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Further development is given of the application to thermogalvanomagnetic coefficients of basic equations
determining space-time symmetry restrictions. Material omitted from tables published by the author is
supplied. Also, the thermogalvanomagnetic coefficients are expanded in powers of the components of the
magnetic field, and the symmetry restrictions imposed on the expansion coefficients are discussed. The
method is apparently also applicable to other transport coefficients and for other fields.

1. INTRODUCTION

HE effect of spatial and time-inversion symmetry

on properties of magnetic systems has been much

discussed since the early 1950’s.! Recently, the distinc-

tion between symmetry restrictions on equilibrium

properties and those on transport properties has been
pointed out?* and discussed in some detail.?4

Here a further development is given of the application
to thermogalvanomagnetic (TGM) coefficients of basic
equations, derived in I, determining space-time sym-
metry restrictions. In Sec. 2 ideas presented in Secs.
3 B and 3 C of I are further developed for cases in which
a magnetic field is present (Hs0). In particular, it is
pointed out that certain symmetry groups were omitted
from some of the tables of I. The required modifications
are detailed. In Sec. 3, the TGM coefficients 7(H),, are
expanded in powers of the components of the magnetic
field and the symmetry restrictions imposed on the
expansion coefficients are discussed.

In I, a derivation was given of basic equations [(2.17)
and (2.28) of I] which determine the restrictions on
field-dependent transport coefficients arising from sym-
metry operations involving time inversion as well as
spatial transformations. The derivation started from
microscopic expressions for the transport coefficients in
terms of thermal averages of products of quantum-
mechanical operators. These equations reduce to equa-
tions of simpler form [(3.6) and (3.7) of I'] when special-
ized to apply to the case of TGM coefficients.

The full (magnetic) space group symmetry of a
crystal is not required for determining the symmetry
restrictions on the TGM coefficients. It suffices to use
the Laue group X%(0) of the crystal obtained from the
crystal point group by replacing the rotational part of
any improper symmetry element by its proper counter-
part (space inversion is everywhere replaced by the
identity). The 32 crystal Laue groups are listed in
Table II of I, and for each of these the symmetry-
restricted matrices of thermoelectric coefficients (TGM

* Work sponsored by the U. S. Air Force.

1 See Ref. 4 for earlier references and a brief history.

%S, Shtrikman and H. Thomas, Solid State Commun. 3, 147
(1965); 3, No. 9, p. civ (E) (1965).

3 W. H. Kleiner, Phys. Rev. 142, 318 (1966). Referred to as I.

4¢W. H. Kleiner, Phys. Rev. 153, 726 (1967).
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coefficients with the magnetic field H=0) can be found
in Tables IV-VI of I.

2. TGM COEFFICIENTS ~(H),,:
FURTHER DISCUSSION

We want here to elucidate the symmetry restrictions
on the TGM coefficients 7(H),, when a uniform
magnetic field is present (H0). When H5£0, the sym-
metry restrictions are determined jointly by the crystal
Laue group XZ(0) and the magnetic field direction
(given by H=H/H), and were classified in T according
to certain symmetry groups determined by ®%(0) and
HA. These groups include the following: gZ(H)—the
subgroup of %%(0) which leaves H invariant; X*(H)—
the subgroup of &%*(0), elements of which leave H
invariant or reverse its direction; gr“(H)—the sub-
group of gZ(H) not involving time inversion; and
% L(H)—the subgroup of XL(H) not involving time
inversion. If &%(0) is the three-dimensional pure ro-
tation group together with time inversion, then
KL(H)=21" and gE(H)=2'; consequently, for
crystals, %Z(H) is a subgroup of 21’ and g*(H) is a
subgroup of ©2'. The classification in I was given in
terms of case and category according to Table I of I,
the five mutually exclusive cases corresponding to
different values of the set of three indices: the index of
JE(H) in KZ(H), the index of grZ(H) in g=(H), and the
index of &rZ(H) in %Z(H). Each of the five possible
cases determines the category (a), (b), or (c).

To elucidate the types of symmetry restrictions on the
TGM coefficients for H>#0 the discussion of I is here
extended by listing (in Table I), for each XZ(0),
representative directions for the different possible types
of symmetry-inequivalent directions of H. For each
[%%(0),d7] pair in Table I, the groups &=(H), g(H),
and XpZ(H), as well as the case and category, are
specified. Table I provides an overview of the possible
symmetries of TGM coefficients and serves as an aid
in applying the tables of symmetry-restricted matrices
in I. This table is, however, not restricted in applica-
tion to TGM coefficients; it applies whenever the sym-
metry restrictions are determined by the zero-field
Laue groups %%(0) together with the direction of H.
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TaBLE I. Laue groups XZ(H), g-(H), and X.Z(H)Jand the case and category of XZ(H) for the characteristic symmetry directions
of H for each of the crystal Laue groups %2(0). The groups %(0) are listed in the same order as in Table IT of Ref. 3. The directions
H of H are listed in decreasing order of the symmetry axes, first parallel to the axes, then perpendicular. An indicated range of sym-
metry directions of H is to be interpreted as excluding symmetry directions listed previously for the same %%(0). For H in a direction
of no special symmetry, the entry is given by that for the XZ(0) of lowest symmetry in the same category. The subscript on the sym-
bol 2/’ indicates that the axis is Eerpendicular to H. The X.Z(H) are listed only for XZ(0) in category (c), since for XZ(0) in category
(b), ®2(H)=XE(H) and for XL(0) in category (a), KE(H)=XrLZ(H)1".

KL(0) b4 XL(H) giMH) XK EZ(H) Case Category x%(0) )4 XLH) giH) XKEZH) Case Category
1 cee 1 1 i b 12 2v 2! v a
2 2 2 2 i b 23 13 3 3 iv a
12 2 1 iii b 12 2221 2'2"2 v a
222 12 222 2 iii b 12 21 2/ v a
12 2 1 il b 432 |14 4221 42'2 v a
4 14 4 4 i b 13 32 32 v a
14 2 1 iii b 12 2221 222 v a
422 |4 422 4 iii b 14 21 2 v a
[12 222 2 iii b 12 21 2 v a
14 2 1 iii b 2/ 12’ 2! 1 1 iv a
12 2 1 iii b 12 2 2 1 ii c
3 113 3 3 i b e 1 1 1 i b
32 13 32 3 il b 2'2"2 12 2'2"2 2'2'2 2 ii c
12 2 2 i b 12 222 2y 2 v a
12 2 1 iii b 12 2 1 2 iii b
6 ll6 6 6 i b 120 2 2 1 ii c
16 2 1 il b 4 14’ 4 2 2 iv a
622 ll6 622 6 il b 14 2 1 2 ii b
12 222 2 iii b 422’ |14 422 222 222 v a
16 2 1 iii b 12 222 2 222 iii b
12 2 1 iii b 112’ 222 "y 2 v a
23 113 3 3 i b 14 2 1 2 iii b
[12 222 2 iii b 12 2 1 2 il b
12 2 1 iii b 1202 2 1 ii c
432 14 422 4 iii b 422 14 42'2 422! 4 ii c
113 32 3 iii b 12’ 222 'y 2 v a
|12 222 2 iii b 14 2 1 2 iii b
14 2 1 iii b 120 2 2 1 ii c
12 2 1 iii b 32 13 32 32 3 ii c
v e 1 1 iv a |12/ 2 1 1 iv a
21 12 21 2 iv a 120 2 2 1 ii c
12 21 2! v a 6 l6’ 6 3 3 iv a
2221 |2 2221 2'2"2 v a 16 2 2 1 i c
12 21 2 v a 622 l6’ 622 32 32 v a
41 14 21 2! v a 12 22'2' 22'2 2 i c
14 21 2 v a 112 22'2 i 2 v a
4221 |14 4221’ 42'2 \% a 16 2’ 2’ 1 ii c
12 2221 222 v a 12 2 1 2 iii b
14 21 2 v a 122 2 1 il c
12 21 2! v a 62’2 Il6 62'2 62'2' 6 ii c
3 13 3 3 iv a 12 2'22 'L 2 v a
32 113 372 32’ v a 16 2 1 2 iii b
12 21’ 2 iv a 12 2 2 1 ii c
12 a2 2 v a w3y & 422 222 22 v a
61’ l6 61 6 iv a 13 32 32 3 ii c
Lo 21’ 2 v a |2 222 2y 2 v a
6221" |6 6221 62'2 v a 14 2 1 2 il b
lI2 221 222 v a 12 2 2’ 1 ii ¢
16 21 2! v a

Several facts are evident from Table I. For given binations [%%(0),H] can lead to the same KZ(H). In
XKX(0), there are generally several distinct groups %Z(H) particular, it is possible for a given Laue group to occur
depending on the direction of H. Also, different com- as a group %Z(H) in different categories; for example,
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KL(H)=2" has category-case (a)-(iv) when H is parallel
to the two-fold axis and &Z(H)=2’ has category-case
(c)-(ii) when H is perpendicular to the two-fold axis.
Category-(a) groups %Z(0) have only category-(a)
subgroups %Z(H), and category-(b) groups X%(0) have
only category-(b) subgroups KZ(H). However, a cate-
gory-(c) group %Z(0) may in general have subgroups
KEL(H) of category (a), (b), and/or (c).

The groups XX(H) which are in category (a) and are
subgroups of a group KZ(0) in category (c) were over-
looked in the discussion before (3.16) of I and were
hence omitted from the tables of I. The omitted groups
KL(H) are 2/, 4, and 6’ of category-case (a)-(iv) and
2/2'2, 422’ and 622" of category-case (a)-(v). Sym-
metry-restricted matrices of TGM coefficients for 2/,
4’; and 6’ should have been included in Table VIII of
I; similarly, matrices for 2'2'2, 4'22’, and 6’22’ should
have been included in Table IX. These groups should
also have been listed correspondingly in Table III of 1.
These omissions are remedied by supplementary tables:
Tables II-IV of the present paper, corresponding to
Tables III, VIII, and IX of I, respectively.

3. EXPANSION IN POWERS OF H,

It is often useful to expand a field-dependent trans-
port coefficient in powers of the components of the
field, particularly when small values of the field are
involved. It is then important to know the space-time
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TasLE II. Supplement to Table III of Ref. 3, which classifies
Laue groups. The entries of this table are to replace the corre-
sponding entries of that table. 6=1".

Cate-
gory Case Table Groups

H=0 (a) (iv) VIII &XE=gri-tgrlbk,

bl=9: 1,21,3,41,61;
bLs£g: 2/,4',6'; o’
KL= JCLL-{—GCLLGL—gL-I-ngL SL;égLL
ab=9:21',2221’,3'2,4221’,6221’; «21’
al#£0:2'2'2, 4'22’, 6'22'; (2n)’22’

w1’

@ v IX

symmetry restrictions on the coefficients in the expan-
sion. We indicate here how these restrictions can be
obtained in a simple way from the basic equations
(mentioned in the Introduction and derived in I) which
determine space-time symmetry restrictions on field-
dependent transport coefficients. Although most of the
discussion is for the case of TGM coefficients, the
method is apparently applicable also to other transport
coefficients and for other fields.

The procedure is simply to substitute the expansion
for the transport coefficient :

4= X

k=0 ajag:.-ak

on both sides of Egs. (2.17) and (2.28) of I, and to
equate like powers of the components of the ﬁeld for the

Hak (1)

TBydyayaz: --akHquag

TasLE IIL. Symmetry-restricted matrices of TGM coefficients for 0, (a)-(iv): supplement to Table VIII of
Ref. 3. H is parallel to the (2z)’ axis, n= 1, 2, 0.

XL(H) z'¢(H) </'0(H) o°(H) o'(H)
Tzz Tyz — Tz ~Tzzx —Tyz Tz Ozz Ozy Ozz 0 Ozy Oz
2’ Tay  Tyy —Taw —Toy —Tyy Ta Tzy Oy Oys —ozy 0 oy
—Tzz ~Tyz Tz Tzz Tyz —Tzz —0zz —Oyz Oz Ozz Oyz 0
Tyy —Tzy 0 —Tyy Tzy 0 Oz 0 0 Ozz Tzy 0
4 —Tyz  Tez O Tye —Tzz O 0 o0z O Oyz —0zz O
0 0 7z 0 0 —7 0 0 oz 0 0 0
(2n") Tes —Tay O —722 Tz O 62z 0 0 0 o4 O
n=3,4, - Toy Tzz O —Tey —Tez O 0 o0m O -0z 0 O
0 0 7z 0 —Ta 0 0 oz 0o 0 0

TasLE IV. Symmetry-restncted matrices of TGM coefficients for H5%0, (a)-(v): supplement to Table IX of

Ref. 3. H is parallel to the (2z)’ axis, n 1, 2, -,
XEH) <'*(H) <"(H) o°(H) o°(H)

2'2"2 Tzz —Tyz O 0 Tez 02z Oay 0O 0 0 o0z
(H|2:") —Tzy Ty O 0 0 —7y —0zy oyy O 0 0 oy
0 0 7z T2z —Tyz 0 0 0 oz 0 0 oy

e O O 0 7o O g2 0 O 0 oz O

4'22 0 720 O e 0 O 0 oo O oz 0 0

0 0 7z 0 0 O 0 0 oz 0O 0 0
(2n)'22’ 2 0 0 0 7, O gz 0 0 0 ox O
n=3,4, - : 0 722 O —7 0 0 0 o0z O -0y, 0 O
0 0 7z 0 0 0 0 0 o 0 0 0
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operators of a set generating the group &(0). The nota-
tion used here is defined in I. K(0) is the group of quan-
tum-mechanical operators corresponding to space-time
symmetry transformations with the property that an
element of X(0) leaves the zero-field Hamiltonian for
the system invariant. Note that the expansion and
hence the expansion coefficients are symmetric in the
indices a1, as, - - -, ax.

For TGM coefficients, Eqs. (2.17) and (2.28) [or
(3.6) and (3.7)] of I reduce to the linear homogeneous
equations

TBudyarag o™= Z RuKRv)\Roquawz' : 'Rakﬂk
kAB1B2: -+ Bk
X7 arpipeepe (2)

and

TBudyeragrap™= (_)k Z Rpva)\RmﬁxRazﬁz' * 'Rakﬂk
k\B1B2:+ Bk
(3a)

XT A\BB1B2++B1

relating the expansion coefficients. The indices of 7, H,
and R correspond to rectangular components. The
matrix R=D"'=D is a 3X3 real orthogonal matrix
with D representing the proper rotation part of a
quantum-mechanical operator, Eq. (2) applying if the
quantum-mechanical operator does not involve time
inversion, and Eq. (3a) applying if it does. As mentioned
in the Introduction, for TGM coefficients the same
restrictions result from using the Laue groups XK*(0)
of %(0) as result from using K (0) itself.

The set of equations (2) determines the more spatial
symmetry restrictions on the expansion coefficients
TBudyarage oy Equations of this type are well known,
are usually derived using properties of tensor trans-
formations, and solving them leads to relations among
the coefficients of a type often tabulated.>—#

The similar set of equations (3a) is new. It determines
the symmetry restrictions on 7,4,a1ay.--a; arising from
symmetry - operations involving time inversion. For
equilibrium properties, the symmetry restrictions in-
volving time inversion are, in general, different from
those for transport properties. For an equilibrium
property with the same tensor character as the TGM
coefficients,? the space-time symmetry restrictions are
determined by (2) and

Z Ranv%RalhRazBa' o Ralcﬂk
«k\B1B2:++ Bk
(3b)

—(_\k
TBuAvalaT"ak_-( )
K TBArB1B2 B 5

SH. Jagodzinski, in Encyclopedia of Physics, edited by S*
Fliigge (Springer-Verlag, Berlin, 1955), Vol. 7/1, p. 1.

8 C. S. Smith, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1958), Vol. 6, p. 175.

7J. F. Nye, Physical Properties of Crystals (Oxford University
Press, London, 1960).

8 S. Bhagavantam, Crysial Symmetry and Physical Properiies
(Academic Press Inc., New York, 1966).

9 An example of such an equilibrium property, aside from its
being symmetric in its two tensor indices, is isothermal magnetic
susceptibility.
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» ZERO COEFFICIENT
o NONZERO COEFFICIENT
o——o EQUAL COEFFICIENTS

eo——o COEFFICIENTS OF EQUAL
MAGNITUDE BUT OPPOSITE

SIGN

%2 13 e e

21 %22 23 e e

31 %32 %33 e e

%41 %42 %43 . . e

*s1 %s2 %53 2. . e

61 %62 %63 e e

%41 %2 %3 e e .
%51 %52 %53 e e .
‘% %2 %3 . . e ee® .

422"

622. ..

_F16. 1. Symmetry-restricted matrices of conductivity coeffi-
cients o, and corresponding equilibrium property coefficients.
The matrices are given in the form shown at the upper left for each
of the ten Laue groups X%(0) of category (c) (Ref. 3). The first
matrix gives ouwa. The second matrix gives the corresponding
equilibrium property; only the antisymmetric part is given, since
the symmetric part is the same as for o, The choice of axes is as
shown in Table V of Ref. 10: The principal axis is along z (or Oxs).
If there exists, in addition, a two-fold axis (2, 2=m, 2’, 2'=m’)
perpendicular to the principal axis, it is taken along Oz;; if more
than one, the first in the list 2, m, 2/, m’ is taken along Ox;. This
choice of axes is also as given on p. 282 of Ref. 7, except that
there the principal axis is taken along Ox; for monoclinic point
groups. The numbers designate the components of a,a (or the
corresponding equilibrium property). The first of the two indices
is an abbreviation for the index pair u» according to

j 1 2 3 4 5 6 7 8 9

w 11 22 33 23 31 12 32 13 21.
The second index denotes . The superscripts s and @ denote the
symmetric and antisymmetric parts according to Eqs. (4). The
notation used for the components is that of Ref. 7, p. 123.
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which differs from (3a) only in that 74,5,6,8,...5, o0 the
right-hand side of (3a) is replaced by 75,4\8:85-+-84; TBu4,
here denotes the equilibrium property. Space-time
symmetry-restricted matrices based on equations of this
type have been tabulated by Le Corre!® and by Birss.!1:12

Equations (2), (3a), and (3b) hold also if 7 is replaced
by *r or ¢z, where s and a denote the components sym-
metric and antisymmetric with respect to B, and 4,:

r8,4,(H)=3[7p,4,(H)+74,5,H)],
*r,4,(H)=3[7p,4,(H)—7 4,8,(H)].

(4a)
(4b)

Moreover, (3a) and (3b) reduces to the same equations
for °r, since *7p,4,... =°74,B,....

For XZ(0) in category (b), Eq. (3a) provides no
restrictions. The symmetry restrictions are determined
entirely by spatial symmetry and are the same for
equilibrium and transport properties.

For X%(0) in category (a), the spatial symmetry
restrictions are augmented by Eq. (3a), which requires
that

TB,,A,,alaz---ak=(_)kTAyB,,a1a2---ak, (5)

representing restrictions imposed by the ordinary
Onsager relations 75,4,(H) =74,5,(—H); thus,
for k odd (6a)

(6b)

*TB,Ayaiaye ey =0,

“TB,Ayarag-ap =0, for k even.
For equilibrium properties, on the other hand, (3b)
gives

TBudyarag-a, =0, for k odd. )

For XL(0) in category (c), Eq. (3a) leads to new
restrictions. For £=0, these are given in Table VI of I
for each of the ten crystallographic Laue groups in this

10y, LeCorre, J. Phys. Radium 19, 750 (1958).

1R, R. Birss, Rept. Progr. Phys. 26, 307 (1963).

12R. R. Birss, Symmetry and Magnetism (Wiley-Interscience,
Inc., New York, 1964).
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category. For k=1, they are given!®!4 here in Fig. 1
for the electrical conductivity o(H); the corresponding
symmetry-restricted matrices for an equilibrium
property with the same tensor character can be read
directly from the table of piezomagnetic coefficients
given in Ref. 10, Table V, by taking the transpose;
these symmetry-restricted matrices are also given here
in Fig. 1. The transport and equilibrium symmetry-
restricted matrices for k=1 are the same for the sym-
metric part [since Egs. (3a) and (3b) are equivalent
for *7], but are seen to be different in every case for the
antisymmetric part. In every case, the restrictions on
the antisymmetric part of the equilibrium matrix are
more stringent in that the equilibrium matrix contains
fewer independent components than the transport
matrix.

From these results, we can conclude, in particular,
that %s,, has the same symmetry as the spontaneous
magnetization (see Ref. 10, Table IV) and that, apart
from a transposition of the coefficient matrix, o e ="1¢jq
has the same symmetry as the matrix for the piezo-
magnetic effect (see p. 343 of Ref. 11, or p. 141 of Ref.
12). The same two conclusions were drawn (albeit for
the resistivity - rather than the conductivity) by
Shtrikman and Thomas? using a different approach.

The set of equations (2) and (3) for all & contains, in
general, more information that the symmetry-restricted
H-dependent matrices tabulated in I. The reason is that
the equations determining the symmetry-restricted
matrices of I use only the subgroups X(H) of %(0)
rather than X(0) itself; the restrictions corresponding to
elements of & (0) not in 3 (H) are not taken into account
in these symmetry-restricted matrices.
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