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Infrared Studies of Lattice Vibrations in Iron Pyrite*
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Infrared-active lattice vibrations have been studied in the cubic semiconductor iron pyrite (FeS&) by
measuring the room-temperature reBectivity at near-normal incidence. A group-theoretical analysis of
lattice vibrations at the I' point in the pyrite structure predicts 6ve infrared-active modes belonging to the
irreducible representation F4 . Four of these modes are observed experimentally. An analysis of the data
using classical dispersion theory is made to determine the high-frequency dielectric constant and the fre-
quencies, strengths, and linewidths of the observed modes. In addition, a Kramers-Kronig analysis of the
data is made to obtain the dielectric response. The frequencies of four transverse and four longitudinal
optical modes are also determined. The implications of the infrared data concerning the interatomic bonding
in FeS~ are discussed.

I. INTRODUCTION
" 'NFRARED-ACTIVE lattice vibrations have been
~ ~ studied both experimentally and theoretically in the
cubic semiconductor iron pyrite (FeS2) in an attempt
to understand the lattice dynamics and the nature of
the atomic bonding in this multimode crystal. The
pyrite structure, with 12 atoms per primitive unit cell,
allows for 3 acoustical an 33 optical modes of vibration.
By contrast, the more familiar cubic semiconductors
such as Ge and Si or the III-V and II-VI compounds
have structures with only two atoms per unit cell.
Pyrite has also been reported' to have the interesting
property that the elastic constant C» is negative. As a
6rst step in attempting to understand the interatomic
forces in pyrite, we have undertaken a study of the
infrared-active lattice vibrations.

Because of the large number of optical modes in
pyrite, it is informative to determine in advance the
number of modes which are expected to show infrared
or Raman activity. At the same time, it is desirable to
identify these vibrations according to their symmetry
species or irreducible representations. Information of
this type may be obtained from a group-theoretical
analysis of lattice vibrations at zero wave vector (q =0).
In Sec. II we give the results of such an analysis as
applied to the pyrite structure.

In the experimental section of this paper the room-
temperature infrared reQectivity obtained from a
natural specimen of FeS2 is reported. The observed
reQection spectrum is analyzed in two ways. First, the
infrared-active modes are represented by damped
classical oscillators. By 6tting the classical oscillator
theory to the observed reQectivity, the high-frequency
dielectric constant and the frequencies, strengths, and
linewidths of the four observed modes are determined.
These results are then used to Gnd the frequencies of

*A preliminary account of this work was presented at the
Miami Beach Meeting of the American Physical Society, 1968
I Bull. Am. Phys. Soc. 13, 1376 (1968)j.
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the long-wavelength transverse optical (TO) and longi-
tudinal optical (LO) modes. Secondly, a Kramers-
Kronig (KK) analysis of the re6ectivity data is made
to obtain the dielectric response. These two methods of
analysis are compared by computing in each case the
refractive index, the extinction coeKcient, and the rea1
and imaginary parts of the complex dielectric function.

Finally, we discuss these results and consider how
one might hope to learn more of the nature of the modes
from a simple interatomic-force model.

II. STRUCTURE AND GROUP THEORY
OF PYRITE

Pyrite crystallizes in a cubic structure with 12 atoms
per primitive unit cell as shown in Fig. 1. The Bravais
lattice is simple cubic with fundamental translation
vectors

81=GP1 82 =CP3 83=CPk 0)
where up is the cube edge of the unit cell and has the
value' 5.40667 A for FeS&. The structure may be viewed
as consisting of 12 interpenetrating simple cubic sub-

HL
QF

FIG. 1. Crystal structure and primitive unit cell of pyrite. The
black spheres represent iron atoms, while the white spheres
represent sulfur atoms.

~R. W. G. Wycko8, Crystal Structures (Wiley-Interscience,
Inc., New York, 1963), Vol. 1, pp. 346 and 347.
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TAHLH I. Posltlons of atoIns j.n the pyrIte uIHt cell.
The parameter Q has the value 0.386 for Fes2.
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' International Table for X-Ray Crystallography (The Kynoch
Press, Birmingham, England, 1952), Vol. I.

4 S. H. Chen, Phys. Rev. 163, 532 (1967).

lattices. Four of these have iron atoms located. at the
lattice sites, and the other eight have sulfur atoms at the
lattice sites. The sulfur atoms are positioned such that
the line joining adjacent sulfur pairs is aligned along
one of the four equivalent (111)directions.

It is of interest to note that the iron atoms in the
pyrite structure sit at the sites of a fcc lattice. I.ikewise,
if the midpoints between sulfur pairs are considered as

. lattice points, these also form an fcc lattice. Thus, the
structure may be considered as an NaCl-like grouping
of iron atoms and S2 pairs. It should be emphasized,
however, that pyrite does not have the same symmetry
as NaCl, and thus one should avoid making symmetry
arguments from that basis.

If the origin (0,0,0) of the (x,y,s) coordinate system
is chosen as shown in Fig. j., atoms within the unit cell
have the positions' listed in Table I. Here distances are
given in units of the lattice parameter ao. The parameter
u for FeS2 has the value 0.386.'

Before discussing the group analysis of pyrite, we
wish to draw attention to several recent articles dealing
with the application of group theory to the study of
lattice vibrations. Noteworthy among these are the
works of Chen, 4 of Maradudin and Vosko, ' and of
Warren. '

I:rom symmetry considerations alone it is possible to
determine the number of infrared- and Raman-active
modes of vibration and, fur t.her, to enumerate the
symmetry species or irreducible representations to
which these modes belong. In treating long-wavelength
infrared-active vibrations we Inay choose q=o, which
corresponds to vibrations at the F point or center of
the simple cubic Brillouin zone,

Pyrite belongs~ to the nonsymmorphic space group
Tq' (Ea3). The factor group operations A; associated
with a nonsyrnmorphic space group involve both a
rotational part E; and a nonprimitive translational
part t;. In Table II, we list these operations for the
factor group of T~'.

When the T~' factor group operations are applied to
the coordinates of the atoms listed in Table I, one finds
that the atom rc is taken into the atom ~' as given in
Table III. Using Table III, one can construct a set of
representation Inatrices' of order 36X36 for the sym-
metry point F. A decomposition into irreducible
representations gives

r =r,++r,+yr,++3r,+
+2r;+2r;+2r;+6r;. (2)

It is well knowna that infrared-active modes require
representations with odd parity, transforming as x, y, s.
The three-dimensional F4 representations meet these
requirements. We thus conclude that the infrared-active
modes must have this symmetry. As yet we have not
considered the pure translational acoustic modes. It is
easy to see, however, that these also must possess the
F4 symmetry, in that they must have odd parity under
inversion and transform as x, y, s'. The triple degeneracy
of the acoustic modes at q =0 implies that only one F4-
representation is needed to label these modes. We are
thus left with 6ve infrared-active modes of F4
symmetry.

The Raman-active modes may be determined very
simply from considering the direct product F4 +F4 .
This forms a reducible representation of even parity
transforming as x', y', s', xy, etc., as required for the
Raman modes. %hen this direct product is decomposed
into irreducible representations, we 6nd

r;xr;=r++r++r '+»+. (3)

Since each of the F+ representations is contained in thi&

decomposition, we conclude from Eq. (2) that six modes
are Raman-active, namely, one Fq+, one F2+, one F3+,
and three F4+.

It is impossible using infrared radiation to investigate
experimentally lattice vibrations for q precisely equal
to zero. Because of retardation one can only probe near

5 A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1
. (1968).

6 I.L. %'arren, Rev. Mod. Phys. 40, 38 (1968).
7 J.C. Slater, QQantQm Theory of MolecQles and Sohds (McGrarv-

Hill Book Co., Neer York, 1965), Vol. 2, pp. 408—417.
G. Herzberg, 3EolecQlar Spectra muE 3folecQlar StrQctQre

(D. Van Nostrand, Inc., New York, 1945},Vol. II.
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YAIIr.E GI. Values of a' obtained when a symmetry operation A; is applied to atom rc.

1~
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4—+ 4
5-+ 5
6~ 6
7 —+ 78~ 8

10~ 10
11—+ 11
12~ 12

Ag A3

4 2
3
2 4

3
9

8 10
5 11
6 12

11 5
12 6
9

10 8
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3 1 3 4 2 1
4 3 1 2 4 4
1 4 2 1 3 2
2 2 4 3 1 3

ii 5 ii 7 9 5
12 6 12 8 10 6
9 9 7 11 5 ii

10 10 8 12 6 12
7 11 5 9 7 7
8 12 6 10 8 8
5 / 9 5 11 9
6 8 10 6 12 10

~10 ~ ll ~12

2 3 4
3 2- 1
1 4 3
4 1 2
9 11 7

10 12 8
7 5 9
8 6 10

11 9 5
12 10 6
5 7
6 8 12

W, ' A, ' ~,' A4' A,' a,'

1 4 2 3 1 3
2 3 1 4 3 1
3 2 4 1 4 2
4 1 3 2 2 4
6 8 10 12 6 12
5 / 9 ii 5 11
8 6 12 10 10 8
7 5 11 9 9

10 12 6 8 12 6
9 ii 5 7 11 5

12 10 8 6 8 10
11 9 7 5 7 9

AY' A8'

4 2
2 4

3
3 1
8 10
7 9

12 6
11 5
10 8
9 7
6 12
5 11

~9 ~10 ~11 ~12

1 2 3 4
3 2 1

2 1 4 3
2

6 10 12
5 9 11 7

12 8 6 10
7 5 9

8 12 10 6
7 11 9 5

10 6 8 12
5 7 11

zero wave vector (rl=o}. In this case, it is well known
that the LO modes occur at higher frequencies than
their corresponding TO modes. The splittings may be
attributed to a macroscopic polarization. field E= —krP,
which is present in the case of the LO modes, but which

is absent for the TO modes.
With these considerations in mind, let us again turn

to the decomposition for pyrite. The F4 and F4+

representations are three-dimensional, while the re-
maining representations are one-dimensional, This
implies a triple degeneracy for the F4 and F4+ modes
and no degeneracy for the other modes. From the
discussion above, however, we know that the LO and
TO modes cannot be degenerate for q=0. Ke thus
conclude that expeiimentally one shouM observe 6ve
doubly degenerate infrared-active TO vibrations.
Associated with these will be five nondegenerate LO
modes. For the Raman-active modes, there should be
three doubly degenerate TO Inodes and three non-

degenerate LO modes, all with F4+ symmetry; we are
unable to characterize the remaining nondegencrate
F~+, F2+, and F3+ modes as either TO or LO.

A final bit of symmetry information may be obtained
from the fact that pyrite possesses two diferent centers
of inversion symmetry. One inversion center is located
at the sites of the iron atoms, and the second is located
at the midpoint between sulfur atoms in neighboring
pairs. In a mode with an even representation the dis-
placements of particles which are related through an
inversion center are in opposite directions. ' Further-
more, particles at sites of inversion symmetry have no
displacements in modes with even representations.
From this we conclude that in the F+ modes the iron
atoms remain at rest, and the sulfur atoms in neighbor-
ing pairs move in opposite directions with equal ampli-
tudes. Obviously, any interatomic-force model used
to represent the vibrations of pyrite must reQect these
symmetry requirements.

III. EXPERIMENTAL DETAILS

Measurement of thc reQectivity at near-normal
incidence was made at room temperature in the spectral

~ J. Murphy H. H. Caspers, and R. A. Buchanan, J. Chem.
Phys. 40, r43 1964}.

range 190—660 cm ' using a Perkin-Elmer model 301
spectrophotometer. A natural specimen of PCS~ with one
surface highly polished was compared against an
aluminized mirror, using a sample-in-sample-out
procedure. Since pyrite possesses cubic symmetry, no
polarization or orientation studies were necessary.

The reQectivity data are shown plotted in Fig. 2 as
open circles. The solid curve drawn on the 6gure
represents a theoretical fit to the data, which we discuss
in Sec. IV. Four infrared-active modes are clearly
visible in the data. The two lower-frequency modes are
well separated in energy, whereas the higher-frequency
modes show considerable overlap. The fifth mode which
is predicted by the group theory has not been observed

experimentally, even though the range of investigation
was extended from 100 to 800 cm '. It seems likely then
that clthel t11ls mode ls too weak to bc obsclvcd or' lt ls
hidden by the details of the other stronger modes.

In a further attempt to observe the 6fth mode, we
have also studied pyrite in transmission. In this case, a
thin slice of material mounted on a silicon substrate
was lapped and optically polished until a sample thick-
ness of approximately 20 p, was achieved. The sample
was compared in transmission to a silicon disk identical

I I I I I I I I I I I I I I I I I I I I I I I I
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I"ro. 2. ReQectivity of FeS2 as a function of wave number. The
points are experimental values, and the curve is theoretically
calculated kom the classical oscillator model.
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I I I I I I I I I I I I I I I I I l I I I I use of classical oscillator theory to represent the
infrared-active modes of vibration. Barker, "and more
recently Chang et al. ,"have extended the macroscopic
theory of Born and Huang'2 to apply to crystals with
several optical modes.

Denoting the vibrational amplitude of the jth optical
mode by W;, the equation of motion of the jth damped
oscillator is written as

In addition, one can write the polarization of the crystal
as

1 1 1 1

200 300
1 1 1 1 ( t 1 1 1 1 1 1 1 1 1 I400, 500 600
1WAVE, NUMBER (cm ')

FIG. 3. Refractive index as a function of wave number. The
points are obtained from a KK analysis of the reQectivity data,
and the curve is theoretically calculated from the classical oscil-
lator model.

to the one used for the substrate. The transmission
study failed to reveal the Gfth mode in the range
100—700 cm '. Thus, our conclusion remains that this
mode is either very weak or else hidden by the other
stronger modes.

IV. RESULTS AND ANALYSIS

A knowldege of the frequency dependence of the
complex dielectric function e(co) =eq+iee is of central
importance in understanding the optical properties of
a solid. Two commonly used methods of analysis exist
whereby information regarding the dielectric response
of a solid may be extracted from a measured quantity
such as the reQectivity. The Grst method involves the

and

4vrp, eeje((o je—(oe)
el eao+

(Mj —M ) +(rjA&co)
(6)

The reactivity E at normal angle of incidence is related
to the refractive index e and extinction coefficient k by
the expression

The or;, y;, and p; represent, respectively, the oscillator
dispersion frequency, the damping constant, and the
oscillator strength of the jth mode; e„ is the high-
frequency dielectric constant; and E is the macroscopic
electric Geld of the crystal. If plane-wave solutions are
assumed for the quantities P, E, and W, and these are
then substituted into Eqs. (4) and (5), one can express
the real and imaginary parts of the complex dielectric
function as

l I I I l I I I l I I I I I I I I I I l l I I I
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FIG. 4. Extinction coefBcient as a function of wave number. The
points are obtained from a KK analysis of the reQectivity data,
and the curve is theoretically calculated from the classical oscil-
lator model.

where e' —k'=a~ and 2nk=e2. In principle, a Gt to the
experimental reQectivity can be obtained for a proper
choice of the model parameters or;, p; y;, and e„. Ad-
justment of the parameters is usually made either by
trial and error or by least-squares 6tting of Eq. (8) to
the reAectivity data.

The second method of analysis makes use of the KK
transformations to determine e& and e2 directly from
the data, without reference to any model. Such an
analysis can easily be carried out using a digital com-
puter to numerically calculate the KK integral. The
review article by Stern" contains a good discussion of
the KK procedure, together with helpful hints for the
construction of a workable computer program.

A. S. Barker, Jr., Phys. Rev. 136, A1290 (1964).'I. F. Chang, S. S. Mitra, J. ¹ Plendl, and L. C. Mansur,
Phys. Status Solidi 28, 663 (1968).

~~ M. Born and K, Huang, Dynamical Theory of Crysta/ Lattices
(Oxford University Press, London, 1954)."F.Stern, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1963), Vol. 15.
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In the present wor'k the measured reQectivity was
analyzed using both the classical oscillator theory and
the KK transformations. The method of analysis con-
sisted of the following: First, attempts were made to
obtain the oscillator model parameters by trial-and-
error 6tting of Eq. (8) to the measured reflectivity. After
a reasonable Gt was obtained, reGnement of the parame-
ters was made using a computer program designed to
least-squares 6t Eq. (8) to the data. This improved the
agreement between theory and experiment in the region
around the two lower-frequency modes, but little im-
provement was obtained for the two higher-frequency
modes. Because of poor convergence, the least-squares
method of Gtting was somewhat unreliable. It therefore
seemed desirable at this point to perform a KK analysis
of the data. In Figs. 3—6 the quantities e, k, e&, and e2

computed from the KK analysis are shown represented
by open circles.

Since it is the reBectivity that one observes experi-
mentally, it couM perhaps be argued that this is the
quantity one should attempt to Gt theoretically. On the
other hand, froin Eqs. (6) and (7) we observe that it is
the dielectric function which is most directly related to
the parameters of the oscillator theory. For this reason,
we attempted to improve our oscillator Gt by least-
squares Gtting to the real dielectric function ~& obtained
from the KK analysis. The result of this is shown in
Fig. 5, and the agreement is excellent. The values of the
model parameters obtained from this Gt are listed in
Table IV. The quantities E, e, k, and e& were then com-
puted using these values of the parameters. The results
of these calculations are shown as solid curves in
Figs. 2-4 and 6.

I l l l l l l l I l l I l l I I l l l l l l l
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l lo
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tz. IO—
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w -70—
a. -90—

-IIO—

Fe Ss

o K-K analysis—oscillator model

By splitting the phonon amplitudes W into solenoidal
(transverse) and ir rotational (longitudinal) parts,
Chang et ul." show that the oscillator equations of
motion (4) can be rewritten as two separate sets of
equations, one for transverse modes and one for longi-
tudinal modes. Solutions of these two sets of equations
are expressed in terms of complex frequencies. The
complex transverse frequencies are given by

S~;=+(~"—:VF)'"—zzvg, i =1 2, ",I (9)
and the complex longitudinal frequencies are deter-
mined as solutions to the secular equation

-l30—
t f t I 1 1 t 1 1 i t i f t i I t I I l t t T f

200 500 400 500 600
WAVE NUMBER (cm ')

FIG. 5. Real part of the complex dielectric function versus vrave
number. The points are obtained from a KK analysis of the re8ec-
tivity data, and the curve is theoretically calculated from the
classical oscillator model.

—SP—zyzSg+(aF(1+br p&/z~) 4zf (plp2) &1%2/zg) ~ ~ ~

SP i—v;S(+—au,'(1+4zrp;/~„) ~ ~ ~

&(plpa) M1Ma/fm

4zr(p;p„)' '&o,(0„/e„
~ ~ ~ SP i—y„Sg+—(a„'(1+4rp„/e„)

=0. (10)

Thus, if the oscillator parameters are determined, say,
by 6tting to the measured reflectivity, Eqs. (9) and (10)
can be solved to give the TO and LO complex
frequencies.

In order to determine the real parts of the TO and LO
phonon frequencies, we have solved Eqs. (9) and (10)
using the values of the oscillator parameters given in
Table IV. These results are listed under column A
in Table V.

Chang et al."go on to point out that the commonly
used, method, wherein the LO frequencies are identiGed
as those frequencies at which the real part of the di-
electric function is equal to zero, is without theoretical
justiGcation when the oscillator model includes damp-
ing. Instead, an alternative method is developed in
which the maxima and minima of the modulus of the
complex dielectric function

~ e~ =ezz+ezz are shown to
yield approximately the real parts of the TO and LO

mode frequencies. The obvious advantage in using this
method is that, having calculated

~
e~ from a KK or

oscillator analysis, the TO and LO frequencies may be
determined directly.

As a check on the frequencies obtained from Eqs. (9)
and (10), the

~ e~ function has been computed using ez
and e2 determined from the KK analysis of the reBec-

1
2
3
4
ceo =21,32

co; (cm '}
293
348
402
415

Pi Vi

0.0258 0.005
0.065 0.0056
0.27 0.013
0.022 0.02

op= e„+Q;harp;=26. $3

TmLE IV. Values of the classical oscillator model parameters
obtained from the best Gt to the measured reQectivity and the e&
function computed from the KK analysis.
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tivity. This result is shown in Fig. 7. A smooth curve is
used to connect the individual points, but has no
additional theoretical signihcancc.

One immediately observes that only three maxima
and three minima, are present in Fig. 7. The three
maxima lead to the three TO frequencies given under
column 8 in Table V, Rnd the three mi~a lead to
the LO frequencies similarly listed. These TO fre-
quencies are in good agreement with the 6rst, second,
RDd third TO frcqucnclcs obtRlned from thc osciHRtor

6t, and, similarly, the three LO frcquencics agree vreH

with the 6rst, second, and fourth LO frequencies listed
under column A. Referring to column A, the LO mode
at 414 cm—' and the TO mode at 415 cm ' shouM lead
to one additional minimum Rnd maximum, respectively,

I I I I I I I I I ~ I I I I I I I I

@~o~~oj
300 400 500 600

NAVE' NUMBER (cm ' j

FIG. 6. Imaginary part of the complex dielectric function versus
wave QUInber. Thc poHlts arc obtaIned from a KK analysis of the
reQectivity data, and the curve is theoretically calculated froIn
the classical oscillator model.

in the
~

e~ function at these frequencies. This, however,
is not observed in the computed function and may bc
attributed to the smal]. Strength of the oscillator at
415 cm IQ thc presence of the stroQg oscl11Rtox'
Rt 402 cm-'.

The results of column A of Table V demonstrate
that the TO and LO modes in a multimodc crystal
RltclQRtc with IQclcaslng frequency. This seems to bc
a generally valid principle. This point has been made
by Kurosawa~ Rnd lcsults f lorn thc fRct thRt ID the
absence of damping the complex dielectric function
possesses poles at the TO frequencies. The principle is
analogous to Rayleigh's theorem as discussed by
Maradudin, Montroll, and %eiss" for the case of R

1Rttlcc perturbed by defects RQd Impurltles. There It 18

shown thRt thc QorITIal-mode frcquenclcs of thc pcl-
turbed lattice fall between those of the unperturbed
lattice.

V. DISCUSSION

Thc CIRsslcR1 osclllatoI fit to thc Fcs2 reQectivity data
is adequate in RH regions except in the immediate
vlclnlty of thc t%'o high-fx'cqucDcy modes«' Thc rcRson
for the discrepancy here is not Mly understood. One
possibility, which has not been taken into account by
the theory, is that the 6fth infrared-active mode may
bc px'cscnt in this region. There is xlo experimental
evidence to support this, however, either from thc
rcaectivity or from the KK analysis of the data. Vhth-
out some clear indication that the 6fth oscillator is, in
factq pI'csent~ Its lnclusloD Into thc theoly sccms
unwarranted,

Estep, Kovach, and Karr" have recently studied the
infrared absorption bands of pyrite using a powdered
sample suspcDdcd 1D R ccsl~ Iodide DIRtllx. These
authors observe four bands, Rnd their reported absorp-
tion frequencies Rglcc fRII'ly %'cll with thc TO fl'c-

quencies v-e observe in reQection. They, however, 6nd
the highest-frequency mode to be the strongest. This is
in convict with the analysis of our data which shows
that mode 3 is the strongest and mode 4 is the weakest.
In 6tting our reQectivity data we dhd attempt to assign
an oscillator strength to mode 4 larger than that for
mode 3; ln doing so, however, %'c found thRt wc werc
unable to 6t the broad shoulder on the low-frcquency
side of mode 3. In our study of the transmission, our
sample was not suNciently thin to be transmitting in
the region 400-440 cm '. %'c are not able at this time
to state whether the discrepancy between our work and,
that of Kstep et al. is due to the di6erent type of sample
used ol to other CRuscs.

200 600

FIG. '?. Modulus of the complex dielectric function versus vrave
number. The points are obtained from a KK analysis of the
re8ectivity data; A mnooth curve connects the points, but has no
ad(4tloI1al theoretical- slgnlfMance.

"T.Kurosawa, J.Phys. Soc. Japan I6, )2&8 g9gI).
» A. A, Maradudin, E. %'. Montroll, and G. H. 'IA'eiss, in Soli@

5tate I'hysics, edited by I". Seitz and D. Turnbull (Academic
Press Inc, , Nevr York, I963), Suppl. 3.

~6 P. A. -Kstep, J.j.Kovach, and C. Kerr, Jr., Ann. Chem. 40,
358 (1968);P. A. Estep (private communication).
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TABLE V. TO and LO frequencies of the observed modes. 'The

values in column A vrere obtained from Eqs. (9) and (10), and the
values in column 8 from the maxima and minima in

~
e ~.

Ql'go

(cm ')

294
348 352
402 414
415 439

8
&TO ~I O

(cm ')

292 296
347 353
402 ~ ~ ~

~ 1 ~ 440

The generalized Lyddane-Sachs-Teller relation'7 for
multimode crystals in the absence of damping may be
written as'8

6p G)LOs-=rr
&oo ~ &Tos

where the summation is over all the infrared-active

modes. For the case of damped modes, Kq. (11) is

approximately true provided the damping is small and

the real parts of the complex frequencies are used. As a
check. on our values for the dielectric constants and

the TO and LO frequencies, we have computed for the
four observed modes both sides of Eq. (11) from the

values given in Tables IV and V. %e find cpfe„=1.23
and g;roLo,.'/reTo, .'=1.22. The agreement is thus very

good and provides further evidence of the consistency
of the model using four oscillators; however, it does not
provide evidence about the presence or absence of the
fifth unobserved mode.

The strong infrared activity of FeS2 suggests that the
interatomic bonding between iron and sulfur atoms is

largely ionic in character. This is further supported by
the fact that the iron and sulfur pairs form an NaCl-like

structure. On the other hand, the fact that in the Raman
modes the sulfur atoms in pairs vibrate against one

another, while the iron atoms remain at rest, suggests

that the S-S bonding is very important in determining

the nature of these modes. An experimental study of
the Raman-active modes would thus be of considerable

interest, as this would hopefully lead to a. better under-

standing of the S-S bonding.
As a 6rst step toward understanding the nature of the

atomic displacements in the infrared-active modes, a
short-range interatomic-force model has been set up
for pyrite. Using the method of de Launay, "we have

assumed that nearest-neighboring Fe-S, S-S, and Fe-Fe

» R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
Q3 (r94C)."%.Cochran, Z. Krist. 112, 465 (j.959)."J.de Launay, in Sol@' Stele I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , Neve York, 1956), Vol. 2.

atoms interact through forces both parallel and per-
pendicular to the bond joining each pair of atoms. The
parallel forces are specified by a central or bond-
stretching force constant and the perpendicular forces

by an angular or bond-bending force constant. Ke treat
the resulting six uIlkIlowll foI'ce constants as adjustable
parameters in attempting to fit the model to the
infrared data.

Based on this model, the dynamical matrix has been
obtained for zero wave vector. For a given set of force-
constant parameters the 36&36 dynamical matrix can
be specified numerically. Using a computer, one can
diagonalize the dynamical matrix to yield its eigen-
values and eigenvectors. By studying the atomic dis-
placements as determined from the eigenvectors, one
can identify the infrared-active modes. Attempts to fit
the model. to the data are made by comparing the com-
puted and experimental frequencies as the force-
constant parameters are adjusted.

As one might expect, the values of the S-S force
constants are found to inhuence very little the fre-
quencies of the infrared-active modes. The Raman
modes, on the other hand, are expected to be very
sensitive to these parameters; consequently, a lmowl-

edge of the Raman frequencies would be extremely
helpful in attempting to fit the model.

Using the model described above, wc have as yet
been unable to obtain what we would consider a good
6t to the observed infrared frequencies. This is not too
surprising, however, since no account has been made
for long-range electrostatic forces. A more realistic
model would be one in which the ions are assumed
charged and are allowed to interact via long-range
Coulomb forces, as well. as the previously described
short-range forces. Such a model is presently under
consideration in hopes of obtaining a better 6t to the
infrared data.

From an interatomic-force model one. may, in
principle, express the elastic constants of a crystal in
terms of the interatomic-force constants. Our short-
range force model has not given a sufliciently good 6t
to the infrared data to warrant this calculation for thc
elastic constants of pyI'itc. Nevertheless, provided onc
had an adequate model, such a calculation would be
extremely useful in attempting to correlate the negative
value of C~2 to one or more of the interatomic-force
constants.
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