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Thermodynamic Properties of Solids Containing Defects~
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Using thermodynamics and elasticity theory, a uni6ed. treatment of the changes in the properties of solids
containing defects is given. The results are expressed in terms of temperature and pressure derivatives of
the energy required to form a single defect. The procedure is most useful for defects described by elasticity
theory, where it is shovrn that the required pressure and temperature dependence of the energy is given by
the measured pressure and temperature dependence of the elastic constants appearing in the energy expres-
sion for zero pressure and temperature. Some results which vrould other@rise have to be obtained from lengthy
and complicated 6nite-elasticity calculations, as vill as other results not obtainable at all from elasticity
theory, are given by simple derivatives of the free energy. The results are specialized to a number of particu-
lar defects by using various expressions for the defect energies. These calculations are compared with avail-
able measurements of the properties of real crystals. For dislocations, reliable expressions for the energy are
most soundly. based for this case. Unfortunately, there are relatively few measurements for these defects.
A number of speci6c predictions are made, some of which are partially con6rmed by the available data. On
the other hand, for the discussion of the large volume of measurements available for point defects, there
is no generally acceptable model for the defect energy. The extent to which the properties of crystals con-
tauung point defects can be correlated on the basis of several models for the defect energy is explored.

I. INTRODUCTION Toupin and Rivlins as the result of relatively involved
calculations based upon nonlinear elasticity theory.
Equation (4) gives the ratio of the volume change to
the energy change of a crystal containing screw dislo-
CRtlons ln terms of clRstlc constRnts Rnd their px'cssUI'c

coe%cients, which may be taken, for example, from ul-
tI'RSODlc mcasurcmcnts.

The thermodynamic method of calculation above
depends only on the recognition of the fact, demon-
strated in a later section, that Eq. (2) with G=G(p, T)
is the proper expression for the Gibbs free-energy change
in this case. This method is not restricted to calcula-
tions of volume changes. It is also not xestricted to
lsotxoplc stRtlc ol cvcn clRstlc systems Rt zero pressure.

Most calculations of the properties of SOHds contain-
ing defects have been Inade using other methods. These
may be classi6ed as (1) atomistic calculations, which
take atomic structure into account through the use of
interatomic potentials; (2) elasticity calculations; and
(3) other miscellaneous procedures, including empirical
consldcratlons and vRrlous comblnatlons of thc 6rst
two groups and thermodynamic methods.

The atomistic calculations are numerical in character,
Rnd must ln gcncx'Rl bc lcpcRtcd fox' cRch ncw material.
However, they are able in principle to deal with defects
producing large distortions (i.e., usually point defects)
if the potentials are well enough known. The earliest
cRlculRtlons of properties of clystals contalnlng stluc-
tural point defects were of an atomistic nature, begin-
ning with the work of Huntington and Seitz' on the
activation energy of self-di6usion in copper. This has
been followed by a large Dumber of similar atomic-type
calculations of formation energies of vacancies and inter-
stitials. There is Dow an extensive litcrRture on this
subject, and references can be found in several recent

HK volume change per defect p of a so]id contain-
ing defects is given by the thermodynamic

relation
s= Bg(p, T)/Bp, (I)

where g is the change in the Gibbs free energy per defect,
and pressure p and temperature T are the independent
VRI'lRblCS.

As an example of the application of this relationship,
we may consider an isotropic crystal containing screw
dislocations. The Gibbs free energy per atomic length
of dislocation is then given by

g= (Gb'a/4s. )gin(R/re) —1$, (2)

whclc G ls thc Shcax' clastic constRnt b thc Burgers
vector, e the atomic spacing, and E and ro are the usual
outer and inner cutoG radii of the strain Geld of the
dlslocatlon. Because 8 Rnd t'0 dcpcnd on plcssulc a,nd
temperature in the same way, Eq. (2) has the form

where a is a constant independent of p and T, and V
is the volume of the crystal. Applying Eq. (1) to Eq.
(3), one obtains immediately

where the prime signi6es a derivative with respect to
pressure, and J3 is the bulk modulus of the crystal.

This simple result, found herc by a single diAcrentia-
tion, has previously been given by 8ecger Rnd
Haasen, ' ' who used a result given by Zener, ' and by
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review articles. ~' Some of these calculations' " also
give the volume change associated with the defect.
Dienes' has used an atomic model in a calculation of
the effect of point defects on the second-order elastic
constants in bcc and fcc metals.

Possibly the simplest types of calculations are those
using the concepts of basic elasticity theory. Kshelby"
has given R very general treatment -of volume and
lattice-parameter changes of crystals containing point
defects using linear elasticity theory. There are a num-
ber of estimates based on linear elasticity theory of the
CRccts of vacancies on the bulk modulus of materials.
The earliest of these" '~ considered only a spherical
inclusion in the lattice, and later" the effects of relaxa-
tion about the inclusion were considered. Nonlinear
elasticity theory has been used to calculate the volume
changes of crystals containing dislocations, as already
mentioned.

The thermodynamic type of calculation is very useful
for defects because of its generality and because this
approach is indispensible in the calculation of the con-
centration of thermally generated defects. Starting with
a general expression for the Gibbs free energy of R

crystal containing defects, thermodynamics has often
been used to obtain by simple differentiation expressions
for the equilibrium concentration of defects, the en-

tropy, and speci6c heat of real crystals. '9 However, the
rest of the thermodynamic properties a,re not then found
in the same way, nor is any specific model for the pres-
sure and temperature dependence of the formation

energy used. On the other hand, Keyes20 has used ther-
modynamic relations to relate volume and entropy
changes to the Gibbs free-energy changes, and Zener'
has used thermodynamic rela. tions to derive an expres-
sion for volume changes of crystals containing defects.

It is easily seen that all the thermodynamic properties
of crystals containing defects can be found once the
Gibbs free energy of the imperfect crystals is specified.

7A. C. Damask and G. J. Dienes, PoAst Defects &I 3Eetals
(Gordon and Breach, Science Publishers, Inc. , New York, 1963).

8 R. 0. Simmons, J. S. Koehler, and R. W. BallufB, Radiatioe
Damage im Solids (International Atomic Energy Agency, Vienna,
1962},Vol. I.

9L. Tevrordt, Phys. Rev. 109, 61 (1958}.
'0 K. H. Bennemann and L. Tewordt, Z. Naturforsch. 1Sa, 772

(1960)."C. H. Meechan, A. Sosin, and J. A. Brinkman, Phys. Rev.
120, 411 (1960).

~2 G. J. Dienes, Phys. Rev. 86, 228 {1952)."J.D. Eshelby, J. Appl. Phys. 25, 255 (1954).
~4 J. K. Mackenzie, Proc. Phys. Soc. (London) $63, 2 (1950)."J.D. Eshelby, Proc. Roy. Soc. (I,ondon) A241, 376 (1957).
'6 Z. Hashin, in 1Von-Homogeneities As Elasticity and Plastirity,

edited by W. Olszak (Pergamon Press, Inc. , New York, 1959).
"D.A. Q. Bruggerman, Ann. Phys. (N. V.) 29, 160 (1937).' L. Melngailis, Phys. Status Solidi 16, 247 (1966).
~9 R. E, Howard and A. B. Lidiard, in Reports oe Progress iw

Physics, edited by A. C. Strickland (The Institute of Physics
and the The Physical Society, London, 1964), p. 11.

R. %. Keyes, in Solids Urger Presslre, edited by K. Paul
a d D. M. Karschauer (MCGraw-Hill Book Co. NevE Qork
1963), p. 71.

This fact, however, has not been utilized in any of
the defect calculations to the present time. The present
work will therefore be coriccrned with expressing all
the thermodynamic properties of crystals containing
defects in terms of the Gibbs free energy required to
make the defect. The results, given entirely in terms of
the pressure and temperature dependence of the for-
mation energy, will be applicable to any type of defect.
Various models of defects can then be used to calculate
the Gibbs energy appearing in the general expressions.

In order to obtRln qURntitRtlvc lcsUlts fol pRrtlcUIRl
defects, a number of models for various imperfections
are introduced and discussed in Sec. III. The results
for the energy of formation deduced from these models
are used in the general expressions to calculate various
physical properties associated with the appropriate
defect, and the results are compared to experimental
dRta.

II. THERMODYNAMICS OP IMPERFECT
CRYSTALS

For the thermodynamic treatment of imperfect crys-
tals, we must distinguish between two general classes
of defects. The first group consists of equilibrium de-
fects for which the concentration of defects is some
unique function of the other thermodynamic variables.
The second class of defects are those which are Axed
in number in the material in nonequilibrium concentra-
tions. This class of defects is encountered in radiation
damage qucnchiIlg and plastic deformation experi-
ments. For both classes of defects, the relative con-
centration of defects is assumed to be small enough so
that interactions between defects can be neglected.

The change in the Gibbs free energy resulting from
the production of n defects at n specific positions in the
lattice is written eg, where the change per defect g is
assumed to be independent of the number of defects.
If the defects arc free to move through the la,ttice, a
further contribution —TS„where S, is the entropy of
mixing, must be added to ng. The total Gibbs free en-

ergy of a solid containing n defects, g, is therefore
written

where g~ is the perfect-crystal Gibbs function, from
which Rll the thermodynamic properties of perfect
crystals are obtained. If the defects are in thermal
equilibrium in the solid„ then

where E is the number of atoms in the solid.
Now the thermodynamic definitions of volume V,

entropy S, speci6c heat C, bulk modulus 8, and thermal
expansion P can be used to express these quantities in
terms of g. Thc changes 1n these quantltlcs pcl defect
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are, respectively,

v =AV/e =Bg/Bp,

s =DS/e =Bg/B T+S./n,

hC Bh h Be
+

s BT s BT

AB ( v Be B'g ( Be B'g
=Bi v+ ——+ i V —Bv B—e-

n k n BP BP' & BP BP'

Dp vBe:BT+B'g:BTBp vp

S VV+nd V

Here, h, the change in enthalpy for a single defect, is
defined by

h= g T(B—g/B—T) . (g)

5W = (0;; pbbs)bx;ds;. —
e

(9)

Since n is either constant or given by Eq. (6) in the
two cases of interest here, the configurational entropy
does not enter into any of these expressions except for
the total entropy change, and all the thermodynamic
properties of materials containing defects are given in
terms of the isothermal, isobaric work required to form
a single defect and its pressure and temperature deriva-
tives. This procedure has previously been used to find
the changes in volume, thermal expansion, and specific
heat due to point defects in thermal equilibrium, but
the temperature and pressure dependence of g has
normally been neglected. Quantitative estimates of this
approximation have generally not been available. It is
just this part of the above relations that is of particular
interest here.

For the case of a axed number of defects (nonthermal
equilibrium), the thermodynamic approach has not
been used because no expression for the pressure and
temperature dependence of the free energy has been
available. Although it has been realized that the iso-
baric, isothermal work done in creating a defect is the
strain energy for an elastic system, no relations giving
the explicit pressure and temperature dependence of
the strain energy have been available. This is essentially
a finite-elasticity question, and the final form of the
result depends sensitively on the definition of the elastic
constants used. We show now that with the proper
choice of elastic constants, the higher-order elasticity
effects can be entirely included in the pressure- and
temperature-dependent elastic constants in a result
which has the same form as the infinitesimal elasticity
result.

The differential strain energy associated with a dis-
placement of the surface elements d.s of the material
through an amount Sx under the action of a stress com-
ponent 0.;; can be expressed as an integral of the work
Sly done over the surface of the element:

The usual Cartesian tensor notation with summation
over repeated indices is used here. The second term in
Eq. (9) is pb—V, where 8V is the volume change in
going from the initial to the Anal state. Using the di-
vergence theorem and the equilibrium condition Ba;,/
Bx;=0, the strain energy per unit volume of the hydro-
statically strained initial state Ro is

»= pl/+0'jjbEjj. (10)

»= pbbs+ Ggw—&I B&ay. (13)

For an isothermal process, this strain-energy density is
the change in Helmholtz free energy bIi, so if the process
is carried out at constant pressure as well, the second
term in Eq. (13) is equal to the change in Gibbs energy
for the process, bg:

bg= b&+PB4 = &'&~&&I«b&g (14)

Although this simple result has the form of the inhni-
tesimal elasticity theory result, the nonlinear e6ects
with pressure and temperature are fully taken into ac-
count without the appearance of any explicit tempera-
ture and pressure terms. While the answer found above
is in some ways as simple as could be, it is nontrivial
and makes it a simple matter to determine the proper
expression for g(p, T) for a defect described elastically.
That is, the temperature and pressure dependence of
the Gibbs free energy in an isobaric, isothermal process
described by elasticity theory is obtained by using the
experimentally measured pressure and temperature
elastic constants in place of the corresponding elastic
constants in the expression for the strain-energy density
obtained at zero temperature and pressure.

The results found in this way for the volume change
of a self-stressed medium would otherwise involve fairly
involved third-order elasticity theory. The calculation
of the bulk modulus change of a self-stressed material
by elasticity theory involves fourth-order elasticity
theory and fourth-order elastic constants which are not

' D. C. Wallace, Phys. Rev. 162, 776 (1967).

In this relation, P is the dilatation, and the e,; are the
infinitesimal strains, measured from the strained initial
state, defined by

bEjj = 2 (Bbsj/Bsj+ BR'/BÃg) ~

It is important now, in relating 0.;, to ep„ to use a par-
ticular de6nition of the elastic constants. The "stress-
strain" elastic constants, which are equivalent to the
"sound-wave" elastic constants for all pressures, " are
dered for infinitesimal strains by

Cjjkl = 0 jj/vkl

This relation holds for all pressures. It does not hold,
for example, when the Brugger definitions of elastic
constants are used. "

Using this relation in Eq. (10), the differential strain-
energy density is therefore
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available. The modulus change computed by the
thermodynamic approach correspondingly involves
second-order pressure derivatives of elastic constants
which are also not generally available. This difFiculty
can be avoided by using the results of an analysis of
pressure-volume relationships made by Anderson. "He
analyzed a large number of experimental determinations
of the pressure-volume relationships of crystals to very
high pressures (~10' bar) and deduced the bulk modu-
lus as a function of pressure by differentiation of the
pressure-volume curves. Although the volume depen-
dence of the bulk modulus is not simple, he found that
the pressure dependence of 8, even to these very high
pressures, was a simple linear relationship.

In view of this observed linear pressure dependence
of 8, it would seem reasonable to suppose that the other
elastic constants might be represented in a similar
manner. This linear dependence is indeed found for the
other constants measured as a function of pressure,
although the data available for the shear constants
generally extend only to about 104 bar.

There has been one measurement of second-order
pressure derivatives of dastic constants, made by
Chang and Barsch on three cesium halides. "They find
that these derivatives range between 1 and 5)(IO"
cm'/dyn for the various constants. The first- and second-
order pressure derivatives enter the expression for 28
in the combination C'/C+BC", so these values for
the second-order derivatives would give a contribution
comparable to the first, contrary to the assumption
made above. However, the Chang and Barsch results
are in disagreement with the measurements of p-V
relationships by Bridgman, ' which indicate almost no
deviation from linearity in the bulk modulus at pres-
sures up to ten times those used by Chang and Barsch.
Furthermore, the small deviations found by Bridgman
are in the opposite direction from the Chang and Barsch
results. In view of the very linear behavior found from
the Bridgman results for the other materials tested, it
therefore seems reasonable for the moment to neglect
the second-order pressure derivatives in. general. . It
should be noted that if the elastic energy contains a
product of elastic constants, as if often the case, the
largest contribution to the bulk modulus change is a
cross term of the form

88C; I BC;
ZWg ~

C' ~p Ci ~p

This term is typically one order of magnitude larger
than 8C,/Bp, so that values of the second-order pressure
derivative as large as 10 " cm'/dyn still have little
effect in the modulus change expression.

'~ 0. L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).
"Z. P. Chang and G. R. Barsch, Phys. Rev. Letters 19, 1381,

(&967).
24 P. %. Bridgnlan, I'hysics of High I'resslre (G. Bell and Sons,

London, 1949).

The expressions for the entropy, specific heat, and
thermal expansion changes, which cannot be calculated
at all from elasticity theory, are also expressed in terms
of derivatives of elastic constants. The thermal ex-
pansion and specific heat changes involve various
second-order temperature and pressure derivatives,
which are not available. The experimental evidence is,
however, again that these second-order changes are
small, and they will be neglected in obtaining numerical
results.

v = (1/B) (BG'/G 1)g, —

s= fP+(1/G)(BG/BT) j—g,

8G' 8'G"
+

G 6 '
&P BB BG O'G

=BV ' B ' —G' +G-' —g,s l9T BT BpBT

BP 2P BG O'G/BT')

BT G BT G )

(15)

Higher-order terms in the number of defects have been
neglected.
"J. I'riedel, Dislocations (Addison-Wesley Pal)lishing Co.,

Inc. , Reading, Mass. , j.964).
"W.T. Read, Jr., Dislocations ~n Crystals (Mcoraw-Hill Book

Co., New York, 1953).
"A. H. Cottrell, Dislocations and I'lastic clove ie Crystals

(Clarendon Press, 0~ford, 1953).

III. DEFECT MODELS AND COMPARISONS
WITH EXPERIMENT

A. Dislocations

l. 3IIodels

Only the case of a fixed (nonequilibrium) number of
dislocations will be considered, since dislocations can-
not exist in thermodynamic equilibrium in crystals. ""
The principal effect of the dislocation is to introduce an
elastic-strain field into the solid. The magnitudes of
these strains are found to be reasonably small, so that
they can be adequately treated by elasticity theory.

The strains associated with a linear screw dislocation
are pure shear, and the strain energy per atomic length
of dislocation in an isotropic medium is given in Eq. (2).
For this defect, the number n of defects is taken to be
the number of atomic lengths A/a in the crystal, where
A. is the total dislocation length. All of the parameters
entering Eq. (2) are those of the initial state of the per-
fect crystal at pressure I' and temperature T. The frac-
tion R/ro is independent of pressure and temperature,
since 8 and ro depend on pressure and temperature in
the same way. The total energy depends on the pressure
and temperature through the product 6 and volume.
Using this form LEq. (3)j of g in the general relations,
we obtain
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Zener' has given a general elasticity expression for
the volume change in a self-strained m.edium, in the
form

TABLE I. Changes in the properties of a number of solids per
unit atomic length of a screw dislocation using isotropic elasticity
results.

hV= (BG'/G 1)(u,—/8+ (8' 1)—ri/8, (16)
Material

g SC/RVkT
(eV) v/Q s/k ~p/np d B/&&8 (10'/'K')

where co, and co~ are the shear and dilatational strain
energy of the defect. Since the screw dislocation energy
is pure shear energy, this is in agreement with the result
found in Eq. (15). Moreover, we find, upon comparing
Eqs. (15) and (16), that any defect whose elastic strain
energy is expressible in the form of Eq. (3) must be
pure shear in nature.

In fact, the strain fields associated with most defects
are predominantly shear strains. Besides the screw dis-
location, which is composed entirely of shear strains,
edge dislocations and point defects treated in a sphere-
in-hole model are predominantly shear. Even thermal
strains arising from lattice vibrations are mostly shear
because 3 of the vibrational modes are shear modes,
and the longitudinal modes contain a subtsantial
amount of shear components. Arguments have also
been given that the activation energy of motion of
point defects is also of this form. '8

The expression in Eq. (15) for the entropy and volume
changes are identical to those derived by Keyes' for
self-diffusion. His calculations were based on a contin-
uum model, and the results were obtained by a thermo-
dynamic procedure. It is apparent by comparison that
his calculations were, in fact, based on a GV model for
the defect diffusion energy.

In order to see the general features of this model, and
for use in comparison with experimental results, the
quantities given in Eq. (15) are tabulated in Table I
for a number of different materials. The values of the

parameter involved in the relations have been taken
from the recent compilation by Barsch and Chang. "
For the reasons outlined above, the second-order deriva-
tives of G are neglected in 68, Ac, and Ap. The volume,
thermal expansion, and bulk modulus changes have been
normalized to the corresponding perfect-crystal prop-
erty, and the entropy and speci6c heat to k and 3EAT,
respectively, for the sake of convenience. 0 is the per-
fect-crystal atomic volume or ionic volume in the case
of the ionic crystals.

Because of the predominantly shear nature of most
defects, the results in Table I, when divided by the
energy of formation g, should serve for an order-of-
magnitude estimate for the effects of most defects on
the properties of materials. It will be seen later that
the results of calculations using various other models
for defects are indeed fairly close to the results in
Table I. All of the fractional changes are of the order
of 1%/at. % of defects per eV of defect energy.

Al
CU
Ag
Au
Na
K
Fe
Si
Ge
LiF
NaF
NaCl
KCl
KBr
KI
RbBr
MgO
CsCl
CsBr
CsI
CuZn

2.46 1.33 14,4 0.85
3.35 1.01 12.9 0.44
3.02 1.12 13.5 0.41
2.76 0.86 8.3 —0.06
0.51 0.48 10.3 1.83
0.45 0.49 9.4 1.79
5.26 1.23 5.0 —1.41

12.0 4.98 5.7 —4.96
11.1 0.25 12.7 —1.82
7.22 2.58 40.8 —0.24
7.38 2.64 44.8 0.17
6.36 2.83 50.7 0.47
7.84 2.64 61.5 0.91
3.15 3.10 28.9 1.69
6.06 3.28 68.0 2.92
6.40 2.64 66.0 2.12

22.0 2.32 37.3, 1.12
5.62 1.82 32.2 —1.88
5.43 1.78 21.2 —2.88
5.34 1.91 36.1 —1.88
8.61 0.55 22.6 —2.17

—0.23
0.58
0.39
0.00
0.43
0.38
0.95—1.88
3.55
1.94
1.77
1.42
2.52
1.58
2.14
2.67
1.39
1.90
1.78
1.61
0.73

0.60
0.33
0.42
0.19
1,45
1.35—0.07—0.04—0.19
1.90
1.95
3.39
3.64
1.99
5.08
4.40
0.37
2.39
1.46
1.43
0.33

68 8 8' C44' C.')

e U„2C44 2C,)
(1g)

dP 1 88 8C44 Bc,
=(B~n) ' — —(2C44) ' —(2C) '

g
Ã BT T BT

One objection to the above screw-dislocation model
is that it treates the solid as an isotropic medium. The
strain-energy density for a screw dislocation in a cubic
material is also known for certain types of materials,
so that the importance of the assumption of isotropy on
the results can be calculated and compared directly
in this case. The energy, again pure shear, of a screw
dislocation whose Burgers vector is in a (110) direction
in a cubic crystal is"

g= (f o/2~) I -;C„(C„—C„)j ln(Z/. .), (17)

where Cyy, Ci2, and C44 are the usual cubic second-order
elastic constants. Thus, the only effect of anisotropy
on the previous results for a screw dislocation is that
obtained by replacing the shear constant 6 and its
derivatives appearing in those results by the effective
shear constant indicated in Eq. (17) and its derivatives.
The thermodynamic quantities corresponding to Eq.
(15) are given by the relations

~ =(28) 'LB(C«'/C«)+8(C '/C ) —2jg,

8C44 Bc,= —
I P+(2c«) ' +(2C.') '

BT BT

28 C. Zener, in Imperfections in Pearly Perfect Crystals, edited
by W. Shockley, J. H, Holloman, R. Maurer, and F. Seitz (Wiley-
Interscience, Inc. , New York, 1952), p. 295.

"G. R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139
(1967).

and

2"/ BP 2P
2

8 5 BT (C4ic.)'"
8 (C44C, )'"

BT
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TABLE Il. Changes in the properties of solids per unit atomic
length of screw dislocation using anisotropic elasticity results.

Material
g 4C/3' T

(eV) v/~ s/k &P/nP AB/nB (10'/'K')

Al
CU
Ag
Au
Si
Ge
LiF
NaF
NaCl
KCl
KBr
KI
RbBr
MgO

2.44 1.31
2.86 0.80
2.61 0.92
2.41 0.69

11.7 3.86
10.7 0.12
6.85 3.37
7.32 2.24
6.25 2.32
6.59 0.73
2.76 1.31
5.21 1.40
5.31 0.77

21.4 2.82

14.5 0.76 —0.28
12.2 0.40 0.50
12.2 0.38 0.35
6.9 —0.01 —0.08
5.8 —11.0 —22.8

11.8 —1.56 3.34
49.8 13.6 —7.49
40.4 10.1 —6.19
44.1 9.38 —5.33
37.4 7.70 —4.18
18.7 10.5 —6.90
41.2 12.6 —5.77
37.9 10.7 —4.59
43.2 11.2 —4.88

0.62
0.37
0.40
0.16—0.04—0.17
7.50
5.24
7.65
4.93
3.16
9.08
7.23
1.77

dt'C„C, )"' 1(C„' C,')(c-c)-'" =-I +
Bp 2 EC44 C,

(19)

in the cubic case. These two averages also differ little
for most materials, except for the potassium and
rubidium compounds, where C44 is negative. This is the
source of the difference in the volume change results
found for these materials in Tables I and II.

The second-order derivative of the elastic constant
in Eq. (15) is neglected in the isotropic case, but in the
anisotropic case it becomes

8'(C44C )"' 1 C44' C.'
(C C )

—1/2

Bp' 2C44 C,

20

These terms are zero if the logarithmic derivatives are
equal. Since this term is the only important difference
between the isotropic and anisotropic results, we see
that the determining factor for the deviation of the

The numerical evaluations of Eqs. (18) are given in
Table II. Here C,= (Cii —Cu)/2.

The results for the volume and entropy changes from
this table are very close to the results given in Table I,
except for the potassium and rubidium halides, where
the pressure derivatives of C44 are negative. In the case
of AP, hc, and AB, the results in the two tables are
almost identical for the metals, but differ signilcantly
for the other materials. The reason for this discrepancy
can be seen as follows. The only difference between the
isotropic and anisotropic results is that the isotropic
elastic constants are replaced in the anisotropic case
by the square root of the product of the two cubic con-
stants. The average elastic constants for the isotropic
case can be taken to be G=-', (C,+C44), which differs
little from the square-root average. The logarithmic
derivative is given by G'/G=(C44'+C, ')/(C44+C, ) in
the isotropic case, and by

G," C' —G' G' C' —G' C' C' G')

G, C—G G C—G C C GP

C"—G" C" G"+-
C G

(22)

with similar expressions for the temperature derivatives'
The numerical results obtained in this way are very
similar to the isotropic screw dislocation results, so
they will not be tablulated.

The energy density of an edge dislocation along the
[001j direction whose Burger's vector is in the [110]
direction, in a cubic material, is also available and is
given by"

Cll Ce b'a R
g
= (C44C,)"' in—.

(cr,cn) '~' 2' Yp
(23)

The cubic shear an.d longitudinal elastic constants are
C44 and C„and C» and C&, respectively, where Cz,
=-,'(C11+C12+2C44). The anisotropic energy in Eq. (23)
is again similar to the isotropic result in Eq. (21).Thus,
for both edge and screw dislocations, the only difference
between the isotropic and anisotropic results is that the
isotropic shear and longitudinal elastic constants are
usually replaced in the anisotropic case by the square

"K.Swartz and A. V. Granato (to be published).

anisotropic from the isotropic results is the degree of
anisotropy in the logarithmic derivatives of the elastic
constants. These logarithmic derivatives are very nearly
equal for most metals, but differ greatly for ionic crys-
tals in accord with the differences in the results of Tables
I and II.

It is also possible to calculate the volume change
produced by a screw dislocation in an anisotropic cubic
crystal directly, using finite-elasticity theory. The re-
sult'0 is the same as that given in Eqs. (18). We again
make note of the fact that the result given by lengthy
finite-elasticity calculations is obtained here by a very
simple differentiation of a result derived using only
linear elasticity theory.

The strain-energy density of an edge dislocation in
an isotropic medium is

g= [(C G)/C j(—Gb'a/4') ln(E/Fo), (21)

where C= 3 (38+4G) is the elastic constant appropriate
for longitudinal strains. The energy again has the form
of an elastic constant times a volume, except that the
effective elastic constant G, is a combination of elastic
constants. Therefore, the expressions in Eqs. (15) can
be used for edge dislocations simply by replacing G by
G, so that

G,=[(C—G)/CEG,

G,' C' —O' C' G'—+—,
6, C—G C G



TAaI.E. III. Changes in the properties of a number of solids
per unit atomic length of edge dislocation using anisotropic
elasticity results.

Material
~C/3' T

(ev) e/0 s/k hp/np 6B/aB (10'/'I')
I.iF
NaF
NaCl
KCl
KSr
KI
RbSr
Mgo

6.01 3.54 45.02 10.23
6.66 2.70 38.72 9.14
5.81 2.70 42.30 8.55
6.08 1.38 35.43 8.11
2.61 1.80 17.41 9.61
4.96 1.97 36.77 10.94
5.14 1.42 35.44 10.35

18.30 2.89 35.94 7.80

—6.56—7.50—649—8.1j.—9.46—9.49—9.54

6.02

6.80
451
2.78
7.72
6.44
1.35

» A. V. Granato, Phys. Rev. 111,740 (1959).

root of the product of the two cubic shear or Iongi-
tudinal constants.

The dislocation orientation appropriate for Kq. (23)
is the observed dislocation orientation in the NRCI
structure, and the results for several of these materials
are given in Table III. The only important difference
between the isotropic and anisotropic results for the
above edge and screw dislocation results is determined
by the degree of anisotropy of the logarithmic temper-
ature and pressure derivatives of the elastic constants.
Since this anisotropy is small in the case of the metals
listed, in Table I, it seems reasonable to suppose that
the isotropic edge dislocation results mould be very
similar to the anisotropic elasticity results.

This elastic description of dislocations should be
reliable iQ descrlblQg static dislocations, but all eGects
of the motion of the dislocations have been neglected.
This dynamic effect should RGect the dislocation con-
tribution to such properties as speci6C heat, thermal
expansion, and entropy. Calculations of this kind have
been made in the past, "but there are no experimental
measurements of these quantities at- present.

A small-angle grain boundary can be visualized as
being made up of a large number of dislocations, so the
properties of dislocations discussed above can easily
be extended to grain boundaries. The energy of a general
grain boundary cRQ be wrj. tten

E= E, LtI(A —lne)l, (24)

where Ep and A are independent of the angle 8, which
measures the orientation difference betmeen the adjoin-
ing grains. The constant A is analogous to the ln(R/rs)
term appearing in the edge and screw dislocation results
above, so it would have little or no volume dependence.
Eo is given by

Fp= 0!TpLP

in units of energy per atomic area of grain boundary.
The constant n is a number of order unity, depending
on the nature of the grain boundary. The quantity vp

is equal to the coeKcient of (b'/4s) ln(R/rs) in Eqs. (2)
or (21) when the dislocations associated with the boun-
dary are screw or edge dislocations, respectively. There-
fore, the dislocation results of Table I apply as well to

TABLE IV. Comparison of experimental and calculated results
for the ratio of volume change to stored energy in heavily de-
formed materials (in units of 10 4 g/cal).

Calculated results
Screw Edge

Material dislocations dislocation
Experimental

results'

Cu
Ni

& Reference 32.

4.9
8.3
5.8

9.6—13.1
7.5- 7.6

grain boundaries, and the table should be useful in
describing the properties of heavily deformed materials.

Z. Experimental Results

It has been noted that the amount of experimental
data related to the dislocation calculations is very
limited. In fact, the only measurements directly related
to the present calculations are those of stored energy
release and volume changes in deformed copper and
nickel by Clarebrough, Hargreaves, and %est."These
results have have already been discussed by Seeger, '
who used elastic strain-energy densities of dislocations
in Zener's' formula. The present results are identical
to Zener's for the isotropic edge dislocation, and differ
little for the anisotropic screw dislocation. In Table IV,
measurements of the elastic constants of copper" more
recent than those used by Seeger have been used, to-
gether with the anisotropic screw dislocation results
from Table II.

The experimental values are seen to be of the same
order of magnitude as the calculated values. However,
in the calculated values of the energy and of the volume,
the errors due to contributions from the core region and
interactions betmeen dislocations should be no more
than 10'Po. The ratio should be expected to be even
more accurate, so that the discrepancies cannot be ac-
counted for in terms of dislocations alone. The compari-
sons show that stored energy or volume measurements
can probably be used to count dislocations to within an
accuracy of R factor of 2.

It can be seen from Tables II and III that the calcu-
lated volume changes associated with dislocations in
most of the ionic crystals are 2-4 atomic volumes per
atomic dislocation length. Since the local dilatation
varies as the inverse of the square of the distance from
the center of a dislocation, these values would indicate
that there may actually be a hole in the solid centered
about the dislocation. There is some experimental evi-
dence for such hollow dislocation cores. Tucker, Laskar,
and Thompson" measured the eA'ect of the migration
of sodium ions along dislocations on the ionic conduc-
tivity of LiF and found that the sodium ions moved
very easily. They suggested that this might be ac-

gmI. M. Clarebrough, M. E. Hargreaves, and G. YV. West,
Proc. Roy. Soc. (London) A252, 252 (1955).

g3 V. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).
'~R. Tucker A. Laskar, and R. Thompson, J. Phys. Soc.

Japan 18, 120 1963).
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counted for by hollow dislocation cores. The volume
changes per atomic length of dislocations in LiF given
in Tables II and III are about 3-,'atomic volumes, so
this conclusion is plausible on the basis of the present
work.

We note that the present calculations predict that
there would be relatively little pipe diffusion along screw
dislocations in such materials as KC1 and RbBr. As far
as we are aware, however, such an experiment has not
been performed on these materials.

Another quantity which may be related to the large
volume changes is the thermal conductivity of deformed
materials in the 1—30'K temperature range. At these
temperatures, the thermal conductivity of insulators
is very sensitive to the imperfection content of the
material. The thermal resistivity of deformed materials
should be largely determined by the scattering of pho-
nons by dislocations. The calculations of this scattering
are directly related to the elastic strain fields of the
dislocation. However, a comparison of these calculations
with experimental results shows" that the measured
values of the resistivity are two to three orders of mag-
nitude larger than the calculated values. If, on the other
hand, the dislocations are hollow, the phonon scattering
may be much larger than that previously calculated.

B. Point Defects

1. 3fodels

The calculation of the properties of materials con-
taining point defects is limited by the lack of any com-
pletely acceptable model for the defect energy. For
example, the strains associated with point defects are
generally considered to be too large and the defect
too small to be treated by continuum elasticity theory.
Nevertheless, such elasticity models have proved to be
useful for limited purposes. Because of the generality
of elasticity calculations, it seems reasonable to suppose
that the variation of point-defect properties from ma-
terial to material might scale with the elastic constants.
This was found to be true for the case of vacancy forma-
tion energies in a number of metals, as demonstrated
by Mukherjee. 36 Furthermore, it is possible that the
pressure and temperature dependence of the energy,
which is all that is necessary for the present calculations,
is given more reliably than the magnitude of the energy.
Finally, there are some properties of r materials contain-
ing defects where an order-of-magnitude estimate is
important. For example, various theoretical estimates
of the effects of point defects on the elastic constants
of copper differ in the sign of the effect and range over
two to three orders of magnitude.

Therefore, it seems worthwhile to survey the experi-
mental results and compare them with the available
point-defect models. In general, the agreem. ent is found
to be not extremely good, but it is better than might

"M. Moss, J. Appl. Phys. 37, 4168 (1966).
&6 K.. jVlgkberjee, Phil. Mag. 12, 915 (1965).

have been expected. For example, the magnitude of the
e6ect of point defects on the bulk modulus of LiF is
found to be in closer agreement with the thermodynamic
calculation given here than with any other theoretical
estimate. Also, the method supplies order-of-magnitude
estimates for some quantities for which no previous
estimates were available.

A useful elastic model for point defects is the "sphere-
in-hole" model. The "defect" is constructed by remov-
ing a sphere of radius S2 from the center of a spherical
perfect solid, and another sphere of the perfect material,
of radius 5&, is inserted into this cavity. The surfaces
between the inner sphere and outer shell "weld" together,
and the material relaxes so that this interface reaches
some equilibrium value of radius R, introducing elastic
strains into the medium. The magnitude of the strains
introduced is determined by the misfit parameter

y=—(S~—Sp)/Sp.

The volume concentration of defects is taken to be

4 =Sp'/&p',

(26)

(27)

where T2 is the outer radius of the perfect solid.
A straightforward linear elasticity calculation gives

the strain-energy density

g/p = (6BG/C) y'/t . (28)

G/ Cl
+

G. 8 G C
// (g/ G/ g/ C/ G/ C/

=2
G. MG ac GC

(29)

The numerical results obtained in this way are tabulated
in Table V for the same materials as in Table I. Except
for the modulus and thermal expansion changes, which
are generally very small in both cases, the results are
very similar to those in Table I.

It is possible to describe point defects in a slightly
different fashion. A platelet of interstitials or vacancies
can be regarded as an edge dislocation loop, for which
elasticity expressions of the strain-energy density are
available. A single vacancy or interstitial could, there-
fore, be visualized as a dislocation loop having a diam-
eter of one atomic volume. Although it is doubtful that
the energy expression will be reliable at this diameter,
it may be reasonable to suppose that the expression
should still adequatately describe the temperature and
pressure dependence of the energy.

The strain-energy density of an edge dislocation loop
of radius Rp 1s

g= ((C—G)/CjGb'RpLln(SEp/b) —1$. (30)

This energy again has the form G,V, where the effective
elastic constant G, and its derivatives are given by

G,=BG/C,
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TA&LE V. Changes in the properties of various solids for a point
defect as calculated from a sphere-in-hole model. The quantities
are expressed per unit energy of formation.

TABLE VI. Ratio of stored energy to volume
change caused by radiation damage.

Material
3t/Qg

(ev &)
s/kg

(eV-1)
d,P/nPg
(eV ')

AB/nBg (d,C/eg)/3NkT
(eV—3) (103/oK2 ev)

Measured
value

Material (eV/atom) Ref.
Calculated value

(eV/atom)
Al
Cu
Ag
Au
Na
K
Fe
Si
Ge
LiF
NaF
NaCl
KC1
KBr
KI
RbBr
MgO
CsC1
CsBr
CSI
CuZn

0.51
0.36
0.41
0.31
1.21
1.35
0.31
0.34
0.18
0.49
0.47
0.55
0.50
1.23
0.71
0.61
0.14
0.48
0,48
0.50
0.09

5.19
3.61
4.18
3.05

15.39
15.96
1.50
0.68
1.33
5.79
5.98
7.66
7.32
8.08
9.12
8.93
1.50
7.65
6.93
8.45
3.74

0.34
—0.01

0.02
—0.02

0.30
0.58
0.12

—0.62
0.19
0.01

—0.01
—0.01
—0.07
—0.14
—0.26
—0.29
—0.01

0.24
0.34
0.91
0.01

—0.09
—0.01

0.02
0.00
0.07
0.12

—0.08
—0.23
—0.38
—0.11
—0.08
—0.04
—0.19
—0.13
—0.19
—0.36
—0.01
—0.24
—0.21
—0.16
—0.00

0.27
0.10
0.14
0.0?
4.44
5.25
0.02

—0.00
—0.01

0.27
0.26
0.51
0.44
0.62
0.93
0.71
0.01
0.83
1.14
0.59
0.21

Z. Nonequilibriurts Numbers of Defects

Measurements of the stored energy release and
volume change after radiation damage are summarized
in Table VI." "Also included in the table are the calcu-
lated results from Table V, and in the case of NaCl, the
corresponding ratio obtained from Table III.The agree-
ment between experimental and calculated values for

g' T. H. Blewitt, R. R. Coltman, and C. E. Klabunde, J.Phys.
Soc. Japan 18, Suppl. III, 288 (1963).' T. H. Blewitt, in Radiatioe Damage in SoBds, edited by D. S.
Billington (Academic Press Inc. , New York, 1962), p. 630.

3 T. G. Nilan and A. V. Granato, Phys. Rev. 137, A1233 (1965)."T.H. Blewitt and M. W. I.ucas, Bull. Am. Phys. Soc. 12,
302 (1967).

4' K. Isebeck, F. Rau, W. Schilling, K. Sonnenberg, P. Tischer,
and H. Wenzl, Phys. Status Solidi 17, 259 (1966).

4' K. Kobayashi, Phys. Rev. 102, 348 (1956)."K.Kobayashi. Phvs. Rev. 107, 41 (1957).

This expression has the same combination of elastic
constants present in the isotropic edge dislocation
energy expression (21). On the basis of this model, the
point-defect properties per unit energy are the same as
for the edge dislocations in an isotropic material.
Furthermore, it seems likely that the dislocation loop
energy in an anisotropic medium would also have the
same form as the linear edge dislocation energy in that
material. In the absence of a formal proof that this is
true, we simply assume it to be the case in order to have
some estimate of the effect of anisotropy, since there
are no anisotropic elasticity solutions available in
analytic form for point defects. From the previous dis-
cussion of dislocation effects the isotropic elasticity
results are not expected to be very reliable for some of
the properties in the case of the ionic crystals. On this
basis, we might expect the properties of the ionic solids
containing point defects to be given by the results in
Table III.

CG

Al

NaCl

2.8
3.7
1.7
2.6
49

Blewitt et al.'
Nilan and Granatob
Blewitt and I ucas'
Isebeck et al.~

Kobayashi'

2.7

1.7

2.2 (anisotropic)
1.5 (isotropic)

a References 37 and 38.
b Reference 39.
o Reference 40.

d Reference 41.
+ References 42 and 43.

J. E. Bauerle and J. S. Koehler, Phys. Rev. 107, 1493 (1957).
45 R. O. Simmons and R. W. BallufB, Phys. Rev. 125, 862 (1962)."D.O. Thompson, T. H. Blewitt, and D. K. Holmes, J. Appl.

Phys. 28, 742 (1957).

the two metals is good. This agreement with results
calculated from elasticity theory is somewhat surprising
in view of the large strain fields associated with the
defects. Using a reasonable value of 5 eV for the for-
mation energy of a Frenkel pair in Eq. (28), for example,
we find an effective misfit of about 60% for copper. This
is well outside the range of validity of the elasticity
theory used above.

The result given for NaCl in Table VI is not in as good
agreement with the elastic calculation, although the
anisotropic result is indeed closer to the experimental
result than the isotropic result. It should be noted that
the defects created by irradiation of ionic crystals are
largely color centers, with highly energetic electronic
states associated with them. The fact that the agree-
ment between experimental and calculated results is
still poor could be partly due to incomplete bleaching
or to some other effect related to the energy states of
the color centers.

By using the results of Bauerle and Koehler44 for the
volume change per unit resistivity change observed in
quenched gold wires, Simmons and Balluffi4' calculated
the volume change per vacancy to be 0.45 atomic
volume. The volume per defect for the sphere-in-hole
model, obtained by multiplying the entry in column 2
of Table V by the room-temperature value g=0.94
obtained from the data of Simmons and Balluffi, 4' is
0.3 atomic volume. This is smaller than, but of the
same order of magnitude as, the measured value. The
value for e will be of interest in the discussion of thermal
expansion results later.

The e6ects of point defects on the elastic moduli of
materials have been studied in radiation damage experi-
ments. However, there is a large variation in the magni-
tude of the effects of the defects on the moduli found in
the various experiments. Thompson, Blewitt, and
Holmes found that the Young's modulus of single
crystals of copper was changed by less than 1%/at. %
of defects introduced .by 20'K neutron irradiation. A
decrease of Young's modulus of the order of 1%/at. %
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of defects was reported by Dieckamp and Sosin4~ for
polycrystalline copper foils electron-irradiated at 80'K,
and by Muss and Townsend" for polycrystalline tung-
sten irradiated at room temperature with deuterons.
However, KOnig, Volkl, and Schilling" found a decrease
of about 140%/at. % of defects introduced by 30'K
O.-particle irradiation of polycrystalline copper foils.
They also report a corrected value of the Dieckamp
and Sosin measurements, which increase that value to
a change of 140%/at.% of defects.

The measurements on copper were not of the bulk
modulus. The only direct measurement of both the
bulk modulus and the volume change on the same speci-
men is that by Gerlich e3 al.5' on slow-neutron-irradiated
LiF. The ratio of bulk modulus to volume change was
found to be —1.8. This is much smaller than the value
of —100 found by Konig e3 cl. and Dleckamp and Sosin
for Cu, but is not in disagreement with the results of
Thompson et al.

There is also a wide variation in the theoretical esti-
mates of the eGects of point defects on elastic constants.
Mackenzie, ' Eshelby, "and Hashin" all And the same
relation for the change in the bulk modulus due to
vacancies, which predicts a decrease of the order of
1%/at. %%uoof vacancies . Dienes" "gav e a theoretical
estimate of the eGect of radiation on the elastic con-
stants of simple metals. For copper he predicted that
interstitials would increase and vacancies would de-

crease the elastic constants by amounts of the order of
10 and 1%/at.% of interstitials and vacancies, respec-
tively. An argument has been given by Zener" which

suggests that the eGect of point defects should be simi-

lar to that of phonons. On this basis, one mould expect
all the elastic constants to decrease with Frenkel defect
content, in contrast to the prediction of an increase by
Dienes. If the volume change per Frenkel pair is sup-

posed to lie between j. and 1.5 atomic volumes, then a
bulk modulus change of about —4 to —8% per percent
Freknel pairs would be expected on this basis. An esti-
mate by Nabarro, 5' using a linear elasticity theory,
predicts a change of 3.8 and —2.3% per percent of
interstitials and vacancies, respectively. On the other
hand, a recent linear elastic calculation by Melngailis"
yields values of the order of that found by KOnig et ul.
and Dieckamp and Sosin. The thermodynamic result
for copper using isotropic elasticity results from Table
V and an energy of 5 eV per Frenkel pair is a decrease
of only 0.03%/at%%uo of defects, again in agreement with
the results of Thompson et ul. but in gross disagreement
with the result of Konig et al. and Dieckamp and Sosin.

47 H. Dieckamp and A. Sosin, J. Appl. Phys. 27, 1416 (1956).
48 0. R. Muss and J. R. Townsend, J. Appl. Phys. 83, 1804

(1962).
49 D. Konig, J. Volkl, and W. Schilling, Phys. Status Solidi 7,

591 (1964)."D.Gerlichs J.T. Holder, and A. V. Granato, Phys. Rev. 181,
1220 (1969).

~' G. J. Dienes, Phys. Rev. 87, 666 (1952).
~' C. Zener, Acta Cryst. 2, 163 (1949}.
~8 F. R. N. Nabarro, Phys. Rev. 87, 665 (1952).

On the basis of the present calculations, the modulus
change of irradiated copper {as well as Al, Au, and Ag)
should be very small and difficult to detect. The cor-
responding results obtained from Tables V and III for
this ratio in LiF in the isotropic and anisotropic cases
are —1.0 and —3.3, respectively. Of all the theoretical
estimates of this eGect, the present calculations are
closest to the experimental results in LiF.

There is also an experiment involving equilibrium
concentrations of thermally generated defects that can
be related to this eGect. By measuring the diGusion
constant at several different pressures Nachtrieb et ul. 54

determined the activation volume of self-diGusion in
sodium as a function of pressure. This activation volume
includes the eGects of the migration of the defect, but
there is evidence that these contributions are very small
in comparison with the eGects due to the formation of
the defect. "The change in the macroscopic bulk modu-
lus due to the presence of vacancies can thus be esti-
mated by using Eq. {7).This calculation indicates that
the bulk modulus will be decreased by about 3%/at. %
of defects {for the case when the number of defects is
fixed). This is opposite in sign from the increase of
+0.14%/at.% of vacancies given by Table V and the
measured activation energy. "However, the sphere-in-
hole result is expressed as a small diGerence in two
relatively large terms so that the small magnitude of the
calculated result is of more significance than the sign.
Another feature of the result is that it serves to illu-
strate the usefulness of the general thermodynamic
relations of Sec. II. The effect of the point defects on
the bulk modulus has been deduced without using any
elastic measurement or defect model. The accuracy of
the estimate is limited only by the accuracy of the
diGusion measurements and the dif6culty in separating
the defect migration and formation contributions.

3. Eqlilibrigrl iVmrttbers of Defects

Near the melting point of solids, the concentration of
defects in equilibrium is large enough to produce
measurable changes in some of the properties of the
crystal. In the case of metals, these equilibrium defects
are lattice vacancies. ~' We shall next compare the results
of measured changes in physical properties due to these
vacancies in metals with the estimates based on the
sphere-in-hole results of TaMe VI.

The present calculations for the formation entropy
of vacancies in metals are not in close agreement with
experimental values. The values of s determined from
equilibrium measurements of x-ray lattice-parameter
and length-change measurements are 1.0k for gold, 4'

2.4k for aluminum, 58 and 5.8k for sodium. '4 The data

'4 N. H. Nachtrieb, E. Catalano, and J.A. Weil, J. Chem. Phys.
20, 1185 (1952).

~~ C. P. Flynn, Phys. Rev. 181, 682 (1968)."R.Feder and H. P. Charbnau, Phys. Rev. 149, 464 (1966)."R.O. Simmons, J.Phys. Soc. Japan 18, Suppl. II, 172 (1963).
s R. 0. Simmons and R. W. BallufB, Phys. Rev. 117,52 (1960}.
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T~BI,E VII. Comparison of formation energies and equi1ibrium concentrations of vacancies in metals derived by dBerent authors.
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0.42

h
I
k
k
l

Length-change —lattice-parameter
Conc.

(eV) R.ef. Ref.

0.2
0.14
0.3
0.14
0.1
0.24
0.22

0.09

0.7
0.65
0.62
0.67'

0.56
0.65
0.485

d
g

Thermal expansion
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(%)
0.5

0.2
0.'76

Speci6c heat
Eg
(eV) Ref.

1.0
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1.1/

0.48
0.26

R. O. Simmons and R. W. Balluf6, Phys. Rev. 129, 1533 (1963).
b Reference 59.
& Reference 62.
d Reference 60.
+ Reference 45.
& Reference 63.
I Reference 61.

h R. O. Simmons and R. W. Balluffi, Phys. Rev. 119,600 (1960}.
& Reference 58.
I Reference 64.
& R. Feder and A. S. Nowick, Phys. Rev. 109, 1959 (1958}.
& Reference 56.~ Reference 65,

for other materials were not accurate enough to deter-
mine s. From Table V and the measured formation
energies, we 6nd that the sphere-in-hole model estimates
for these entropies are 2.4k for gold, 3.9k for aluminum,
4.2k foI' coppcl 4.6k for' sllvcl, Rnd 6.5k fol so(IluIQ.
The sphere-in-hole model predictions are of the same
order of magnitude as the measured results, but the
calculated results are consistently higher than the
measured values by 1—2 entropy units. However, the
calculated results are roughly in the same proportion
to each other as the measured results. If the calculated
trend from material to material is given more attention
than the absolute values, the formation entropies of
copper and silver would both be expected to be larger
than that for aluminum. This would give a formation
entropy of about 2 entropy units higher than the value
1.5k, which was assumed in determining h in the equili-
brium experiments. Therefore, the formation energy
would be as much as 0.2 eV larger in these materials
than the assignments given previously. The migration
energy obtained from this formation energy and the
activation energy for self-diffusion would be smaller
than previously considered values by the same amount.
It is interesting to note that this is just the order of
magnitude of the difference between the migration
energies determined from equilibrium and the activa-
tion energies found in stage-III radiation damage
studies.

Although a discrepancy in s for aluminum and gold
is present and measurements presently available do
not support the larger entropy values contemplated
here, we are not aware of any experimental result of
suScicnt accuracy to de6nitely rule out the calculated
values. In fact, Simmons and Balluffis' have shown that
if the estimates of equilibrium defect concentrations
from quenching experiments are plotted along with the
conccntrRtlons deduced at lowcl tcIQpclRturcs fx'onl

equilibrium experiments, the value of the formation

entropy obtained for aluminum is 3.6k. This would be

in close agreement with the prediction of the sphere-in-
hole model calculations.

It has usually been assumed in the past that the
changes in such properties as the thermal expansion and
speci6c heats of metals containing equilibrium concen-
trations of point defects are determined almost entirely
by the temperature and pressure dependence of the
equilibrium concentration of defects. Accordingly, the
temperature and pressure dependence of g in Eq. (7)
has been neglected in interpreting the results of experi-
ments of this nature. This assumption is indeed con-
firmed by the present calculations. The results of Table
V are due to all the CGects other than those of the chang-
ing defect concentra, tlon, so they provide an estimate
of the error involved in this approximation.

However, there is a large discrepancy between the
equilibrium defect concentrations and energies of for-
IQRtlon dcllvcd by some authors from spcc16c hcRt
and thermal expansion experiments and corresponding
results derived from length-change —lattice-parameter
measurements. These results are summarized in Table
VII. Since the concentration of defects is determined
directly from length-change and lattice-parameter
measurements, ' this discrepancy could be interpreted
to mean that the above assumption is incorrect.

Another possible reason for this discrepancy, how-

ever, lies in the use of incorrect extrapolation procedures.
In order to see this, several measurements of the tem-
perature dependence of the thermal expansion of gold,
a representative metal, are shown in I"ig. 1. In order to

5~ P. Jongenburger, Phys. Rev. 106, 66 (1957).
60 S. D. Gertsriken and B.F. Slyusar, FMM 6, 1061 (1958).
6' I. K. Leksina and S. I. Novikova, Fiz. Tverd. Tela 5, 1094

(1963) /English transl. :Soviet Phys. —Solid State 5, 798 (1963)j.
ss Y. A. Kraftmakher, Fiz. Tverd. Tela 9, 1850 (1967) LEnglish

transl. :Soviet Phys. —Solid State 9, 1458 (196/) j.
6' Y. A. Kraftmakher and P. G. Strelkov, Fiz. Tverd. Tela 8,

580 (1966) I English transl. : Soviet Phys. —Solid State 8, 460
(1966}j."T.K. Pochapsky, Acta Met. I, f47 (1953).

ss L. G. Carpenter, J. Chem. Phys. 21, 2244 (1953).
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FIG. j.. Thermal expansion of gold. (a) Calculated from AI./I
versus given by Simmons and Ballu% (Ref. 45}; (b) calculated
from d, u/a versus T given by Simmons and BallufB (Ref. 45};
(c) measured by Jongenburger (Ref. 59); (d) perfect-crystal curve
estimated from the results of Simmons and BallufFi (Ref. 45)
and Bauerle and Koehler (Ref. 44) (see text); and (e) linear
extrapolation used by Jongenburger (Rd. 59).
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FIG. 2. Length-change and lattice-parameter-change measure-
ments for gold according to Simmons and Balluf6 {Ref.45). The
dashed curve is the estimated length change of the perfect crystal
(see text).

obtain the contributions of the equilibrium defects to
the thermal expansion, it is necessary to subtract off
the perfect-crystal specific heat or thermal expansion.
In most of the determinations of this kind, the perfect-
crystal contribution has been taken to be a linear extrap-
olation of the low-temperature measurements where
the defect effects are negligible. The dashed line d in
Fig. 1 represents the linear extrapolation used by
Jongenberger" in interpreting his curve c of the figure.
However, it has been pointed out by Simmons'~ that
the magnitudes of the defect effects obtained in this
way have often been too large and the exponential
temperature dependences obtained therefore illusory.

We can also show that this extrapolation procedure
is incorrect using almost entirely experimental consider-
ations. The fact that the measured value of v is less than
1 in all materials for which it has been measured re-

quires that the volume changes of the perfect crystal
should always be less than 3AL/L but greater than
3ha/a. Since the DL/L and Aa/a curves are very close
together, the thermal expansion of the perfect material
can be calculated within a few percent from these curves.
This is illustrated in Fig. 2 for the case of gold. Shown
in the figure are the measured hL/L and ha/a curves"
and the calculated perfect-crystal thermal expansion.
For this calculation, it was only necessary to assume
that the ratio of e to the atomic volume remained fairly
close to its room-temperature value of —,'. The thermal,
expansion calculated in this way is shown by the dashed
curve in Fig. 1.

We sec immediately from this calculated perfect-
cI'ystRI culvc tliRt thc llIlcRl cxtlRpolRtlon of low-tem-
perature data is completely incorrect. The fact that
the sudden increase in thermal expansion is much
larger than that estimated from usual lattice anhar-
monicity calculations indicates that the atomic forces
are very anharmonic for the magnitudes of atomic
displacernents encountered near the melting point.
Since it is very dificult to calculate this perfcct-crystal
curve theoretically, it therefore seems that a simple
measurement of thermal expansion at high ternpera-
ture is not sufhcient to determine the contributions of
equilibrium defects to the crystal properties.

IV. SUMMARY

Using thermodynamics and elasticity theory, a uni-
fied treatment of changes in the properties of crystals
containing major types of defects is given. Relations
for the changes in volume, bulk modulus, entropy,
thermal expansion, and specific heat of materials con-
taining defects are expressed in terms of the isobaric,
isothermal work required to form the defect and its
pressure and temperature dependence. For defects de-
scribed by elastic strains, it is shown that the required
pressure and temperature dependence is given by using
the known pressure- and temperature-dependent elastic
constants in place of the zero-pressure elastic constants
in the linear elasticity results. This greatly increases the
usefulness of the general relations. For example, the
volume change of an anisotropic crystal containing dis-
locations is obtained by a simple differentiation of the
formula given by the infinitesimal elasticity theory
without the necessity of making involved and lengthy
finite-elasticity calculations. In addition, all the other
thermodynamic properties are also obtained by simple
differentiations.

The general results are specialized to a number of
particular defects by using models to find expressions
for the energy required to form the defect, so that the
thermodynamic properties can be calculated. A survey
of measurements of properties of imperfect crystals in
relation to the present calculations is made. For defects
such as dislocations, where the calculations are expected
to be most reliable, there are relatively few measure-
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ments available, but the agreement with experiment ls
good. For point defects, where the calculations are
expected to be less reliable, there are many measure-
ments, and the agreement with experiment is fair and
better than might have been expected. For example, the
calculations for the ef'fects of Freknel defects on the bulk
modulus of LiF are found to be closer to experimental
results than are other available estimates. A number of
models for point defects are discussed, but no entirely
successful model for all point defects is found. It is
found, however, that a simple GV form for the energy
can be used to estimate the order of magnitude of the
changes due to most kinds of defects.

The present calculation of the volume change pro-
duced by dislocations predicts that dislocations in
certain ionic crystals including LiF may have hollow
cores in agreement with the conclusions from measure-
ments of pipe diGusion in LiF. It is predicted that this
effect will be absent in certain alkali halides. The calcu-
lations suggest that the formation entropies for vacan-

cies in some metals might be larger by I to 2 entropy
units than has previously been supposed. A discussion
of high-temperature thermal expansion and speci6c heat
measurements for metals shows that most previous
analyses of these measurements have overestimated
the eGects due to the thermal equilibrium defects
present and underestimated the effects of lattice
anharmonicity.

ACKNOWLEDGMENTS

Ke are indebted to Professor C. P. Flynn, Professor
R. O. Simmons, and Professor J. S. Koehler for their
comments and opinions in relation to the present cal-
culation and for bringing a number of useful references
to our attention. %e would like to thank Professor D.
Gerlieh for many discussions regarding the LiF elastic
constant measurements, and Dr. Tetsuro Suzuki and

R. L. Marhsall for discussions relating to the elasticity
calculations.

PHYSICAL REVIEW VOLUME 182, NUMBER 3

MRg118tOI'868CtlOQ StQ6188 111 AI'S81IIC

MARTIN MALTZg

DePartrnent of Electrical Engineering and Center for Materials Science and Engineering,
3fassachgsetts Insti tie of Technology, Cambridge, Massachgsetts 08139

AND

M. S. DRzsszLHAUsf.

DePartment of Electrical Engineering, Center for 3Eaterials Science and Engineering,
and Lincoln Laboratory, ~~

Massachusetts Institnte of Technology, CatnbrQge, 3Eassachnsetts OZf3p

(Received 17 January 1969)

An infrared magnetorefIection study has been made of the trigonal face of single-crystal arsenic. Oscilla-

tions of very large amplitude have been observed vrith a line shape quite unlike any previously reported.
It has been found that the complicated line shape can be understood by assuming that the oscillations are
associated with interband transitions between a pair of coupled bands at a point of low symmetry (point Q)
in the Brillouin zone. On the basis of this assumption, the data can be interpreted to obtain various band

parameters such as the energy gap and the cyclotron efkctive mass. Some observed nonparabolic CGects can
also be explained. The magnetorcQcction data for the trigonal face are found to be consistent vnth Lin and
Falicov's arsenic energy-band model.

1. INTRODUCTION

KCKNT experimental' ' and theoretical' studies
of the semimetal arsenic. have greatly advanced

our understanding of the band structure of this material.

*This paper is based on a thesis submitted by one of the
authors (M.M.) in partial fulfillment for the Ph. D. degree in the
Electrical Engineering Department, Massachusetts Institute of
Technology, Cambridge, Mass. , 1968 (unpubliShe).

t XVork supported in part by the U. S.Ofhce of Naval Research,
under Contract No. Nonr-1841(72), and Advanced Research
Projects Agency, under Contract No. SD-90.

f Visiting scientist, Francis Bitter National Magnet Laboratory,

In particular, the band-structure calculation by Lin and
Falicov' for arsenic using the pseudopotential technique
yields a Fermi surface whose shape is in reasonable

Massachusetts Institute of Technology, Cambridge, Mass. , sup-
por'tcd by thc U. S. Ail For'cc Ofhce of Scientific Rcscarch.

$ Present address: Xerox Corporation, Rochester, ¹ Y.
Operated with support from the U. S. Air Force.

'M. G. Priestley, I. R. Windmiller, J. S. Kctterson, and V.
Eckstein, Phys. Rev. 154, 671 (1967).

2 $. Vanderkooy and W. R. Datars, Phys. Rev. 156, 671 (1967).
3%. R. Datars and J. Vanderkooy, J. Phys. Soc. Japan Suppl.

21, 657 (1966).
4 C. Chung-Sen Ih, Ph.D. thesis, University of Pennsylvania,

1966 (unpublished).' P. J. Lin and L. M. Falicov, Phys. Rev. 142, 441 (1966).


