
X[2.34x,2—23.42(ka*+1,%) ] applied to these bands. By evaluating Cohen’s Egs.

—5us(4.07)H,,

©)

9 M. H. Cohen, Phys. Rev. 121, 387 (1961).
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(11)-(19), we obtain

I (Ler,o|mlu)(u|=| Lem,0) ix

Ko E(lep)—E,  m )

etk (Lertc|mlu)u]m| Lotc)

K= 2m { m. ; E‘(Lé‘,c) —E, .;n—’ ®
1= (lin/m) - {Loi-| = Loi+,c), ©)
u=(fc/m)-(Leir,v|=| Lestc), (10)

E,=E(L¢t,c)—E(Li ). (11)

Thus the energy relation for the conduction and valence
bands becomes

Ec,v =0-9K22—4.64(K:c2+Ky2) —0.025
- ([1.38K,2— 18.78 (kz2+1,2) +0.025 2
+0.075x,240.396 (.2 +1,2)} 12, (12)

where + and — correspond to ¢ and v, respectively, and
%%?2/2m has been set equal to unity.

If we denote the function inside the { } brackets
in Eq. (12) by f, the relationships

d%E,,, af\? o%f
a2 b e, (19
Ik

ok;? K K

result, where A,=A4,=-—9.28 and 4,=1.92. The
effective masses for k=0 can be obtained using Eq. (13).
Table VIII gives a comparison between the parabolic
and nonparabolic effective masses at L along with the g
factors. We can see that the nonparabolic effects are
substantial for the longitudinal effective mass, while
they are practically negligible in transverse directions.

TasLE IV. Composition of the double-group
levels used in the k-p perturbation.

|Li~,1)=D|Li(Lsd))
|Lei~,2)=C1| Loy~ (La2")}+C2| Lo~ (Lss) )+ Cs| Ler™(Ls6'))
| Ler™,C)=B1| Les+(L1s) )+ B2 | Lar™(L1s))
+ B3| Ler™(L110))+Ba| Ler™(Lau) )
| Loi=wy=A1|Ler™(Lar'))+A2| Lo~ (L22'))
+A3| Lei™(Las') )+A 4| Lar™ (Lsd))
[Lear*4)=E| L (Lsn))
|Ls*3)="F| Ler*(L19))+F2| Lot (L110))
) +F3| La™(Ls1) )+F4| Lot (Lsis))

“TaBLE V. Coefficients of spin-orbit mixing for the
double-group levels used in k-p perturbation.

A4, —0.081 B, —0.072 ¢, —0.126 F —0.130

A, —0.987 By —0.985 C 0.991 F 0.047

s —0.067 By —0.078 C; —0.032 Fy 0.990

44 —0.125 By 0133 D —1.000 Iy 0.038t
E 1.000
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TaBLE VI. Single-group matrix elements of momentum at L.
For computational ease, the given values are for = /m or two times
the matrix elements of momentum in a.u.

M18, 217 0.861 Mm, sn? —0.543 Muo, ¥ —0.208
Mls, 297 0.442 M21, 318 0.019 Muo' ? —1.062
Mls, 232 —0.121 22,811Y 1.100 M34, sn? —0.383
M)g,zlz —0.299 22, 313Y 0.003 Ma4, s13* —0.193
M19, 207 0.292 23, ¥ 0.001 M36, 311% 0.484
M19. 237 0.417 23, 313¥ 1.111 MBG, 313° 1.350
Miro,22 —0.034 18,3¢ —0.174 M4, 311Y 0.833
Mi10.202 —0.267 Mlg, 3¢? —0.159 M34, s —0.426
Muo, 2 —1.335 Mlg, ad¥ —1.191 Mae, su? 0.392

Mlg,as” —0.311 36,3187 0.762

Tasre VII. Calculated momentum matrix elements (r’=m/
m=2m) between the spin-orbit-mixed double-group levels at
Linau. -

(Le1~v|m’ | Leait,c) —0.273 (Le1~,v| 7’| Ls+,3) 0.521 —0.0744
(Le1~,v|we'| Lea*t,c) —0.199 (Let*,c|m’| Le1,2) —0.087
(Le1—,9|m’| Le1*,4) 0.103 (Ler*,c|ma’| Le2™,2) 0.779
(Le1~,v|wa'| Le2*,4) —0.719 (Lert,c|ma’ | La—,1) 0.078 —0.569¢

(Lor~y|ma’|Le*,3)  —0.0744-0.521% (Ler*c| 2’| Ls™,1)  —0.569 40.078i

Tasre VIII. Calculated effective masses and g factors at L.

Parabolic

Nonparabolic
mi*/m  m*m owmtm omFm gl gl
L¢ v —2.381 0.071 —0.513 0.075 7.50 5.62
Lgte 0.427 —0.043 0.258 —0.044 407 7.33

The first partial derivatives of 32E,,,/d«;® are all zero
at x=0. By looking at the second partial derivatives,
we see that except for m*, the rest of the effective
masses increase in magnitude as’ we move away from
point L. The E-versus-x surface for the valence band has
a saddle shape in the neighborhood of L (Fig. 4). The
curvature in the transverse direction is very steep, and
thus there should be two maxima very close on either
side of L on the face of the Brillouin: zone. The same
situation exist for the conduction band. Thus the con-
stant-energy surfaces for SnTe are considerably more
complicated , than they are in the case of the lead
chalcogenides.

IV. DEFORMATION POTENTIALS

By using the formalism of Ferreira!® in treating the
strain as a perturbation on the APW energy levels, the
deformation potentials at L are calculated for the
isotropic strain and three uniaxial strains along [0017,
[1117, and [111] directions (Tables IX and X). It is
known?*1® that the isotropic and [111] strain at L do
not split any energy levels. However, the rhombohedral
[111] and tetragonal [001] strains lead to the splitting
of the doubly degenerate Ls* levels. Table X1 gives the
deformation potentials for the double-group levels that
form the valence-conduction-band complex at L.

W L. G. Ferreira, Phys. Rev. 137, A1601 (1965).
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F16. 4. Energy dispersion for valence band at L in the
longitudinal and transverse directions.

V. DISCUSSION AND CONCLUSIONS
A. Band Edges

The calculated energy bands for SnTe indicate that
two sets of valence-band maxima occur, one at L and
the other in the 2 direction. However, the results of the
k-p perturbation at L indicate a more complicated
situation, namely, that the valence band rises very
steeply in energy in the transverse direction. Thus the
valence-band energy expanded about L will have a
saddle shape, and there would be two true maxima on
the face of the Brillouin zone on each side and very
close to the point L.

The valence constant-energy surfaces at L, neglecting
the nonparabolic effects, will be hyperboloids of revolu-
tion about the [1117] direction. The conduction band
at L has a very similar shape to that of the valence band
when -inverted. Figure 5 shows the energy-dispersion
curves near L for the longitudinal and transverse direc-
tions. Burke and Riedl!! attribute the large value of

E
/ \‘ c,l
/
Jent L—*k “
] \

F16. 5. Conduction- and valence-band edges at L. Solid curves
indicate the bands in longitudinal direction [1117] and broken
curves in the transverse direction (on the face of the Brillouin

zone).

11 7. R. Burke, Jr. and H, R. Riedl (private communication)-
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optical absorption in SnTe in the 0.35-0.42 eV range
along with its positive curvature in this region (in
contrast to the negative curvature in the case of PbTe,!?
which has simple bands) to the complex shape of the
valence band. The present theoretical results indicate
such complexity not only for the valence but also for the
conduction band.

There is general experimental agreement!*!5 on the
existence of a direct energy gap of about 0.3 eV at
4.2°K and 0.2 €V at 300°K.. The calculations give a value
of 0.67 eV for E,/ in Fig. 5. Preliminary calculations
based on Eq. (12) indicate that E, is about 0.53 eV.
This is in good agreement with experiment, considering
the sensitiveness of the gap to the value of the constant
potential and the uncertainty in the experimental
results.

B. Band Inversion

A significant difference between the energy bands of
SnTe at L and those of the lead chalcogenides is due to

TasLE IX. Matrix elements of isotropic and [111] uniaxial strains
between the single-group states at L in eV.

Single-grou Single-grou
gsta,tgers P TIso. [111] n%ta'szes P Iso. [111]
Lo, Loy’ 438 — 1.08 Lis,Lis 9.53 — 0.04
Ly’ Ly — 6.70 4.06 Ly Lyy —15.54 1.89
Lo Ly —22.81 —1135  LuoLyo —23.86 —13.97
Loy, Lsy’ 0 — 0.57 Lis,L1g 0 — 1.51
L' Ld O 613 Ll O 2.18
Lo, Los’ 0 - 617 Ly9,L1zo 0 8.28
L, Lsd — 452 372  LyyLan — 462 228
Lid,Lid —1636 — 940  LyusLys —1673 — 845
L3, Lss’ 0 3.16 Ls11,Ls13 0 — 6.28

a reversal of the order of the Lg~ and L¢* levels, which
correspond to the conduction and valence bands. The
first implication of this band inversion is that these two
bands will tend to cross each other away from L. How-
ever, because of symmetry requirements, this crossing
is forbidden, and the avoidance of crossing leads to the
two maxima off L. The second implication is that the
deformation potential for the gap between these two
bands will change sign from that of the lead chalco-
genides. This is shown theoretically by the fact that
Drso (cond.—val.) at L for SnTe is —8.68 eV while for
the others,%19 it ranges from 11.55 to 17.24 eV. Al-
though, in the case of SnTe, this calculated value should
be different from the true deformation potential for
minimum gap E,. The band inversion was first pre-

12 W, W. Scanlon, in Solid State Physics, edited by F. Seitz and
D.1 T;urnbull (Academic Press Inc., New York, 1959), Vol. 9,
p. 115.

131,. Esaki and P. J. Stiles, Phys. Rev. Letters 16, 1108 (1966).

14R. B. Schoolar, H. R. Riedl, and J. R. Dixon, Solid State
Commun. 4, 423 (1964).
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TABLE X. Matrix elements of [Ili;] and [001] uniaxial strains between single-group states at L in eV,

Single-group states R T Single-group states R T
Lz_(Ln'),Lg_(Ln,) 6.09 4.42 L[+(L18),L1+(L19) — 2.72 —2.41
Ly (Lay'),Ls(Les") 1.01 2.29 Lyt (Lis),Ly+(Lazo) — 117 —0.33
Lz'(Ln’),Lz—(Lzs’) — 274 — 3.60 L1+(L19),L1+(L110) 4.17 5.20
Lg"(Lzl'),Lz"(Lu') — 248 — 6.26 L1+(L15),L1+(Lsu) - 029 —3.67
Ly~ (Lai"),Le(Ase’) — 6.21 2.12 Ly*(Lis), L1t (Lass) 0.88 0.67
Lo (La'), Lo (Le) 4.53 6.31 Lt (L) Lt (Law) — 436 —7.26
Ly (ng'),Lg"(L“') 5.44 — 1.74 L1+(L19),L1+(L313) 8.50 —1.27
Lg—(Lg;;'),Lz-(LMI) — 295 — 1.85 L1+(L110),L1+(L311) — 4.25 —0.40
Ly~ (Lsy'),Ls (Lss") 13.73 — 5.95 Lyt (L110), L1t (Lars) —12.78 6.42
Li~(Lst'),Li~(Lsd) — 0.80 2.09 Lo*(Lau), Lo (La) — 1.32 1.19
Ll"(L“'),Ll_(L;g') 0.09 441 L1+(L311),L1+(L313) — 2.27 1.77
Lx"(Lss'),Lx'(Las') 4.66 —10.14 L2+(L313),L2+(L313) 3.87 —9.14
L{‘(L“')’Lz—(LM') — 198 — 1.27 L2+(L311),Lz+(L313) 0.99 —5.86

dicted by Dimmock et @l.'® on the basis of data from
luminescence at 12°K, optical absorption at 300°K in
Pb.Sn;_,Te, and tunnelling in SnTe at 4.2 and 300°K.
Further experimental evidence is supplied by Dixon and
Bis!” as a result of resistivity and Hall coefficient meas-
urements on Pb,Sn;_,Te alloys as a function of tem-
perature. They obtain breaks in the resistivity curves
at temperatures which are in agreement with tempera-
tures predicted for band crossing as a function of
composition.

C. Two-Band Model for Valence Band

A two-valence-band model for SnTe, was proposed by
Allgaier and Scheie'® to explain the temperature de-
pendence of the Hall coefficient. A great deal of sub-
sequent experimental results'®~?* have been accumu-
lated that point to the validity of this model. This
behavior of the Hall coefficient, which reaches a peak at
about 700°K, has been interpreted by Andriev?? as a
two-band effect including interband scattering. Further
experimental support comes from the carrier-concentra-
tion dependence of the thermoelectric coefficient and of
the ratio Rp/Ry7.20:21:2% A very abrupt rise in the thermo-
electric power a occurs at the same carrier concentra-
tion at which there is a kink in the Rp/Rq7 curve. This
can be attributed to the entry of the Fermi level from
one band into another, i.e., a break in the density of

15 B, F. Bilenkii, A. G. Mikolaichuk, and D. M. Freik, Phys.
Status Solidi 28, K5 (1968).

16 J, O. Dimmock, J. Melngailis, and A. J. Strauss, Phys. Rev.
Letters 16, 1193 (1966).

17 J, R. Dixon and R. F. Bis, Phys. Rev. 176, 942 (1968).

18 R. S. Allgaier and P. O. Scheie, Bull. Am. Phys. Soc. 6, 436
1961).
( BR. S. Allgaier and B. B. Houston, Jr., in Proceedings of the
International Conference on the Physics of Semiconductors, Exeler
(The Institute of Physics and the Physical Society, London, 1962),

1

. 172,
20 R. F. Brebrick and A. J. Strauss, Phys. Rev. 131, 104 (1963).
21V, I. Kaidanov, I. A. Chernik, and B. A. Efimova, Fiz. Tekh.
Poluprovodnikov 1, 869 (1967) [English transl.: Soviet Phys.—
Semiconductors 1, 723 (1967)]. .
22 A, A. Andreev, Fiz. Tverd. Tela 9, 1560 (1967) [English
transl.: Soviet Phys.—Solid State 9, 1232 (1967)].

states.?2 Some of the above behavior could be explained
on the basis of a single nonparabolic band. However,
the absence of similar behavior of R(T) in #-type lead
chalcogenides, in view of the similarity of their valence-
and conduction-band shapes at L, renders this explana-
tion implausible.

The theoretical band calculation (Fig. 1)Tshows]a
second set of apparent valence maxima in the [110]
direction that may provide the second band of the two-
band model, although in the absence of a k- p perturba-
tion for this maxima, we cannot make a detailed analy-
sis. Tsu et al.?* have identified the second band as a
lower-lying valence band at L with a separation of 0.34
eV. However, this does not agree with the calculated
bands which give the separation at L a lower limit of
0.84 eV. Furthermore, their symmetry assignments to
the band do not agree with any of the theoretical
studies of SnTe or the lead chalcogenides. The results
of the nonparabolic approximation given in Sec. III
indicate that even in a two-band model, one cannot
safely neglect the nonparabolic effect in the bands at L,
especially since the correction is sizable in the trans-
verse direction (Table VIII) and since the maxima
occur in this direction.

Tasre XI. Deformation potentials in eV, for the spin-orbit
mixed double-group levels that make the valence-conduction
band complex at L.

Spin-orbit
mixed-double-

group level  Diso Dui Dui Do D, Dy

|LiLi1) — 452 372 —325 —1.51 7.84 —4.12
| Ls~,2) — 457 350 —320 —1.64 7.54 —4.04
| Let,c) —-1533 —-021 -804 —-6.08 735 —7.56
| Lg~yv) — 665 310 —3.65 —196 798 —4.88
|LitLst3) — 462 228 —331 —1.54 573 —345
| Let4) — 491 162 —3.54 —1.86 489 -—-327

23 R. S. Allgaier (private communication).
(1;6?). Tsu, W. E. Howard, and L. Esaki, Phys. Rev. 172, 779
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Shubnikov—-de Haas measurements? 26 have shown
the complicated nature of the primary valence band by
the large number of cross sections observed, and seem to
confirm the existence of the second valence band, since
a new cross section appears at higher carrier concentra-
tions. However, the symmetry of this cross section does
not seem to point to a {110} surface.

The nonsimple valence band, high carrier concentra-
tion (~102° cm~?), and high static dielectric constant of
12004200 27 could be responsible for the appearance
of superconductivity in SnTe,>?® according to Cohen’s?
theory of superconductivity in multivalleyed degenerate
semiconductors. The existence of the large number of
valleys (20 valleys, if the >, maxima are taken into

% J. R. Burke, Jr., R. S. Allgaier, and B. B. Houston, Jr., Phys.
Rev. Letters 14, 360 (1965).

26 J. R. Burke, Jr., B. B. Houston, Jr., H. T. Savage, J. Babiskin,
and P. G. Siebenmann, J. Phys. Soc. Japan Suppl. 21, 384 (1966).

27 G, S. Pawley et al., Phys. Rev. Letters 17, I;53 (1966).

28R, A. Hein et al., in Proceedings of the Ninth International
Conference on Low-Temperature Physics, Columbus, Ohio, edited
by J. G. Daunt ef al. (Plenum Press, Inc., New York, 1965), p. 604.

20 M. L. Cohen, Phys. Rev. 134, A511 (1964).

account) should enhance the conditions of supercon-
ductivity by providing a large number of states at the
Fermi level for intervalley carrier scattering, especially
since . these transitions, as a consequence of large
momentum transfer, are less screened than the intra-
valley processes. Furthermore, the transition tempera-
ture rises with increasing carrier concentration, which
further supports the above conclusions.
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Local and Nonlocal Magnetoplasma Effects in n-Type Lead Telluride*
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Measurements of the derivative of the microwave absorption coefficient as a function of static magnetic
field H have been carried out in high-mobility (1.0X10¢ cm?/V sec) #-type lead telluride at 70 GHz and
4.2°K. The measurements were taken in the Voigt (qo.L H, where qq is the incident radiation wave vector)
and Faraday (qol|H) configurations, as well as in intermediate geometries, where a mixed Voigt-Faraday
situation applied. The sample surface, a {110} plane, was fixed perpendicular to qo, and H was rotated in a
{100} plane which contained qo. The data were analyzed using well-known local theory and a simplified
nonlocal theory for the Azbel-Kaner and Doppler-shifted cyclotron resonances. The observed local magneto-
plasma effects agreed with those predicted from the {(111)-ellipsoid model and included the hybrid resonance
which has not been previously reported in lead telluride. The values deduced for the transverse mass m,
and the mass ratio K=my/m; were m;/my=0.0434+0.04 and K=9.741.4 at a carrier concentration of
8.1 10" cm™3. Two weak, low-field resonances were identified as the first and second Azbel-Kaner subhar-
monics of a tilted-orbit cyclotron resonance. The values of the magnetic field at which the resonances and
dielectric anomalies were observed in the Faraday geometry were shifted 4-199%, relative to the corresponding
values in the Voigt geometry, and some of these shifts agreed with the predictions of the simple Doppler-shift
theory. Analysis of the Voigt dielectric-anomaly data gave a value of 10* for the static part of the lattice
dielectric constant. A similar value has been obtained in microwave-helicon experiments, while other methods

of determination have given values near 400.

1. INTRODUCTION

HE free-charge carriers of a solid form a plasma
which in the presence of electromagnetic radia-
tion and a static magnetic field sustains the electro-

* Based upon a dissertation by the author submitted to the
Physics Department of the University of Pennsylvania in partial
fulfillment of the requirements for the Ph.D. degree. Work
supported by the U. S. Office of Naval Research under Contract

magnetic waves known as magnetoplasma modes. These
modes exhibit a variety of interesting properties which
depend upon the band structure of the material and
the degree of nonlocality in the internal current-
electric-field relation. In the-limit where the current-
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