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ments available, but the agreement with experiment is
good. For point defects, where the calculations are
expected to be less reliable, there are many measure-
ments, and the agreement with experiment is fair and
better than might have been expected. For example, the
calculations for the effects of Freknel defects on the bulk
modulus of LiF are found to be closer to experimental
results than are other available estimates. A number of
models for point defects are discussed, but no entirely
successful model for all point defects is found. It is
found, however, that a simple GV form for the energy
can be used to estimate the order of magnitude of the
changes due to most kinds of defects.

The present calculation of the volume change pro-
duced by dislocations predicts that dislocations in
certain jonic crystals including LiF may have hollow
cores in agreement with the conclusions from measure-
ments of pipe diffusion in LiF. It is predicted that this
effect will be absent in certain alkali halides. The calcu-
lations suggest that the formation entropies for vacan-
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cies in some metals might be larger by 1 to 2 entropy
units than has previously been supposed. A discussion
of high-temperature thermal expansion and specific heat
measurements for metals shows that most previous
analyses of these measurements have overestimated
the effects due to the thermal equilibrium defects
present and underestimated  the effects of lattice
anharmonicity.
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An infrared magnetoreflection study has been made of the trigonal face of single-crystal arsenic. Oscilla-
tions of very large amplitude have been observed with a line shape quite unlike any previously reported.
It has been found that the complicated line shape can be understood by assuming that the oscillations are
associated with interband transitions between a pair of coupled bands at a point of low symmetry (point Q)
in the Brillouin zone. On the basis of this assumption, the data can be interpreted to obtain various band
parameters such as the energy gap and the cyclotron effective mass. Some observed nonparabolic effects can
also be explained. The magnetoreflection data for the trigonal face are found to be consistent with Lin and

Falicov’s arsenic energy-band model.

I. INTRODUCTION

ECENT experimental'™ and theoretical® studies
of the semimetal arsenic have greatly advanced
our understanding of the band structure of this material.
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In particular, the band-structure calculation by Lin and
Falicov?® for arsenic using the pseudopotential technique
yields a Fermi surface whose shape is in reasonable
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agreement with a large body of experimental data.
Since almost no experimental information has been
available about the band structure away from the
Fermi level, we thought that it would be interesting to
study arsenic using the magnetoreflection technique,
which gives such information, and to use our experi-
mental results to explore the validity of the Lin-Falicov
model away from the Fermi surface. The magneto-
reflection results which we obtained with magnetic
fields parallel to the binary and bisectrix crystalline
axes were presented in a previous publication,® and
indicate certain departures from the predictions of the
Lin-Falicov model. In this paper, we discuss oscillations
in the magnetoreflectivity which are observed with the
magnetic field along the trigonal crystalline axis. These
oscillations can be interpreted within the framework
of the band model of Lin and Falicov, and are identified
with electronic transitions between the bands associated
with what have come to be called the « carriers.!

In exploring the agreement between theory and
experiment for this case, we have considered not only
the energy gap and the cyclotron effective mass im-
plied by the experimentally observed oscillations, but
have considered the amplitudes and phases of the
oscillations as well. The analysis is complicated, how-
ever, by the fact that the critical point seems to lie
along a line of low symmetry (the Q axis) in the Bril-
louin zone. It has been found, however, that the
magnetoreflection technique is an effective tool for
studying energy bands even about such low symmetry
points. At these critical points, the magnetoreflection
spectra for interband Landau-level transitions is con-
siderably more complicated than the spectra expected
at critical points of higher symmetry. These compli-
cations can, however, be understood on the basis of a
simple model. This model can then be used to determine
the band parameters for arsenic about the critical point
of low symmetry.

In Sec. IT we begin our discussion by describing
previous experimental and theoretical studies which
are relevant to an understanding of the electronic band
structure of arsenic. In Sec. IIT we present and interpret
the results of the magnetoreflection experiment for the
case where the magnetic field is parallel to the trigonal
axis of the crystal. Finally, in Sec. IV we summarize
the results of all of our magnetoreflection studies of
arsenic.

II. BACKGROUND

The first detailed information about the electronic
band structure of arsenic was obtained in a set of
de Haas—van Alphen (dHvA) experiments performed
by Berlincourt.” Two sets of carriers were observed
which we call the a and v carriers using the notation

6 Martin Maltz and M. S. Dresselhaus, Phys. Rev. Letters 20,

919 (1968).
7T. G. Berlincourt, Phys. Rev. 99, 1716 (1955).
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4 TRIGONAL

-
BISECTRIX
BINARY

F16. 1. Brillouin zone for the group-A7 crystalline structure,
using the notation of Lin and Falicov. The mirror planes o contain
the I', 7, and L points.

of Priestley et al.!'® The « carriers were found to lie in
either three or six pockets, with the center of each
pocket in one of the mirror planes. (See the Brillouin
zone of Fig. 1.) The v pockets were found to have a
smaller cross-sectional Fermi-surface area than the a
pockets, but their number and placement in the
Brillouin zone were not definitely established. In this
work? the effective masses for both the « and v carriers
were found by studying the temperature dependence
of the amplitude of the dHVA oscillations.

Since the total hole and electron charge concentration
must be equal in a pure semimetal, the results of
Berlincourt indicated that there was at least one more
carrier yet to be found. dHvA-type oscillations in the
ultrasonic attenuation and differential susceptibility,
observed in 1965 by Shapira and Williamson® were
identified with this carrier, which we call the 3 carrier,?
in accordance with the notation of Priestley et al.
These carriers were also found to lie in either three or
six pockets, with the center of each pocket in one of
the mirror planes (Fig. 1). In addition, the 8 pockets
were found to be roughly ellipsoidal in shape, while the
a pockets displayed some nonellipsoidal behavior.
Since the temperature dependence of the dHvA ampli-
tudes was not reported by Shapira and Williamson,® no
information about the effective masses for the B
carriers was available. Ketterson and Eckstein! also
carried out an ultrasonic magnetoattenuation experi-
ment and observed quantum oscillations associated
with the three carrier types.”? Their results are con-
sistent with the work of Shapira and Williamson.?
Ketterson and Eckstein did not report the temperature
dependence of the oscillations.

8 Berlincourt used a different notation himself. Our v and «
carriers correspond to his @ and 8 carriers, respectively.

?Y. Shapira and S. J. Williamson, Phys Letters 14, 73 (1965).

1 This was called the v carrier by Shapira and "Williamson
(Ref. 9). For the other two carriers these authors used the notation
of Berlincourt (Ref. 7).
( “] B. Ketterson and Y. Eckstein, Phys. Rev. 140, A1355
1965
12In Ref. 11, the notation for the o and 8 carriers is that of
Ref. 5 and the present work.
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In 1965, an attempt was made by Tanuma et al. to
identify the sign of the charge for the a, 8, and ¥
carriers by studying the effect of doping on the dHVA
periods.’® The results, however, were inconclusive.

At about the same time, Datars and Vanderkooy?
studied arsenic using Azbel-Kaner cyclotron resonance
in the extreme anomalous limit. The measured cyclotron
effective masses agreed reasonably well with those
found by Berlincourt” for the « carriers.

In addition to this experimental work, a band-
structure calculation for arsenic was carried out by
Golin, using a self-consistent orthogonalized-plane-wave
(OPW) method." No fit to the experimental data at
the Fermi surface could be achieved with Golin’s bands.
This is not surprising in view of the recent observation®
of band gaps near the Fermi level which are smaller
than the estimated calculational uncertainty.’* More
recently, Lin and Falicov® carried out a pseudopotential
calculation of the arsenic energy bands, and in this
case a good fit to the experimental data at the Fermi
surface was obtained by adjustment of certain param-
eters characterizing the pseudopotential model. These
results have therefore served as a guide to the inter-
pretation of all the subsequent work.

The Lin-Falicov band model identifies the 8 carriers
as electrons, which lie in three roughly ellipsoidal
pockets centered about the L points in the Brillouin
zone. The a and vy carriers correspond to parts of the
multiply connected hole surface shown in Fig. 2. The
a carriers lie in the six large turnip shaped pockets,
and the v carriers are in the long, narrow necks which
connect them. Note that although holes occur near
the T point, this model predicts no carriers at 7', or in
fact anywhere along the I'T" or A or trigonal axis. In Fig.
3(a)we show a particularly interesting aspect of the band
structure which was used to construct the Lin-Falicov

TRIGONAL
TI AXIS

f—— s BISECTRIX
TU AXIS

BINARY
TW AXIS

a POCKET

F16. 2. Arsenic-hole Fermi surface, as determined
by Lin and Falicov (Ref. 5).

8 S, Tanuma, Y. Ishizawa, and S. Ishiguro, J. Phys. Soc. Japan
Suppl. 21, 662 (1966).
1S, Golin, Phys. Rev. 140, A993 (1965).
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Fi1c. 3. Energy bands along the Q axis near the v carriers.
(a) The energy bands as determined by Lin and Falicov. The
spin-orbit interaction has not been considered. The k vector is
measured in a.u. (Ref. 27). (b) A magnified view of the region
near the accidental degeneracy in (a) with spin-orbit coupling
taken into account. The displacement between the band extrema
is arbitrary. The k vector is measured from the extremum in the
energy band separation.

Fermi surface.® In this figure, we see that along the Q
(i.e., TW or binary) axis, close to T, there is an acci-
dental crossover degeneracy, giving rise to the hole
carriers of the vy necks. If spin-orbit coupling had been
considered, this degeneracy would be lifted as shown
by the band gap in Fig. 3(b). We have identified the
oscillations in the magnetoreflectivity observed with
the magnetic field along the trigonal crystalline axis
with interband transitions across this spin-orbit energy
gap. The extrema of the two bands need not occur at
the same point in the Brillouin zone because the only
symmetry operation at a general point along the Q axis
is a twofold rotation about this axis, and therefore
inversion symmetry is lacking. To say this more pre-
cisely, if the k, direction is taken along the Q axis,
then the k, values for the two-band extrema may differ,
but the %, and k. values for bisectrix and trigonal
directions will be the same for the two-band extrema.
In this figure, the band gap E, is taken at the k point
of minimum energy separation.

The Lin-Falicov band model has been applied to the
interpretation of a number of experimental studies on
the arsenic Fermi surface. A summary of the experi-
mental results is given in Table I. Wherever possible
in this table, a comparison has been made between the
experimental results and the theory of Lin and Falicov.?
In particular, it is found that the dHvA studies by
Priestley et al! and of Vanderkooy and Datars? tend
to support the general topology of the Lin-Falicov
band model, as do the Azbel-Kaner cyclotron resonance
studies of Datars and Vanderkooy?® and of Chung-Sen
Ih.4 However, the effective masses which they measure
are quite different from those predicted from the Lin-
Falicov band model, indicating that the model may
not be accurate away from the Fermi surface. Therefore,
optical data which provide information about energy
bands away from the Fermi surface are of great interest.

The first set of optical experiments were carried out
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TasirE I. Fermi-surface data for arsenic.

Quantity Experiment Theory
a carriers
Frermi energy 0.180 ¢V2 0.361 eVP
Carrier density/ellipsoid 3.9X10% cm™3a
Tilt angle (min. area) 37.25°= 44°v
Areac (min. area) 3.981X10732
m* (min. area) 0.096%
B carriers
Fermi energy 0.190 eV® 0.367 eVP
Carrier density/ellipsoid 7.07X10% cm™32
Tilt angle (min. area) 86.4°% 80°b
Areac (min. area) 0.005695> 0.0055P-¢
m* (min. area) 0.1274
Area,’H||bin, principal ellipsoid ~ 0.02# 0.016>
m*, H||bin, principal ellipsoid 0.4044
m*, H||bin, nonprincipal ellipsoid 0.150¢ 0.11>
Area,c H|[trig, 0.021= 0.018>
m*, H||trig, 0.3614
m*, H||bis, nonprincipal ellipsoid 0.130¢
v carriers
Fermi level 0.011 eVe
Areas H||trig 6.9X1075 6.9X1075b1
Tilt angle —10°= —11°
m*, H||trig 0.028,* 0.0269=

Reciprocal effective-mass tensor for v carriers.”

239 0 0
a=—( 0 59.5 103
0 103 1.22

a Priestley et al. (Ref. 1).

b Lin and Falicov (Ref. 5).

¢ Fermi-surface cross-sectional area is measured in a.u. (Ref. 27).

d C, C.-S. Ih (Ref. 4).

eLin and Falicov (Ref. 5) ad]usted electron Fermi level to fit this area

measured by Priestley et al. (Ref.
fLin and Falicov (Ref. 5) adj usted hole Fermi level to fit this area mea-

sured by Priestley ef al. (Ref. 1

¢ Present work.
b Derived from orientation dependence of dHvA periods measured by

Priestley et al. (Ref. 1) requiring m* for H||trig to be 0.028,

by Cardona and Greenaway.!® In these experiments,
structure was observed in the reflectivity in the photon
energy range between 1 and 23 eV. These data, there-
fore, provide almost no information about the infrared,
which is the region of the spectrum most likely to
contain detailed information about the band structure
near the Fermi surface. Precisely this range of photon
energies was explored in a recently reported series of
infrared magnetoreflectivity experiments performed
with the magnetic field along the binary and bisectrix
crystalline axes.® The observed magnetoreflectivity
oscillations were interpreted as being associated with
an interband transition across a small, direct energy
band gap of 0.346 eV between bands having either the
Ty and Ty or the Ty and T symmetries, using the
symmetry notation of the Lin-Falicov calculation.®
Unfortunately, this calculation does not display any
small direct gaps between bands of the symmetries
required by the magnetoreflectivity experiment.$

18 M. Cardona and D. L. Greenaway, Phys. Rev. 133, A1685
(1964).
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III. MAGNETOREFLECTION EXPERIMENTS—
TRIGONAL SAMPLE ORIENTATION

In contrast with the previous magnetoreflection
study of arsenic,’ the work reported here was carried
out with the magnetic field along the trigonal crystalline
axis. In this case, a different series of oscillations in the
magnetoreflectivity is observed and this series can be
interpreted within the framework of the band model of
Lin and Falicov.® No oscillations associated with the
band gap of 0.346 eV have been found for this orien-
tation of magnetic field.

In our experiments, the optical reflectivity of a
liquid-helium-cooled single-crystal sample is measured
as a function of magnetic field and photon energy in
the Faraday geometry (magnetic field and optical
propagation vector-parallel to each other). A detailed
description of the equipment used to make the mea-
surements, and the sample preparation techniques,

<o
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F16. 4. Magnetoreflectivity recorder traces of arsenic for the
trigonal face. The amplitude calibration is given as a percentage
of the zero-field reflectivity. The #, quantum number labels the
resonant peaks. (a) Photon energy =0. 2056 eV; (b) photon energy
=0.258 eV; and (c) photon energy =0.301 V!
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has been given in a previous publication® and is identical
with the experimental procedures used for the binary
and bisectrix sample orientations, except that the
trigonal face was prepared by cleaving.

Three representative experimental traces, taken at
different photon energies, are displayed in Fig. 4. These
oscillations exhibit many peculiarities. First of all,
their amplitude is very large; larger, in fact, than the
amplitude of the oscillations observed for any other
semimetal.’®-18 Not only are these oscillations observed
at liquid-helium temperatures, but also at liquid-
nitrogen temperatures, reduced in amplitude by a
factor of only §. One reason for the large amplitude of
these oscillations is that the photon energies of Fig. 4
occur near the plasma frequency of the material
(hw,=0.26 eV).1? At this frequency the free carrier
and interband contributions to the dielectric constant
are nearly cancelled out by the contribution due to the
core polarization, so that any oscillatory effects in the
dielectric constant are greatly enhanced. Other reasons
for the large magnitude of these oscillations are dis-
cussed later in this paper.

The line shape of these unusually large oscillations
is quite unlike any line shape which has previously been
reported for either a semiconductor or semimetal.?® In
particular, for a given photon energy an unusual vari-
ation of the line shape and oscillation amplitude is
observed as a function of #;, an index used to label the
resonant structures (Fig. 4). It is found that the ampli-
tude of the m,=even oscillations decreases with in-
creasing #; much more rapidly than does the amplitude
of the n,=odd oscillations.?! It is further found that
the general line shape of an oscillation with a particular
value of #; does not vary as a function of photon energy.
In other words, the reflectivity and magnetic field scales
of the curves seem to change with photon energy, while
the relative shapes of the oscillations remain constant.

Let us ignore, for the moment, these peculiarities in
the line shape and proceed in the traditional way, by
plotting the resonance fields as a function of photon
energy in the “fan chart” of Fig. 5. In constructing this
figure, a resonance field is experimentally defined as
the field at the peak in the reflectivity. By looking at
this fan chart, it is clear that the observed oscillations
are associated with interband transitions across a single

16 R. N. Brown, J. G. Mavroides, and B. Lax, Phys. Rev. 129,
2055 (1963).

17 M. S. Dresselhaus and J. G. Mavroides, IBM J. Res. Develop.
8, 262 (1964).

18 M. S. Dresselhaus and J. G. Mavroides, Phys. Rev. Letters
14, 259 (1965).

1 M. Maltz, thesis, Massachusetts Institute of Technology,
1968 (unpublished).

2 B. Lax and J. G. Mavroides, Opiical Properties of III-V
Compounds, edited by R. K. Willardson and A. C. Beer (Academic
Press Inc., New York, 1967), Vol. III.

2L The n,=even oscillation amplitudes decrease so rapidly with
increasing #, that we were not able to clearly observe the #,=6
oscillation at all. This oscillation was observed, however, by
Dr. S. Iwasa of MIT in a high resolution magnetoreflection experi-
ment, using a laser source.
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F1c. 5. Summary of the observed peaks in the reflectivity
for the trigonal face of arsenic.

band gap of about 0.175 €V. Also, it is found that the
lines through the experimental points on this fan chart
are relatively straight, so that we can assume that the
energy bands are essentially parabolic for the energy
range over which oscillations have been observed.?
We further note that, for a given magnetic field, the
large energy separations between adjacent resonance
loci indicate a small reduced cyclotron effective mass
for the bands involved in the transitions. A small
effective mass generally indicates a strong coupling
between the bands in the two directions perpendicular
to the magnetic field (i.e., the binary, or x, and the
bisectrix, or y, directions) and therefore the bands are
expected to have nearly equal and opposite curvatures
in these directions. These arguments imply that the
cyclotron effective masses for these two bands are
equal, so that ignoring spin, one might expect that the
resonant fields and photon energies would be related
by the simple expression

ﬁwres=Eg+ﬂ0Hres(nc+”7)+1)/mc*, (1)
Bo=|e| %/ (moc). (2)

Here m.* is the dimensionless cyclotron effective mass
for either band, and %, and %, are the Landau-level
indices for any coupled conduction and valence band
Landau levels. If we now assume the traditional inter-
Landau-level, interband transition selection rule,
An=0, then Eq. (1) reduces to

Fiwres= E g+ 2B0H res (1 —\l/)/mc* ) (3)

with the phase y=—3% and n=integer. From this
expression we would conclude that at constant photon
energy the oscillations should be periodic in 1/H, with
a phase of —3. In order to test the validity of this

where
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F16. 6. Inverse resonant fields as a function of the quantum
number #; at three different photon energies.

selection rule we have plotted in Fig. 6 the inverse
resonant fields as a function of #; for the three photon
energies of Fig. 4, and have found that the expected
periodicity is present, but that the #; axis intercept,
or phase, is —1.

The simplest way to understand this peculiar phase?
is to assume that in this case there is some mechanism
which breaks down the customary An=0 interband,
inter-Landau-level selection rule. With a breakdown
in selection rule, 7z, and #, could have any values, and
the resonant fields and photon energies would be related
by the expression

hwres=Ey+60Hres(nt+1)/mc*; (4)

where we have defined 7;=#n,4+#n,. From this equation,
we therefore expect oscillations periodic in 1/H, with
a period P given by

P=Ro/[mc*(ho—E,) ], ©®)

and a phase of —1, in agreement with the phase of the
observed oscillations. Furthermore, we note that the
normally allowed #,=#%, inter-Landau-level transition
only contributes to the #,=even oscillations, and not
at all to the #:=o0dd ones. Therefore, this model can be
expected to yield quite different line shapes for the
n;=even and #:=odd oscillations; and this is, in fact,
observed. Before discussing the mechanism responsible
for the breakdown in the selection rule, we shall com-
plete the discussion of the analysis of the magneto-
reflection spectrum. First of all, we note that Eq. (5)
predicts a linear dependence of 1/P on the photon
energy, with a slope of

a(1/P)/3(hw)=ms*/Bo, (6)

and an energy axis intercept of £,. To find 7,* and E,
we have therefore plotted in Fig. 7 the photon energy

2 For example, the phase is y=—% for bismuth, and also for
arsenic with the magnetic field perpendicular to the trigonal axis.
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as a function of 1/P for all of the data we have obtained.
Fitting the low-energy data with a straight line, we
obtain an energy gap of £,=0.1772-0.005 eV, and from
the slope of the line we find that m.*=0.03120.003.
At higher photon energies the departure of the points
from the straight line indicates that the bands have a
small, but noticeable amount of nonparabolic character.

The small value that we have found for m.* is con-
sistent with our assumption that the two bands under
consideration interact strong with each other in the %
and y directions (though this is not necessarily true
along the z, or trigonal, direction). It therefore seems
reasonable to assume that for the x and y directions
we may neglect the interaction of our two bands with
the other bands nearby, thus implying equal and
opposite band curvatures in the x and y directions.
The assumption that the two bands interact only with
each other, however, is the essential assumption made
in constructing the nonparabolic two-band model of
Lax,’6 Kane,® and Cohen.? In order to apply such a
nonparabolic band model to the arsenic problem, we
further assume that the mechanism which produces a
breakdown in the customary An=0 selection rule
represents a small perturbation on the form of the two-
band energy-momentum dispersion relations. To test
the validity of these assumptions, we attempted to
describe the nonparabolic nature of the arsenic bands
by the strongly coupled two-band model, according to
which the energy-momentum relation for the conduction
and valence bands is

E=x[3E/H3E Mk e k/mo [, (™)

0.34
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Fi1c. 7. Inverse periods (taken from graphs such as Fig. 6) as a
function of photon energy. The solid line is a straight-line fit
(parabolic-band model) to the low-energy data.

% E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
24 M. H. Cohen, Phys. Rev. 121, 387 (1961).
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in which e is the reciprocal effective mass tensor at the
critical point.?®

Upon analysis of the magnetoreflection data in
arsenic we will find that »*, the cylotron effective mass
at the band extremum, is of the order of 0.03, so that
at the highest magnetic fields available 8oH /m* is only
about 0.03 eV. Our experiments are therefore performed
in the small field limit, where E>B0H /m*, and in this
limit it may be shown from Eq. (7) that the inverse
periods are given by

1/P=3m*[(liw)*—Eg2]/BoE,. (8)

This expression is most accurate for the Az=0 tran-
sition and is approximately valid for transitions with
small values of Azn. In the Appendix we discuss a
mechanism suggested by the symmetry properties of
the critical point which can produce a breakdown in
the selection rule A#=0. In order to use Eq. (8) to
find the parameters E, and m*, we have plotted (%w)?
as a function of 1/P in Fig. 8. We find that the data
points do fall on a straight line, thereby justifying
the assumption of a two-band model for the x and y
directions. From the (%w)?-axis intercept we find that
E,=0.17240.003 eV, and from the slope of the line
we obtain m*=0.0238. It should be noted that the
cyclotron effective mass m.* at energy E’ is related to
the effective-mass parameter m* according to

mF=m*(2E'+E,)/E,, %)

where the energy E’ is measured from the energy
extremum of one of the bands.

Upon comparing these results with the dHvA and
cyclotron resonance measurements which have been
reported in the literature (see Table I), we note that
the only values of m.* of such small magnitude are the
values measured for the vy carrier with the magnetic
field along the z axis. Using the Fermi level reported
by Priestley et al.! (E;=0.011 eV as measured from the
maximum energy of the hole band) and Eq. (9), a
value of 0.0269 for m * at the Fermi surface is obtained,
assuming that the holes of the v necks are associated
with one of the bands under discussion. Since this value
agrees very well with the value of 0.028 measured by
Priestley et al.,! it seems very reasonable to assume
that one of our bands is, in fact, associated with these
carriers.

Since there are carriers associated with one of the
bands, there should be a Fermi level cutoff in the data
at the energy below which Landau-level transitions
cannot occur because of the unoccupied states in the
valence band. Unfortunately, however, we have not
been able to decide experimentally whether or not such
a cutoff exists. The essential difficulty is due to the
finite resolution and signal-to-noise ratio of our instru-

25 A critical point is defined as the k point for minimum energy
separation between the valence and conduction bands. When the
critical point is at a point of inversion symmetry, then the energy
extrema for both bands occur at the critical point.
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Fic. 8. Inverse periods as a function of the photon energy
squared (the two-band model). The solid line is a straight-line
fit to the data.

ment, which results in an inability to see any sharp
structure in the arsenic magnetoreflectivity at photon
energies below 0.190 eV. Therefore, although we can be
certain that there is no cutoff above this photon energy,
we cannot conclude that there is no cutoff below it.
The reason why this difficulty arises, in spite of the
very large amplitude of our oscillations, can be under-
stood from Fig. 4(a). In this figure, the #,=0 and the
n,=1 oscillations overlap so that no’really sharp
structure can be associated with the #,=0 oscillations.
The sharp dip between the #,=1 and the #,=2 oscil-
lations, on the other hand, occurs at a much lower field,
so that it fades into the noise of the relatively high
photon energy of 0.190 eV, and below this energy we
can observe no sharp structures in the magnetoreflec-
tivity at all. We therefore can only conclude that if
there are carriers, their Fermi level does not greatly
exceed 0.018 eV, which is the difference between the
energy gap of 0.172 €V and the photon energy of 0.190
eV. Thus the Fermi level of 0.011 eV, measured by
Priestley et al.! for the v carriers, is consistent with our
data.

Many of the other characteristics of the v carriers
are also consistent with our data. For example, Priestley
et al. find that the Fermi surface for these carriers is a
gently flared cylinder, with the long axis of the cylinder
tilted about 11° away from the trigonal axis in the
trigonal-bisectrix plane. The curvature of this band in
the trigonal direction is therefore very small, which
implies that the two pertinent bands interact weakly in
the z direction. The cyclotron effective mass would
therefore be very large for both bands when the mag-
netic field is parallel to the binary or bisectrix axes,
which is consistent with our inability to observe any
magnetoreflection oscillations associated with these
bands for these magnetic field orientations. Further-
more, the small band curvature would give us a very
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high density of states in the z direction which con-
tributes to the large magnitude of our observed
oscillations.

The measured band gap is also consistent with the
model of Lin and Falicov,’ in that it can be identified
with the spin-orbit splitting of the accidental de-
generacy shown in Fig. 3. Since the spin-orbit splitting
at the 7" point for arsenic was estimated to be between
0.24 and 0.32 eV by Falicov and Golin,? it seems
reasonable to find a spin-orbit band gap of 0.172 eV
at a point a small distance from 7.

Finally, we note that the Lin-Falicov model predicts
that the critical point for the transitions under con-
sideration is along the Q axis in the Brillouin zone, which
is an axis of low symmetry.?® The symmetry is low
enough, in fact, so that the cyclotron orbits corre-
sponding to the magnetic energy levels in one band are
not required to be concentric with the corresponding
cyclotron orbits in the other band. One can show that
the velocity matrix element for interband transitions
between such states is not zero, for An#0, and there-
fore justify the assumption that the An=0 selection
rule breaks down. This point is covered in more detail
in the Appendix, where we actually calculate the
velocity matrix elements for interband transitions at
the Q point. It is shown that a breakdown in the
selection rule Az=0 occurs if either the cyclotron orbits
for the two bands are tilted with respect to each other,
or if the energy extrema of the two bands are displaced,
or more generally, if both mechanisms are simultane-
ously present.

IV. CONCLUSIONS

With the magnetic field along the trigonal axis, we
have observed a series of oscillations in the magneto-
reflectivity of arsenic which seem to be associated with
direct interband transitions between a pair of strongly
interacting bands. The direct energy gap between the
bands was measured to be 0.17240.003 eV, while the
cyclotron effective mass at the band extremum was
found to be 0.024 for magnetic fields parallel to the
trigonal axis. One of the bands under discussion has
been associated with the v carriers, which have a
cyclotron effective mass of 0.028 as measured by dHvA
experiments.! This value is in excellent agreement with
the cyclotron effective mass we have found.

The energy bands near the Fermi surface seem to
be adequately described by the pseudopotential calcu-
lation of Lin and Falicov.® This calculation also predicts
that the extrema of the bands are at the Q point in
the Brillouin zone, and we have been able to under-
stand some of the observed peculiarities of the magneto-
reflection line shape and amplitude in terms of the low
symmetry of the Q point.

An additional series of oscillations in the magneto-
reflectivity of arsenic has also been reported previously.®

26 I, M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965).
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These oscillations seem to be associated with direct
interband transitions across a small, direct energy band
gap of 0.346 eV between bands having either the T
and Ty or the 71 and T symmetries at the T point
in the Brillouin zone. For magnetic fields perpendicular
to the trigonal axis, the reduced cyclotron effective
mass in this case was found to be 0.025, and there is
some evidence that there may be a small pocket of
carriers associated with one of the bands.®

In contrast to this experimental evidence, the band
model of Lin and Falicov® predicts that there are no
small band gaps between bands of the above symmetries
at T, and that there are no carriers at T at all. Their
band model furthermore predicts that the y carriers
are only 0.07 a.u. away from T along the Q axis.”
Although the magnetoreflection experiment with H
along the trigonal direction shows no inconsistencies
with the Lin-Falicov band model at Q, the results with
H along the binary and bisectrix directions are in
direct conflict with the band model at point T, a short
distance away. It would therefore be very interesting
to recalculate the band structure of arsenic, and
attempt to obtain a proper fit at both points in the
Brillouin zone.

It also would be useful to further test the identi-
fication of the trigonal magnetoreflection oscillations
with the bands associated with the « carriers. This
could be done by measuring the dependence of the
oscillations on the direction of the magnetic field more
completely than was done in the present paper. If our
identification is correct, a large orientation dependence
should be observed.
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APPENDIX

In this Appendix, we calculate the velocity matrix
elements for interband transitions between the two
strongly interacting bands of Fig. 3(b). These bands
are postulated to be nondegenerate parabolic bands
with energy extrema lying along the TW or Q axes,
which are axes of twofold rotation in the Brillouin zone
of arsenic. We use the usual notation for the coordinate
axis system, where the « axis is the axis of twofold
rotation, the z axis is the trigonal axis, and the y
(bisectrix) axis is the third member of the right-handed
orthogonal set. We further assume that the two bands

27 Here k is expressed in atomic units or in units of 1/a5, where
ap is the Bohr radius.
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interact very strongly in the x and y directions, and
very weakly in the z direction. This assumption is
justified by the results of the magnetoreflection experi-
ment as discussed in Sec. III. Finally, we only consider
the case where the magnetic field is parallel to the
trigonal axis, since this is the geometry of experimental
interest.

In order to keep the calculation as simple as possible,
the effects of spin will also be ignored. Since the band
gap under consideration is produced by spin-orbit
interaction, this assumption requires some justification.
It can be justified by both an experimental and a theo-
retical argument. Experimentally, no fine structure is
found on the magnetoreflection spectra that could be
attributed to spin splitting. Furthermore, the magneto-
reflection data seem consistent with a coupled two-
band model like that encountered in bismuth,6
except that the An=0 selection rule does not apply.
In the case of a strict two-band model with arbitrary
spin-orbit coupling, it has been shown!®? that spin
has no effect on the resonant interband Landau-level
transitions.

Since we have restricted ourselves to parabolic,
spinless bands, we may now write ;, the wave function
for band j, as

Y;=F;U;, (A1)

where F; is the envelope function and U; is the core
wave function at K,, the point in the Brillouin zone
from which we measure the crystalline momentum.
Since there is no inversion symmetry at a general point
along the twofold axis, the extrema of the two bands
need not occur at the same point in the Brillouin zone.
We therefore define Ky as the point on the twofold axis
midway between the energy band extrema.

The envelope function is found by solving the single
band, spinless effective-mass secular equation for band

Js

{EL+ (mthkid) - () 2mo) - (=t likt) }Fi=E;F;, (A2)
where E? is the energy of band j at Ko, k4 is one-half
the displacement between the band extrema, £ is the

unit vector in the x direction, @/ is the dimensionless
reciprocal effective-mass tensor for band j, and

(A3)

Due to the twofold rotational symmetry about the x
axis, it follows that

m=p—eA/c.

(A%)

Furthermore, because the two bands interact strongly
in the x and v directions, ’

A=, 7=0.

Qo= — 0l =y (AS5)
and

[TP— l—
Qyy = —0yy =0yy,

(A6)

28 P, A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964).
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where j=u, ! for the upper and lower bands, respec-
tively. Since the two bands interact weakly in the z
direction, the remaining components of the effective-
mass tensors for the two bands are unrelated, so that
one expects the constant-energy surfaces for the two
bands to be tilted with respect to each other in the yz
plane.

Choosing the gauge where A is parallel to the y axis,
and solving the secular equation, we find

Fj=gikstibyyFikicg, (x—x0),

(A7)

where ¢,(x—x,) is the harmonic-oscillator function of
index # centered at x% and normalized over a unit
volume in real space. In this function, the harmonic-
oscillator center x,° is

x0=N{k,~+ ke, 7], (A8)
where X is the characteristic length:
A= (hc/eH )2, (A9)

Using these wave functions, we may now calculate
the velocity matrix elements for interband transitions
between these states. Utilizing the slow spacial variation
of the envelope functions, we make the usual approxi-

mation
Wil vl )= (F;| Fy )(U;|v| Uy). (A10)
We may then write
<¢Jl Vl¢f’>=vﬁ’j(n)n,:tyw) ) (A1 1)

where we have made the convenient definitions for the
velocity matrix element between core states

vip=(U;|v|Uj), (A12)

and the overlap integral of the envelope functions

Hnn' )= (F5| Fyy= / ks, (—a9)

KX (x—x0)dx. (A13)
The function [(n,n'taw) is itself most conveniently
written as a function of two dimensionless parameters
¢t and w. In particular, the dimensionless parameter ?
describes the displacement of the band extrema along
the &, direction, and is related to %4 by

1= Eeah (e /taa) V. (A14)

The dimensionless parameter w describes the relative
displacement of the centers of the conduction and
valence band orbits along the %, direction due to the
relative tilt of the corresponding constant energy
surfaces. Corrresponding to the orbit-center displace-
ment in the k&, direction, there is a real-space displace-
ment between the harmonic-oscillator centers along
the x direction, x.°—x.,?, which is related to w by

w= (1/2\) (@' — x.0) (@yy /o) 4= ENE,.  (A15)
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In Eq. (A15) the &, dependence of w has been explicitly
expressed by introducing the dimensionless parameter

&= % (aw/ 0L (ayzj/ ayyj) .

These dimensionless parameters are introduced
because it is convenient to work with the normalized
harmonic-oscillator function 8,(») of the dimensionless
argument », where

v= (taz/ayy) (/N
0, (v) =n"Y4(2rp )22, (v) ,

in which H,(») is the nth Hermite polynomial.®® In
order to evaluate the overlap integral, which can now
be rewritten in terms of the dimensionless functions
and variables as

I fw)=

where

(A17)

(A18)

and
(A19)

&0, (v+w)0, (v —w)dv, (A20)

—0C

we define a new complex variable of integration

g=v—it, (A21)
and a new complex displacement parameter

b=t+iw, (A22)
so that we may rewrite the integral as
. ” H,(g+ib)H (q-l—tb*)
I tw)= | e o= g. (A23)

(w2rmtn'y ! )12

—00

The integration can be taken along the real axis rather
than along the line in the complex plane Img=—¢
because the integrand displays no singularities in the
region enclosed by these two paths.® To evaluate this
integral, we next note that the Hermite polynomial
H,(q) contains terms no higher than the nth power in
g, so that we may use a Taylor-series expansion to

write the exact relation
m m

Z £—-)~——H (@

H,(q+ib)= (A24)
m=0 m
Furthermore, it can be easily established that
r (= 2 (@ (A25)
——H, = Hom q
i el
so that we may write
(2i6)™  n!
H,(g+i%) =3 H, m(g). (A26)
m=0 ml (n—m)!

2 A, Messiah, Quantum Mechanics (Wiley-Interscience Pub-
hshers, Inc., New York, 1961), Vol. 1, p. 491.
% R, V. Churchill, Complex Variables and A pplications
(McGraw-Hill Book Co New York, 1960), p. 106.
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Finally, from the orthonormality of the 6,(g) functions,
it follows that

/ H () Hy (Q)dg =216, (A27)

Using Eq. (A26) to expand the Hermite polynomials in
Egs. (A23) and (A27) to carry out the resulting
integrals, we find

F(nn',b) =% (i’ 1)V2 (VD)
n (—265%)m
X3 (A28)

m=0 (n—n'+m)!(n' —m)im!

provided that #’<z. If this inequality is not satisfied,
we can interchange # and »’ and still use Eq. (A28).
This interchange, however, introduces an error in the
phase of the integral. On the other hand, physical
quantities, such as the dielectric constant and con-
ductivity, depend only upon the square of the magni-
tude of the velocity matrix elements, and therefore only
involve the quantity | 7|2 This phase is of no physical
consequence; therefore, we replace the complex
quantity b by its magnitude b, and define the overlap
integral function

I (' b) =e B (nin' )2 (vV2Zb)»
n (_252)m

. (A29)
m=0 (n—n'+m)! (' —m)\m!

We note from Eqs. (Al14), (A15), and (A22) that b
is the normalized distance between the centers of those
orbits in k space, involved in the interband transition.
Furthermore, we note from Eq. (All) that the velocity
matrix element for this transition is directly propor-
tional to I (n,n',D). Therefore, from Eq. (A29) we see
that, as expected, when b=0, the velocity matrix
element is nonzero only for convenuonal n=n' tran-
sitions. However, because of the low symmetry of a
point along the 7W axis, we would expect both ¢ and w,
and therefore b to be nonzero. In that case, it is possible
for I(n,n',b), and also the velocity matrix element, to
have a nonzero value even when nsn’. Therefore,the
simple An=0 selection rule breaks down, as was as-
sumed in Sec. III.

One may further extend this calculation, and use the
velocity matrix elements derived here to calculate the
field- and frequency-dependent conductivity of the
material. A calculation of this type has been performed
using the simplification that ¢=0, but ws0." This
simplification corresponds to the assumption that the
critical point coincides with the energy extrema of the
two bands. The results for this conductivity calculation
are in qualitative agreement with experiment.



