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Infrared-active lattice vibrations have been studied in the cubic semiconductor iron pyrite (FeS;) by
measuring the room-temperature reflectivity at near-normal incidence. A group-theoretical analysis of
lattice vibrations at the I" point in the pyrite structure predicts five infrared-active modes belonging to the
irreducible representation I's~. Four of these modes are observed experimentally. An analysis of the data
using classical dispersion theory is made to determine the high-frequency dielectric constant and the fre-
quencies, strengths, and linewidths of the observed modes. In addition, a Kramers-Kronig analysis of the
data is made to obtain the dielectric response. The frequencies of four transvérse and four longitudinal
optical modes are also determined. The implications of the infrared data concerning the interatomic bonding

in FeS, are discussed.

I. INTRODUCTION

NFRARED-ACTIVE lattice vibrations have been
studied both experimentally and theoretically in the
cubic semiconductor iron pyrite (FeS;) in an attempt
to understand the lattice dynamics and the nature of
the atomic bonding in this multimode crystal. The
pyrite structure, with 12 atoms per primitive unit cell,
allows for 3 acoustical an 33 optical modes of vibration.
By contrast, the more familiar cubic semiconductors
such as Ge and Si or the ITI-V and II-VI compounds
have structures with only two atoms per unit cell.
Pyrite has also been reported! to have the interesting
property that the elastic constant Ci. is negative. As a
first step in attempting to understand the interatomic
forces in pyrite, we have undertaken a study of the
infrared-active lattice vibrations.

Because of the large number of optical modes in
pyrite, it is informative to determine in advance the
number of modes which are expected to show infrared
or Raman activity. At the same time, it is desirable to
identify these vibrations according to their symmetry
species or irreducible representations. Information of
this type may be obtained from a group-theoretical
analysis of lattice vibrations at zero wave vector (q=0).
In Sec. II we give the results of such an analysis as
applied to the pyrite structure.

In the experimental section of this paper the room-
temperature infrared reflectivity obtained from a
natural specimen of FeS; is reported. The observed
reflection spectrum is analyzed in two ways. First, the
infrared-active modes are represented by damped
classical oscillators. By fitting the classical oscillator
theory to the observed reflectivity, the high-frequency
dielectric constant and the frequencies, strengths, and
linewidths of the four observed modes are determined.
These results are then used to find the frequencies of

* A preliminary account of this work was presented at the
Miami Beach Meeting of the American Physical Society, 1968
[Bull. Am. Phys. Soc. 13, 1376 (1968)].
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1S, Bhagavantam, Proc. Indian Acad. Sci. 41A, 72(1955);
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the long-wavelength transverse optical (TO) and longi-
tudinal optical (LO) modes. Secondly, a Kramers-
Kronig (KK) analysis of the reflectivity data is made
to obtain the dielectric response. These two methods of
analysis are compared by computing in each case the
refractive index, the extinction coefficient, and the real
and imaginary parts of the complex dielectric function.

Finally, we discuss these results and consider how
one might hope to learn more of the nature of the modes
from a simple interatomic-force model.

II. STRUCTURE AND GROUP THEORY
OF PYRITE

Pyrite crystallizes in a cubic structure with 12 atoms
per primitive unit cell as shown in Fig. 1. The Bravais
lattice is simple cubic with fundamental translation
vectors

ai=ael, a;=apj, as=ack, 1)

where a9 is the cube edge of the unit cell and has the
value? 5.40667 A for FeS,. The structure may be viewed
as consisting of 12 interpenetrating simple cubic sub-

Fic. 1. Crystal structure and primitive unit cell of pyrite. The
black spheres represent iron atoms, while the white spheres
represent sulfur atoms.

*R. W. G. Wyckoff, Crystal Structures (Wiley-Interscience,
Inc., New York, 1963), Vol. 1, pp. 346 and 347.
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TaBLE I. Positions of atoms in the pyrite unit cell.
The parameter # has the value 0.386 for FeS,.

Fe S
k¥ Coordinates K Coordinates
5 (e, w0, 14)
0 (—u, —u, —u)
1 (Oy 0)0) 7 (M—%, —u+%) “M)
2 (O) %y %) 8 ( M+2,M“‘%, M)
3 (%7 01 %) 9 ( %1%_" "‘M"’-%)
4 (%) %; 0) 10 (u) M+Z>u_%)

11 (—ut3%, —u,u—%
12 (M—'%, u, '—u'*'%)

lattices. Four of these have iron atoms located at the
lattice sites, and the other eight have sulfur atoms at the
lattice sites. The sulfur atoms are positioned such that
the line joining adjacent sulfur pairs is aligned along
one of the four equivalent (111) directions.

It is of interest to note that the iron atoms in the
pyrite structure sit at the sites of a fcc lattice. Likewise,
if the midpoints between sulfur pairs are considered as
- lattice points, these also form an fcc lattice. Thus, the
structure may be considered as an NaCl-like grouping
of iron atoms and S, pairs. It should be emphasized,
however, that pyrite does not have the same symmetry
as NaCl, and thus one should avoid making symmetry
arguments from that basis.

If the origin (0,0,0) of the (x,,2) coordinate system
is chosen as shown in Fig. 1, atoms within the unit cell
have the positions?® listed in Table I. Here distances are
given in units of the lattice parameter @o. The parameter
# for FeS, has the value 0.386.2

Before discussing the group analysis of pyrite, we
wish to draw attention to several recent articles dealing
with the application of group theory to the study of
lattice vibrations. Noteworthy among these are the
works of Chen,* of Maradudin and Vosko,® and of
Warren.®

Tasre II. Factor group operations 4; of 776,

7 [R:|t:] i [R/|t:]
1 [xy3]0] 1 [zg2|0]
2 [x72[$30] 2 [Zy2]340]
3 [zyz|01% 3 [x72]0%%
4 [273]50%] 4 [xy2z|303]
5 [sayl0] 5 [223l0]
6 [zzy1303] 6 [z2g|303]
7 [z27]330] 7 Lzxy|330]
8 (22703 3] 8 [zzv|0%3
9 [yzx]0] 9 z2z|0]
10 [722]103%] 10 [vzx|0%%]
1 [g22|30%] 11 [yzz]30%]
12 [yzz($30] 12 [7z2[$30]

8 International Table for X-Ray Crystallogmphy (The Kynoch
Press Birmingham, England, 1952), Vol.
S/ H. Chen, Phys. Rev. 163 532 (1967)
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From symmetry considerations alone it is possible to
determine the number of infrared- and Raman-active
modes of vibration and, further, to enumerate the
symmetry species or irreducible representations to
which these modes belong. In treating long-wavelength
infrared-active vibrations we may choose q=0, which
corresponds to vibrations at the I' point or center of
the simple cubic Brillouin zone.

Pyrite belongs” to the nonsymmorphic space group
T3¢ (Pa3). The factor group operations A; associated
with a nonsymmorphic space group involve both a
rotational part R; and a nonprimitive translational
part t. In Table II, we list these operations for the
factor group of 7%4°.

When the 78 factor group operations are applied to
the coordinates of the atoms listed in Table I, one finds
that the atom « is taken into the atom «’ as given in
Table III. Using Table III, one can construct a set of
representation matrices® of order 36)X36 for the sym-
metry point I'. A decomposition into irreducible
representations gives

=TIt T3t 431
+2P1—+2P2*+2P3_+6I‘4_. (2)

It is well known® that infrared-active modes require
representations with odd parity, transforming as x, ¥, 2.
The three-dimensional I';~ representations meet these
requirements. We thus conclude that the infrared-active
modes must have this symmetry. As yet we have not
considered the pure translational acoustic modes. It is
easy to see, however, that these also must possess the
I'y symmetry, in that they must have odd parity under
inversion and transform as «, vy, z. The triple degeneracy
of the acoustic modes at q=0 implies that only one I'j~
representation is needed to label these modes. We are
thus left with five infrared-active modes of TI'y;~
symmetry.

The Raman-active modes may be determined very
simply from considering the direct product I'i~X T4,
This forms a reducible representation of even parity
transforming as x2?, ¥%, 2%, xy, etc., as required for the
Raman modes. When this direct product is decomposed
into irreducible representations, we find

P XT =T+ T+t 2T. 3)

Since each of the I't representations is contained in this
decomposition, we conclude from Eq. (2) that six modes
are Raman-active, namely, one I't*, one I's*, one I';*,
and three T'st.

It is impossible using infrared radiation to investigate
experimentally lattice vibrations for q precisely equal
to zero. Because of retardation one can only probe near

( 5A.) A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1
1968).

6 J. L. Warren, Rev. Mod. Phys. 40, 38 (1968).

7 J. C. Slater, Quantum Theory of M olecules and Solids (McGraw-
Hill Book Co., New York, 1965), Vol. 2, pp. 408-417.

8 G. Herzberg, Molecular Spectra and Molecular Structure
(D. Van Nostrand, Inc., New York, 1945), Vol. II.
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TABLE III. Values of «’ obtained when a symmetry operation 4; is applied to atom «.

k A1 Ay As Ay As Ag Ar As Ag Aw An A AY AY A A A Ad A A AY AW Ay Ay
1—- 1 4 2 3 1 3 4 2 1 2 3 4 1 4 2 3 1 3 4 2 1 2 3 4
2— 2 3 1 4 3 1 2 4 4 3 2 1 2 3 1 4 3 1 2 4 4 3 2 1
3— 3 2 4 1 4 2 1 3 2 1 4 3 3 2 4 1 4 2 1 3 2 1 4 3
4— 4 1 3 2 2 4 3 1 3 4 1 2 4 1 3 2 2 4 3 1 3 4 1 2
5— 5 7 9 1 5 11 7 9 5 9 1 7 6 8 10 12 6 12 8 10 6 10 12 8
6— 6 8 10 12 6 12 8 10 6 10 12 8 5 7 9 1 5 11 7 9 5 9 11 7
7—- 7 5 11 9 9 7 11 5 11 7 5 9 8 6 12 10 10 8 12 6 12 8 6 10
8— 8 6 12 10 10 8 12 6 12 8 6 10 7 5 11 9 9 7 11 5 11 7 5 9
9— 9 11 5 7 11 5 9 7 7 11 9 5 10 12 6 8 12 6 10 8 8 12 10 6

10— 10 12 6 8 12 6 10 8 8 12 10 6 9 11 5 7 11 5 9 7 7 11 9 5

11-11 9 7 5 7 9 5 11 9 5 7 11 12 10 8 6 8 10 6 12 10 6 8 12

12—12 10 8 6 8 10 6 12 10 6 8 12 i 9 7 5 7 9 5 11 9 5 7 1

zero wave vector (q=~0). In this case, it is well known
that the LO modes occur at higher frequencies than
their corresponding TO modes. The splittings may be
attributed to a macroscopic polarization field E= —4#P,
which is present in the case of the LO modes, but which
is absent for the TO modes.

With these considerations in mind, let us again turn
to the decomposition for pyrite. The I';~ and Tt
representations are three-dimensional, while the re-
maining representations are one-dimensional. This
implies a triple degeneracy for the I'i~ and T'st modes
and no degeneracy for the other modes. From the
discussion above, however, we know that the LO and
TO modes cannot be degenerate for q=~0. We thus
conclude that experimentally one should observe five
doubly degenerate infrared-active TO vibrations.
Associated with these will be five nondegenerate LO
modes. For the Raman-active modes, there should be
three doubly degenerate TO modes and three non-
degenerate LO modes, all with I'st symmetry; we are
unable to characterize the remaining nondegenerate
I'tt, Iyt and T'st modes as either TO or LO.

A final bit of symmetry information may be obtained
from the fact that pyrite possesses two different centers
of inversion symmetry. One inversion center is located
at the sites of the iron atoms, and the second is located
at the midpoint between sulfur atoms in neighboring
pairs. In a mode with an even representation the dis-
placements of particles which are related through an

inversion center are in opposite directions.’ Further-

more, particles at sites of inversion symmetry have no
displacements in modes with even representations.
From this we conclude that in the I't modes the iron
atoms remain at rest, and the sulfur atoms in neighbor-
ing pairs move in opposite directions with equal ampli-
tudes. Obviously, any interatomic-force model used
to represent the vibrations of pyrite must reflect these
symmetry requirements.

III. EXPERIMENTAL DETAILS

Measurement of the reflectivity at near-normal
incidence was made at room temperature in the spectral

% J. Murphy, H. H. Caspers, and R. A. Buchanan, J. Chem.
Phys. 40, 743 (1964). .

range 190-660 cm™! using a Perkin-Elmer model 301
spectrophotometer. A natural specimen of FeS, with one
surface highly polished was compared against an
aluminized mirror, using a sample-in-sample-out
procedure. Since pyrite possesses cubic symmetry, no
polarization or orientation studies were necessary.

The reflectivity data are shown plotted in Fig. 2 as
open circles. The solid curve drawn on the figure
represents a theoretical fit to the data, which we discuss
in Sec. IV. Four infrared-active modes are clearly
visible in the data. The two lower-frequency modes are
well separated in energy, whereas the higher-frequency
modes show considerable overlap. The fifth mode which
is predicted by the group theory has not been observed
experimentally, even though the range of investigation
was extended from 100 to 800 cm. It seems likely then
that either this mode is too weak to be observed or it is
hidden by the details of the other stronger modes.

In a further attempt to observe the fifth mode, we
have also studied pyrite in transmission. In this case, a
thin slice of material mounted on a silicon substrate
was lapped and optically polished until a sample thick-
ness of approximately 20 u was achieved. The sample
was compared in transmission to a silicon disk identical
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Fi16. 2. Reflectivity of FeS; as a function of wave number. The
points are experimental values, and the curve is theoretically
calculated from the classical oscillator model.
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F16. 3. Refractive index as a function of wave number. The
points are obtained from a KK analysis of the reflectivity data,
and the curve is theoretically calculated from the classical oscil-
lator model.

to the one used for the substrate. The transmission
study failed to reveal the fifth mode in the range
100-700 cm™. Thus, our conclusion remains that this
mode is either very weak or else hidden by the other
stronger modes.

IV. RESULTS AND ANALYSIS

A knowldege of the frequency dependence of the
complex dielectric function e(w)=e1+7e; is of central
importance in understanding the optical properties of
a solid. Two commonly used methods of analysis exist
whereby information regarding the dielectric response
of a solid may be extracted from a measured quantity
such as the reflectivity. The first method involves the
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Fic. 4. Extinction coefficient as a function of wave number. The
points are obtained from a KK analysis of the reflectivity data,
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use of classical oscillator theory to represent the
infrared-active modes of vibration. Barker,!® and more
recently Chang et al.,!* have extended the macroscopic
theory of Born and Huang!? to apply to crystals with
several optical modes.

Denoting the vibrational amplitude of the jth optical
mode by W;, the equation of motion of the jth damped
oscillator is written as

?W; oW;
+yi—+wWi=p;!/%w;E. 4
12 at

In addition, one can write the polarization of the crystal

as
€o—1

E. ©)

P=% pi'%w;W;+
7

v

The wj, v;, and p; represent, respectively, the oscillator
dispersion frequency, the damping constant, and the
oscillator strength of the jth mode; €, is the high-
frequency dielectric constant; and E is the macroscopic
electric field of the crystal. If plane-wave solutions are
assumed for the quantities P, E, and W, and these are
then substituted into Egs. (4) and (5), one can express
the real and imaginary parts of the complex dielectric
function as
4rp o} (00 —w?
R Pj J( i ) (6)
i (w2 —w?)?(vww)?

Viwiw
(@ =)+ (vww)?

The reflectivity R at normal angle of incidence is related
to the refractive index # and extinction coefficient & by

the expression
R=[(n—1)*+k*]/[ (n+1)*+k*], ®)

where n2—k2=¢, and 2nk=e.. In principle, a fit to the
experimental reflectivity can be obtained for a proper
choice of the model parameters w;, p; 7v;, and e, Ad-
justment of the parameters is usually made either by
trial and error or by least-squares fitting of Eq. (8) to
the reflectivity data.

The second method of analysis makes use of the KK
transformations to determine € and e directly from
the data, without reference to any model. Such an
analysis can easily be carried out using a digital com-
puter to numerically calculate the KK integral. The
review article by Stern'® contains a good discussion of
the KK procedure, together with helpful hints for the
construction of a workable computer program.

10 A, S. Barker, Jr., Phys. Rev. 136, A1290 (1964).

17, F. Chang, S. S. Mitra, J. N. Plendl, and L. C. Mansur,
Phys. Status Solidi 28, 663 (1968).

12 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954).

1B F, Stern, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1963), Vol. 15.

and

Q]

e=>_ 4drpjw;’
7
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In the present work the measured reflectivity was
analyzed using both the classical oscillator theory and
the KK transformations. The method of analysis con-
sisted of the following: First, attempts were made to
obtain the oscillator model parameters by trial-and-
error fitting of Eq. (8) to the measured reflectivity. After
a reasonable fit was obtained, refinement of the parame-
ters was made using a computer program designed to
least-squares fit Eq. (8) to the data. This improved the
agreement between theory and experiment in the region
around the two lower-frequency modes, but little im-
provement was obtained for the two higher-frequency
modes. Because of poor convergence, the least-squares
method of fitting was somewhat unreliable. It therefore
seemed desirable at this point to perform a KK analysis
of the data. In Figs. 3-6 the quantities #, &, €, and e,
computed from the KK analysis are shown represented
by open circles.

Since it is the reflectivity that one observes experi-
mentally, it could perhaps be argued that this is the
quantity one should attempt to fit theoretically. On the
other hand, from Egs. (6) and (7) we observe that it is
the dielectric function which is most directly related to
the parameters of the oscillator theory. For this reason,
we attempted to improve our oscillator fit by least-
squares fitting to the real dielectric function ; obtained
from the KK analysis. The result of this is shown in
Fig. 5, and the agreement is excellent. The values of the
model parameters obtained from this fit are listed in
Table IV. The quantities R, %, &, and e, were then com-
puted using these values of the parameters. The results
of these calculations are shown as solid curves in
Figs. 2-4 and 6.

—S2—iv1S1Hw2(1+4-4arpy/e)

Thus, if the oscillator parameters are determined, say,
by fitting to the measured reflectivity, Eqgs. (9) and (10)
can be solved to give the TO and LO complex
frequencies.

In order to determine the real parts of the TO and LO
phonon frequencies, we have solved Egs. (9) and (10)
using the values of the oscillator parameters given in
Table IV. These results are listed under column A
in Table V.

Chang et al.'* go on to point out that the commonly
used. method, wherein the LO frequencies are identified
as those frequencies at which the real part of the di-
electric function is equal to zero, is without theoretical
justification when the oscillator model includes damp-
ing. Instead, an alternative method is developed in
which the maxima and minima of the modulus of the
complex dielectric function |e| =€24¢:? are shown to
yield approximately the real parts of the TO and LO
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F16. 5. Real part of the complex dielectric function versus wave
number. The points are obtained from a KK analysis of the reflec-
tivity data, and the curve is theoretically calculated from the
classical oscillator model.

By splitting the phonon amplitudes W into solenoidal
(transverse) and irrotational (longitudinal) parts,
Chang et al.'* show that the oscillator equations of
motion (4) can be rewritten as two separate sets of
equations, one for transverse modes and one for longi-
tudinal modes. Solutions of these two sets of equations
are expressed in terms of complex frequencies. The
complex transverse frequencies are given by

Stj=:*=(wj2—%7j2)1/2_7:%7i7 J=1,2,--;n (9)

and the complex longitudinal frequencies are deter-
mined as solutions to the secular equation

4ar(p1pn) 2100/ €
4 (pjpn) w0/ €
PIRr— Slz—i'YnSl"I_wnz(l +4’7|'Pn/eoo)

=0. (10)

mode frequencies. The obvious advantage in using this
method is that, having calculated |e| from a KK or
oscillator analysis, the TO and LO frequencies may be
determined directly.

As a check on the frequencies obtained from Eqs. (9)
and (10), the |¢| function has been computed using ¢
and e; determined from the KK analysis of the reflec-

TABLE IV. Values of the classical oscillator model parameters
obta.nged from the best fit to the measured reflectivity and the ¢
function computed from the KK analysis.

J w; (cm™) pi vi

1 293 0.0258 0.005
2 348 0.065 0.0056
3 402 0.27 0.013
4 415 0.022 0.02
€=21.32 €= €27 4mp;=26.13
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tivity. This result is shown in Fig. 7. A smooth curve is
used to connect the individual points, but has no
additional theoretical significance.

One immediately observes that only three maxima
and three minima are present in Fig. 7. The three
maxima lead to the three TO frequencies given under
column B in Table V, and the three minima lead to
the LO frequencies similarly listed. These TO fre-
quencies are in good agreement with the first, second,
and third TO frequencies obtained from the oscillator
fit, and, similarly, the three LO frequencies agree well
with the first, second, and fourth LO frequencies listed
under column A. Referring to column A, the LO mode
at 414 cm! and the TO mode at 415 cm™! should lead
to one additional minimum and maximum, respectively,

Lo o s o S s S A S Y B Y
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Fic. 7. Modulus of the complex dielectric function versus wave
number. The points are obtained from a KK analysis of the
reflectivity data: A smooth curve connects the points, but has no
additional theoretical significance.
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in the |e| function at these frequencies. This, however,
is not observed in the computed function and may be
attributed to the small strength of the oscillator at
415 cm! in the presence of the strong oscillator
at 402 cm™L,

The results of column A of Table V demonstrate
that the TO and LO modes in a multimode crystal
alternate with increasing frequency. This seems to be
a generally valid principle. This point has been made
by Kurosawa, and results from the fact that in the
absence of damping the complex dielectric function
possesses poles at the TO frequencies. The principle is
analogous to Rayleigh’s theorem as discussed by
Maradudin, Montroll, and Weiss®® for the case of a
lattice perturbed by defects and impurities. There it is
shown that the normal-mode frequencies of the per-
turbed lattice fall between those of the unperturbed
lattice.

V. DISCUSSION

The classical oscillator fit to the FeS; reflectivity data
is adequate in all regions except in the immediate
vicinity of the two high-frequency modes. The reason
for the discrepancy here is not fully understood. One
possibility, which has not been taken into account by
the theory, is that the fifth infrared-active mode may
be present in this region. There is no experimental
evidence to support this, however, either from the
reflectivity or from the KK analysis of the data. With-
out some clear indication that the fifth oscillator is, in
fact, present, its inclusion into the theory seems
unwarranted.

Estep, Kovach, and Karr!® have recently studied the
infrared absorption bands of pyrite using a powdered
sample suspended in a cesium iodide matrix. These
authors observe four bands, and their reported absorp-
tion frequencies agree fairly well with the TO fre-
quencies we observe in reflection. They, however, find
the highest-frequency mode to be the strongest. This is
in conflict with the analysis of our data which shows
that mode 3 is the strongest and mode 4 is the weakest.
In fitting our reflectivity data we did attempt to assign
an oscillator strength to mode 4 larger than that for
mode 3; in doing so, however, we found that we were
unable to fit the broad shoulder on the low-frequency
side of mode 3. In our study of the transmission, our
sample was not sufficiently thin to be transmitting in
the region 400-440 cm™1. We are not able at this time
to state whether the discrepancy between our work and
that of Estep et al. is due to the different type of sample
used or to other causes.

14 T, Kurosawa, J. Phys. Soc. Japan 16, 1298 (1961).

15 A, A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1963), Suppl. 3.

16 P, A, Estep, J. J. Kovach, and C. Karr, Jr., Ann. Chem. 40,
358 (1968); P. A. Estep (private communication).
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TasLE V. TO and LO frequencies of the observed modes. The
values in column A were obtained from Eqgs. (9) and (10), and the
values in column B from the maxima and minima in [e].

A B
wTO wWLO wTO WLO
(em™) (em™)
1 293 294 292 296
2 348 352 347 353
3 402 414 402 oo
4 415 439 . 440

The generalized Lyddane-Sachs-Teller relation'” for
multimode crystals in the absence of damping may be
written as'®

€0 wLo;?

, (11)

€y i wTO’i2

where the summation is over all the infrared-active
modes. For the case of damped modes, Eq. (11) is
approximately true provided the damping is small and
the real parts of the complex frequencies are used. As a
check on our values for the dielectric constants and
the TO and LO frequencies, we have computed for the
four observed modes both sides of Eq. (11) from the
values given in Tables IV and V. We find /e, =1.23
and [ wro,>/wro2=1.22. The agreement is thus very
good and provides further evidence of the consistency
of the model using four oscillators; however, it does not
provide evidence about the presence or absence of the
fifth unobserved mode.

The strong infrared activity of FeS, suggests that the
interatomic bonding between iron and sulfur atoms is
largely ionic in character. This is further supported by
the fact that the iron and sulfur pairs form an NaCl-like
structure. On the other hand, the fact that in the Raman
modes the sulfur atoms in pairs vibrate against one
another, while the iron atoms remain at rest, suggests
that the S-S bonding is very important in determining
the nature of these modes. An experimental study of
the Raman-active modes would thus be of considerable
interest, as this would hopefully lead to a better under-
standing of the S-S bonding.

As a first step toward understanding the nature of the
atomic displacements in the infrared-active modes, a
short-range interatomic-force model has been set up
for pyrite. Using the method of de Launay," we have
assumed that nearest-neighboring Fe-S, S-S, and Fe-Fe

17 R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941).

18 W, Cochran, Z. Krist. 112, 465 (1959).

19 J, de Launay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2.
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atoms interact through forces both parallel and per-
pendicular to the bond joining each pair of atoms. The
parallel forces are specified by a central or bond-
stretching force constant and the perpendicular forces
by an angular or bond-bending force constant. We treat
the resulting six unknown force constants as adjustable
parameters in attempting to fit the model to the
infrared data.

Based on this model, the dynamical matrix has been
obtained for zero wave vector. For a given set of force-
constant parameters the 36)X36 dynamical matrix can
be specified numerically. Using a computer, one can
diagonalize the dynamical matrix to yield its eigen-
values and eigenvectors. By studying the atomic dis-
placements as determined from the eigenvectors, one
can identify the infrared-active modes. Attempts to fit
the model to the data are made by comparing the com-
puted and experimental frequencies as the force-
constant parameters are adjusted.

As one might expect, the values of the S-S force
constants are found to influence very little the fre-
quencies of the infrared-active modes. The Raman
modes, on the other hand, are expected to be very
sensitive to these parameters; consequently, a knowl-
edge of the Raman frequencies would be extremely
helpful in attempting to fit the model.

Using the model described above, we have as yet
been unable to obtain what we would consider a good
fit to the observed infrared frequencies. This is not too
surprising, however, since no account has been made
for long-range electrostatic forces. A more realistic
model would be one in which the ions are assumed
charged and are allowed to interact via long-range
Coulomb forces, as well as the previously described
short-range forces. Such a model is presently under
consideration in hopes of obtaining a better fit to the
infrared data.

From an interatomic-force model one may, in
principle, express the elastic constants of a crystal in
terms of the interatomic-force constants. Our short-
range force model has not given a sufficiently good fit
to the infrared data to warrant this calculation for the
elastic constants of pyrite. Nevertheless, provided one
had an adequate model, such a calculation would be
extremely useful in attempting to correlate the negative
value of Ci2 to one or more of the interatomic-force
constants.
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