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Further development ls given of thc appHcatlon to thcrmogalvanomagnetic coefEcicnts of basic equations
determining space-time symmetry restrictions. Material omitted from tables published by the author is
supplied. Also, the thermogalvanomagnetic coefEcients are expanded in powers of the components of the
magnetic held, and the symmetry restrictions imposed on the expansion coeScients are discussed, The
method is apparently also applicable to other transport coeScients and for other Gelds.

l. INTRODUCTION

HE CGect of spatial and time-inversion symmetry
on properties of magnetic systems has been much

discussed since the early j.950's.' Recently, the distinc-
tion between symmetry restrictions on equilibrium

properties and those on transport properties has been
pointed. out' ' and, discussed in some detail. '4

Herc a further development is given of the application
to thermogalvanomagnetic (TGM) coefficients of basic
cquatlons dc11vcd ln I, dctcrD1ining space-t1DM sym-

metry restrictions. In Sec. 2 ideas presented in Secs.
3 8 and 3 C of I are further developed for cases in which

a magnetic Geld is present (HWO). In particular„ it is

pointed. Out that certain symmetry groups were omitted
from some of thc tables of I, The required rnodi6cations
are detailed. In Sec. 3, the TGM coefficients r(H)„„are
expanded. in powers of the components of the magnetic
6eld and the symmetry restrictions imposed on the
cxpanslon coeKclents arc dlscusscd.

In I, a derivation was given of basic equations I (2.17)
and (2.28) of Ij which determine the restrictions on
Geld-dependent transport cocScicnts arising from syrn-

metry operations involving time inversion as well as
spatial transformations. The derivation started from
microscopic expressions for the transport coefficients in.

tcrD1s of thcI'n1al avcI'ages of prodUcts of quantum-
mechanical operators. These equations reduce to equa-
tions of simpler form $(3.6) and (3.'I) of Ijwhen special-
ized to apply to the case of TGM coeScicnts.

The full (magnetic) space group symmetry of a
crystal is not required for determining the symmetry
restrictions on the TGM coe%cients. It SUKces to use
the Laue group X~(0) of the crystal obtained from the
crystal point group by replacing the rotational part of
any improper symmetry element by its proper counter-

part {space inversion is everywhere replaced by the
identity). The 32 crystal Laue groups are listed in
Table II of I, and for each of these the symmetry-
restricted matrices of thermoelectric coefficient (TGM

~ Work sponsored by the U. S. Air Force.
' See Ref. 4 for earlier references and a brief history.
~ S. Shtrikman Rnd H. Thomas, Solid State Commun. 3, I4"f

(1965};3, No. 9, p. ne (E) (1965).
g W. H. Kleiner, Phys. Rev. 142, 318 (1966). Referred to as I.
4%. H. Klciner, Phys. Rcv. 153, 726 (1967).

coefficient with the magnetic 6eld 8=0) can be found.

in Tables IV—VI of I.

2. TOM COEFFICIENTS e(H)„.:
FURTHER DISCUSSloN

Ke want here to elucidate the symmetry restrictions
on the TGM coefficient v(H) „„when a uniform
magnetic field is present (8WO). When HWO, the sym-
metry restrictions are determined jointly by the crystal
Laue group X~(0) and the magnetic field direction
(given by 8'=H/H}, and. were dassi6cd in I according
to ccl'tRlll symmetry gl'oups determined by X (0) slid
8'. These groups include the following: g~(H) —the
subgroup of X~(0) which leaves H invariant; X~(H)—
the subgroup of X~(0), elements of which leave H
invariant or reverse its direction; $1,~(H)—the sub-

group of g~(H) not involving time inversion; and,

Xl,~(H)—the subgroup of X~(H) not involving time
Illvcl'sloll. If X (0) ls thc three-dlmcnslonai pill'c 10-
tation group together with time inversion, then
X~(H) = ~ 21' and g~(H) = ee 2', consequently, for
crystals, X~(H) is a subgroup of ee 21' and g~(H) is a
subgroup of 2'. The classi6cation in I was given in

terms of case and category according to Table I of I,
the five mutually exclusive cases corresponding to
diferent values of the set of three indices: the index of
g~(H) in X~(H), the index of pl~(H) in g~(H), and the
index of Xl, (8) In X (8). Eacll of tllc five possible

cases determines the category (a), (b), or {c}.
To elucidate the types of symmetry restrictions on the

TGM coefBcients for 8/0 the discussion of I is here
extended, by listing (in Table I), for each X~(0),
representative directions for the diferent possible types
of symmetry-inequivalent directions of H. For each

fX~(0),8] pair in Table I, the groups X~(H), g~(H),
and Xl,~(H), as well as the case and category, are
speci6ed. Table I provides an overview of the possible

symmetries of TGM coeKcients and, serves as an aid
in applying the tables of symmetry-restricted matrices

in I. This table is, however, not restricted in applica-
tion to TGM cocKcients; it applies whenever the sym-

metry restrictions are determined. .by the zero-6eld

Laue groups X~(0) together with the direction of H.
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TAsLE I. Laue groups X~(H}, g~{H), and XL,~{H}and the case and category of X~(H) for the characteristic symmetry directions
of 8 for each of the crystal Laue groups X~(0). The groups X~(0) are listed in the same order as in Table II of Ref. 3. The directions
H of H are listed in decreasing order of the symmetry axes, Grst parallel to the axes, then perpendicular. An indicated range of sym-
metry directions of H is to be interpreted as excluding symmetry directions listed previously for the same X~(0). For H in a direction
of no special symmetry, the entry is given by that for the X~(0) of lowest symmetry in the same category. The subscript on the sym-
bol 2q' indicates that the axis is perpendicular to H. The Xl.~(H) are listed only for X~(0) in category (c), since for X~(0) in category
(b), Xl,~(H) = X~{8)and for X~(0) in category (a), X~(H) =XI. (H)1.
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Xzs(H) Case Category

Several facts are evident from Table I. For given
X~(0), there are generally several distinct groups X~(H)
depending on the direction of H. Also, diGerent com-

hjnations LXr(0),81 can lead to the same X~(H). &n

particular, it is possible for a given Laue group to occur
as a group X~(H) in diEerent categories; for example,
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XL(H) =2' has category-case (a)-(iv) when H is parallel
to the two-fold axis and XL(H) =2' has category-case
(c)-(ii) when H is perpendicular to the two-fold axis.
Category-(a) groups XL(0) have only category-(a)
subgroups XL(H), and category-(b) groups XL(0) have
only category-(b) subgroups XL(H). However, a cate-
gory-(c) group XL(0) may in general have subgroups
XL(H) of category (a), (b), and/or (c).

The groups XL(H) which are in category (a) and are
subgroups of a group XL(0) in category (c) were over-
looked in the discussion before (3.16) of I and were
hence omitted from the tables of I.The omitted groups
XL(H) are 2', 4', and. 6' of category-case (a)-(iv) and
2'2'2, 4'22', and 6'22' of category-case (a)-(v). Sym-
metry-restricted matrices of TGM coefhcients for 2',
4', and 6' should have been included. in Table VIII of
I; similarly, matrices for 2'2'2, 4'22', and 6'22' should
have been included in Table IX. These groups should
also have been listed correspondingly in Table III of I.
These omissions are remedied by supplementary tables:
Tables II—IV of the present paper, corresponding to
Tables III, VIII, and IX of I, respectively.

3. EXPANSION IN POWERS OF H„

Cate-
gory Case Table Groups

Hgo (a) (iv) VIII XL= z)LL+z)LLb
b~=8: 1', 21', 3', 41', 61'; ~ 1'
yL ~g. 2r 4r 6r.

(s) (v) IX XL= XLL/XLLoL= zILygy,
a~=8' 21', 2221', 3'2, 4221', 6221'; te21'
a~/8 2'2'2, 4'22', 6'22r g (2n)'22'

symmetry restrictions on the coefBcients in the expan-
sion. %e indicate here how these restrictions can be
obtained in a simple way from the basic equations
(mentioned. in the Introduction and derived in I) which
determine space-time symmetry restrictions on Geld-

dependent transport coefBcients. Although most of the
discussion is for the case of TGM coeS.cients, the
method is apparently applicable- also to other transport
coeKcients and for other Gelds.

The procedure is simply to substitute the expansion
for the transport coefBcient

TABLE II. Supplement to Table III of Ref. 3, which classifies
Laue groups. The entries of this table are to replace the corre-
sponding entries of that table. 8=1'.

rBgAz(H) P P rsgAzaras" asIIar+as' ' '+as (1)It is often useful to expand a Geld-dependent trans-
port coefficient in powers of the components of the
Geld, particularly when small values of the Geld are on both sides of Eqs. (2.17) and (2.28) of I, and to
involved. It is then important to know the space-time equate like powers of the components of the Geld for the

TABLE III. Symmetry-restricted matrices of TGM coeKcients for V&0, (a)-(iv): supplement to Table VIII of
Ref. 3. H is parallel to the (2e)' axis, I= 1, 2, ~ ~ .
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TABLE IV. Symmetry-restricted matrices of TGM coe%cients for ff YO, (a)-(v): supplement to Table IX of
Ref. 3. 8 is parallel to the (2e)' axis, e= 1, 2, ~ ~ ~ .
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operators of a set generating the group X(0).The nota-
tion used here is deffned in I. X(0) is the group of quan-
tum-mechanical operators corresponding to space-time
symmetry transformations with the property that an
element of X(0) leaves the zero-field Hamiltonian for
the system invariant. Note that the expansion and
hence the expansion coefficients are symmetric in the
indices 0!g, cx2, ' ' ', Gp.

For TGM coefficients, Kqs. (2.17) and (2.28) for
(3.6) and (3.7)j of I reduce to the linear homogeneous
equations

&B&A„ayah "ay P +pc+vi~a]p]~agpi, ' ' 'Enypg
«&PIPs" PIp

X&p,x& p, pi, p~ .(.2. )

11 12 13
21 22 23
31 32 33
41 42 43
5I 52 53
61 62 63
41 42 43
51 52 53
61 62 63

~ ~
~ ~
~ ~
~ ~

2 ~ ~

~ ~
~ o ~
~ a

~ ~

ZERO COEFFICIENT

NONZERO COEFFICIENT

= EQUAL COEFFICIENTS

g COEFFICIENTS OF EQUAL
MAGNITUDE BUT OPPOSITE
SIGN

and

X+&i& pypm px (3"a)

2 2 2+

~ ~
~ ~
~ ~
~ o

~ o

~ ~

~ ~ o

~ ~

4Ã
~ 0 ~

~ ~ ~

relating the expansion coefficients. The indices of 7-, H,
and R correspond to rectangular components. The
matrix E.=D '=D is a 3&3 real orthogonal matrix
with D representing the proper rotation part of a
quantum-mechanical operator, Kq. (2) applying if the
quantum-mechanical operator does not involve time
inversion, and Kq. (3a) applying if it does. As mentioned
in the Introduction, for TOM coefficients the same
restrictions result from using the Laue groups X (0)
of X(0) as result from using X(0) itself.

The set of equations (2) determines the more spatial
symmetry restrictions on the expansion coefFicients
T'&~A +I &Ip Equations of this type are well known,
are usually derived using properties of tensor trans-
formations, and solving them leads to relations among
the coeScients of a type often tabulated. ' '

The similar set of equations (3a) is new. It determines
the symmetry restrictions on r&„&, , ,... , arising from
symmetry operations involving time inversion. For
equilibrium properties, the symmetry restrictions in-
volving time inversion are, in general, different from
those for transport properties. For an equilibrium

property with the same tensor character as the TGM
coeScients, ' the space-time symmetry restrictions are
determined by (2) and

&B&A„agag" ap ( ) Z +yx+vk+agpz~aspg ' ' '
~aypyg

«~PIP2" PIp

X&a,Ai pgpg". pi, (3b)

H. Jagodzinski, in Encyclopedia of Physics, edited by S'
Flugge (Springer-Verlag, Berlin, 3955), Vol. 7/1, p. 1.

C. S. Smith, in Solid State Physics, edited by I". Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1958), Vol. 6, p. 175.

7 J. F. Nye, Physical Properties of Crystals (Oxford University
Press, London, 1960).

SS. Shagavantam, Crystal Symmetry and Physical Properthes
(Academic Press Inc. , New York, 1966).

An example of such an equilibrium property, aside from its
being symmetric in its two tensor indices, is isothermal magnetic
susceptibility.

4'22' 4
~ ~

~ ~ ~

4 2'2'Q
0 ~

622 . . ~

~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

622 432

~ o ~

»G. 1. Symmetry-restricted matrices of conductivity coeK-
cients O„„and corresponding equilibrium property coeKcients.
The matrices are given in the form shown at the upper left for each
of the ten Laue groups X~(0) of category (c) (Ref. 3). The first
matrix gives 0„, . The second matrix gives the corresponding
equilibrium property; only the antisymmetric part is given, since
the symmetric part is the same as for 0.„„.The choice of axes is as
shown in Table V of Ref. 10:The principal axis is along s {orOx3).
If there exists, in addition, a two-fold axis (2, 2=m, 2', 2'=m')
perpendicular to the principal axis, it is taken along Oxi, if more
than one, the first in the list 2, m, 2', m' is taken along Oxi. This
choice of axes is also as given on p. 282 of Ref. 7, except that
there the principal axis is taken along Ox2 for monoclinic point
groups. The numbers designate the components of o.„. (or the
corresponding equilibrium property). The first of the two indices
is an abbreviation for the index pair pv according to

j 1 2 3 4 5 6 7 8 9
pv 11 22 33 23 31 12 32 13 21.

The second index denotes n. The superscripts s and a denote the
symmetric and antisymmetric parts according to Eqs. (4). The
notation used for the components is thy, t of Ref. 7, p. 123.
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TBqA„(H) —= a[7BqA„(H)+ TA~Bq(H)'j q

r,„g„(H)—= -', Lr,„,„(H)—r~„,„(H)].

(4a)

(4b)

Moreover, (3a) and (3b) reduces to the same equations
for 'r, since 'vg„g„...='vg„~„....

For Xz(0) in category (b), Eq. (3a) provides no
restrictions. The symmetry restrictions are determined
entirely by spatial symmetry and are the same for
equilibrium and transport properties.

For Xz(0) in category (a), the spatial symmetry
restrictions are augmented by Eq. (3a), which requires
that

—(7 B&A&aIa2 "aIs g g 7 A„B&aIa2 ~ ak y

representing restrictions imposed by the ordinary
Onsager relations r~„~„(H)=r~„s„( H); t—hus,

TB~A el+2 ~ af 0, for k odd (6a)

~~„~,~«, ...~, =0, for k even. (6b)

For equilibrium properties, on the other hand, (3b)
gives

7 g„g„~Irtr2...~1, =0) for k odd.

For X~(0) in category (c), Eq. (3a) leads to new
restrictions. For k =0, these are given in Table VI of I
for each of the ten crystallographic Laue groups in this

'0 V. LeCorre, J. Phys. Radium 19, 750 (19S8)."R.R. Birss, Rept. Progr. Phys. 26, 307 {1963).
'2R. R. Birss, Symmetry meed AEagrfetism (Wiley-Interscience,

Inc. , New York, 1964).

which differs from (3a) only in that rg„s„s,s, ...s„on the
right-hand side of (3a) is replaced by rs„g) s pg" sy 1B A„

here denotes the equilibrium property. Space-time
symmetry-restricted matrices based on equations of this

type have been tabulated by Le Corre" and by Birss.""
Equations (2), (3a), and (3b) hold also if r is replaced

by 'v or 'v-, where s and a denote the components sym-
metric and antisymmetric with respect to B„and A, :

category. For k=1, they are given"" here in Fig. 1
for the electrical conductivity a(H); the corresponding
symmetry-restricted matrices for an equilibrium
property with the same tensor character can be read
directly from the table of piezomagnetic coefficients
given in Ref. 10, Table V, by taking the transpose;
these symmetry-restricted matrices are also given here
in Fig. 1. The transport and equilibrium symmetry-
restricted matrices for k=1 are the same for the sym-
metric part )since Eqs. (3a) and (3b) are equivalent
for 'r j, but are seen to be different in every case for the
antisymmetric part. In every case, the restrictions on
the antisymmetric part of the equilibrium matrix are
more stringent in that the equilibrium matrix contains
fewer independent components than the transport
matrix.

From these results, we can conclude, in particular,
that O.„„has the same symmetry as the spontaneous
magnetization (see Ref. 10, Table IV) and that, apart
from a transposition of the coefFicient matrix, '0.„„=Yr;

has the same symmetry as the matrix for the piezo-
magnetic effect (see p. 343 of Ref. 11, or p. 141 of Ref.
12). The same two conclusions were drawn (albeit for
the resistivity rather than the conductivity) by
Shtrikman and Thomas' using a different approach.

The set of equations (2) and (3) for all k contains, in
general, more information that the symmetry-restricted
H-dependent matrices tabulated in I.The reason is that
the equations determining the symmetry-restricted
matrices of I use only the subgroups X(H) of X(0)
rather than X(0) itself; the restrictions corresponding to
elements of X(0) not in X(H) are not taken into account
in these symmetry-restricted matrices.
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