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fields seen by the electrons. To obtain the experimental
cross section, one must solve the usual boundary value
problem at the metal surface. This will introduce
Fresnel correction factors which are, however, of the
order of unity. "

In conclusion, we point out that the proposed light
scattering experiment with its inherently good energy
resolution can be utilized to give a much better value
for the gap parameter 2g(T), although it does not
determine Q.
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This paper is an extended discussion of the dispersion curves of the high-frequency waves (HFW) occurring
in simple metals near the Azbel-Kaner cyclotron resonances. The conductivity egr, cu, a&,) for the case of a
general ellipsoidal Fermi surface is derived, and the spherical and cylindrical Fermi surfaces are then treated
as limiting cases. Numerical calculations of the dispersion curves of both ordinary and extraordinary HFW,
for the case of a spherical Fermi surface, are evaluated over a range of wavelengths that bridges the long-
wavelength limit, which has been observed experimentally, and the short-wavelength limit, which was pre-
dicted by Kaner and Skobov. The dispersion curves show oscillatory characteristics at intermediate wave-
lengths. The oscillatory character manifests itself most strongly for the case of a cylindrical Fermi surface,
where its physical origin becomes apparent.

I. INTRODUCTION

KCENTI.Y, new electromagnetic modes which
can propagate in simple metals near the Azbel-

Kaner cyclotron resonances (AKCR) have been
observed' ' and are referred to as high-frequency
waves (HFW). The existence of these HFW in metals
was first discussed by Kaner and Skobov. ' Their
predictions were confined to the short-wavelength
limit (kR))10', where R= Vy/pp); however, the experi-
mentally observed HFW modes are found in the long-
wavelength limit (0~&kR(10). An extensive theoret-
ical discussion for the latter regime has been given by
Platzman, Walsh, and FooP (PWF) for the case of the
ordinary mode (E~j 8). In this paper we derive a general
expression for the conductivity in the case of a general
ellipsoidal Fermi surface (FS), which can be reduced to
the spherical or cylindrical cases by taking proper
limits. We present complete dispersion curves of both
ordinary and extraordinary modes (EJ 8) for the case
of a spherical free-electron FS over a large range of
wavelengths (0(kR& 100). In the intermediate-wave-
length regime, 5&M&30, the dispersion curves exhibit
an oscillatory behavior which is especially strong for
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the extraordinary mode in the spherical FS case. We
then show that this behavior is even more pronounced
in the case of a cylindrical FS, which has not only a
constant effective mass but also a constant cydotron
radius. The extraordinary HFW dispersion curves for a
cylindrical FS in the 0(kR(8 regime are evaluated
and compared with those for the spherical FS. The
origin of the oscillatory characteristics is emphasized.

II. CONDUCTIVITY TENSOR OF AN
ELLIPSOIDAL FS
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We wish to calculate the wave vector and frequency-
dependent magnetoconductivity tensor a,;(lt,~) for a
general ellipsoidal sheet of FS arbitrarily oriented in a
magnetic iield 8 (9 axis). The FS is de6ned by the
energy-momentum relation

E=(2mp) 'Q usP;P;,

where mo is the free-electron mass, and 0.;; is the
normalized inverse effective-mass tensor, which is
symmetric. We use the form of expression originated by
Overhauser and Rodriquez' for the magnetoconduc-
tivity of an arbitrary Fermi distribution of noninteract-
ing electrons:
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Here T(E,P,) is the cyclotron period of an electron &o ~ oo'Jz'(b)p- y 2P 'dP
of energy E and crystal momentum P, along B. The
vector v„where e is integer is given by

(10)
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For a spherical FS, n;;=8@ and then Eq. (7) reduces to
the well-known expression for the magnetoconduc-
tivity. ' ' In this case b=kR, sintt, where E,= Vp/ca,
and 8 is the angle between B and Vw. For a cylindrical
FS with Bparallel to its axis, b= kR, and is independent
of 8. In both cases, O.„and gy, are equal to zero by
symmetry.

os:*=mp/(n, nw„—u.„')'~', (4)

and the cyclotron frequency pp, =eB/m*C and the
period 2'=2m-/ ppare independent of P,. The velocity
components are

where the timelike parameter I specifies the electron's and the constant
position on the orbit defined by E and Pzz The quantity
v(E,P.,u) is the electron's velocity and R„(E,p.,u)
describes the periodic part of its spatial motion. A and the J„(b) and J' '(b) are Bessel functions and their
phenomenological scattering time ~ is used to relax derivatives with argument
the distribution function to equilibrium but will, in

fact, be neglected in the final computations. b=kcywp, /eB.
For an ellipsoidal FS, the effective-mass ratio is

v,= (P,/oup) (n..y. cosa&,u+n. „y„sm(o,u),
v„= (P,/mp) (nw,y, costa,u+n„wvw sin&a.u),
&z= (Pz/rwp) (v,+n„y, costs,u+n, wow sin&ad, u), (5)

where
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For detailed evaluation we consider the case of k
parallel to the x axis. The x component of v, is then
equal to zero. By substituting Eqs. (4) and (5) into

Eq. (2) and integrating over E, we obtain

o;z= Q 2';z'~o& P+8;,bj,p„o, i, j=x, y, s (7)
l, m sy

where

III. HFW DISPERSION RELATION

To discuss the dispersion behavior of the HFW, we
ignore the complete boundary-value problem, 4 i.e.,
the coupling or excitation problem, and concentrate
on the bulk dielectric properties of the metal. For
propagation accurately perpendicular to the magnetic
field, the HFW are undamped as long as ordinary
collisions are neglected (r=op). D—eining z(( B and x~~k

the oft-diagonal components of the conductivity tensor
a.„=o.„and 0-„,= —O.,y vanish. In this case, the
solution of Maxwell's equations yields the familiar
dispersion relation

(k'/kp' —ozz) Lk'/kp' —(c„„+o w/ozz') zg =0, (15)

where the dielectric tensor

o p(k,co)=b p 4p p(k—,co, B)/uo

Here k =p/cpp, co is the frequency of the HFW, and c
the speed of light. The first term 8 p is the displacement
current and the second term is a complex tensor
contribution due to the magnetized conduction elec-
trons. The first root,

V- ..lm~ ij =&liO'mj
k'/ko'= o... (17)

and

Ep J '(b)
0 Q v2P2dP
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(23)

The higher mode ~g+, which is the only mode appearing
in the fundamental cyclotron resonance regime, is
determined by

(kR,)'
+350=0.

(~/~, )&—1
(24)

This mode has a very strong oscillatory character for
Rnite kR. The periodicity in M is very clear and the
slope reversals are very sharp compared to the slightly
oscillatory behavior of the ordinary wave. In the regime
&o,/ce&1, &or+ is multiple-valued in the range 1.4&co,/cd

& 2.9, i.e., for a given magnetic feld several ~aves of
distinct k may be excited.

Experimentally, the HFW are observed to produce
oscillations in the eRective surface resistance of a thin
metal slab carrying surface currents on both faces as
the changing magnetic field causes the wavelength
and, thus, the phase of the transmitted waves to vary.
Under antisyrnmetric excitation conditions power-
absorption minima occur when -,'(2n+1)X=L, I=0, 1,2, where X= 2rr/k is the wavelength in the metal
and I. is the sample thickness. In those regions of
magnetic field where only a single long-wavelength
branch of a dispersion curve exists, a "clean" surface
resistance oscillation is observed and the dispersion
may be unambiguously measured, e.g., in the range
1&'re,/~& 1.4 for the case of the extraordinary HFW.
However, in regions where two or more dispersion-curve
branches exist, corresponding to simultaneous excitation

FIG. 3. Dispersion curve of the extraordinary wave as a function
of co/op, and kg„with co&~6X10"rad/sec, co, =7.5X10'o rad/sec,
and t/'J/c=3X j.0 '.

20—
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I'"Io. 2. Dispersion curve of the first three harmonics of the
extraordinary wave as a function of kR and co,/co, with ap„~6X1(P5
rad/eec, au =7.5)& 10'0 rad/eec, and Pr/c =3+1/ r,

and propagation of two or more waves of difFering

phase velocities, more complex surface resistance
changes are observed, e.g. , for 1.4(a&,/co&2. 9 in the
extraordinary HFW case. Beyond the final turning
point of the dispersion curve (o&,/ee) 2.9) the metal is
completely cut off. This is rejected experimentally by
a modest change in the surface resistance. 4 '

In order to understand the oscillatory characteristics
of the dispersion relations, it is convenient to examine
the dispersion relation of the HFW using a slightly
altered set of variables. Ke examine the solution of
Eq. (18) as a function of kE, and &o/ce. . The transcribed
dlspcI'sion curves aI'c. shown 111 Flg. 3 as thc solid llncs.
One notices that the oscillatory periodicity in kR, is
approximately equal to 7r. The oscillatory modes co&+

for l~&2 are analogous to co1+, except that the 6rst
slope-reversal points are shifted upward by ~~~ as l
increases by I.

The osciBatory behavior manifests itself even more
strikingly for 8 parallel to the axis of a cylindrical FS,
for which the cyclotron radius E, is independent of I',.
The argument b of the Bessel functions in the conduc-

' &. M, &sich, Jr. (private commtrnicstion).
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problem by considering the motion of a single electron
only. Consider ari electron of velocity Vz moving in a
plane perpendicular to a magnetic Geld (B~~s axis).
Then we apply a weak external electromagnetic Geld
ae'("' ~*&+",which is treated as a perturbation. Here we
turn on the electromagnetic Geld adiabatically by taking
the limit of the response as 8 goes to zero. The electro-
rnagnetic field will not be attenuated if no net energy
current is transferred from the Geld to the electron
during a cyclotron period. The x component of the
electron's orbit is x=8., sin~. t, and the electromagnetic
Geld along the orbit is

e exp['(icu+b) (t—tp) —ikR, (cosa&,t—cospp, tp)), (25)

with the appropriate initial condition at t= tel. The net
energy gained by the electron at time to is

E(tp) =e dt v e exp)(ipp+8) (t —tp)

—ikR, (caser, t—cosco, tp)). (26)

Thea. the net energy current Iz of an electron gas of
density e during one cyclotron period T is

Ig=e v(tp)E(tp)dtp

.I .2 .5 .4 .5 .6 .7 .8
KRc

Fro. 4. Dispersion curve of the extraordinary wave for the case of
a cylindrical (FS) as a function of ar/~, and kE,.

tivity tensor LEqs. (9)—(13)) then reduces to kR, and
one can factor the Bessel functions out of the integrals.
Therefore, the oscillatory behavior of HFW for a
cylindrical FS should reflect just the periodicity of the
Bessel functions. The numerically computed dispersion
curves for the cylindrical case are plotted in Fig. 4 as
a function of kR, and pp/pp, . One notices that the
periodicity is most clear and the slope reversals are
extremely sharp for the cylindrical case. For example,
near co/co, =0, the slope reverses at kR, =3.8317,
7.0156, - ~ ., etc., which coincide with the zeros of Jo'.
The slight shift of the periodicity and the more gradual
slope reversals in the case of the spherical FS are due to
the averaging over diferent cyclotron radii.

We should also like to point out that for the cylin-
drical case, the lower modes co& are the only set of
nontrivial solutions of Eq. (18) in the long-wavelength
regime, and the higher modes, which are reduced to
co&+=ko„are trivial solutions which have no physical
signiGcance.

Since the cyclotron orbit radii are the same for all
electrons on the cylindrical FS, we can treat this

dtp v(tp) dt v(t) e expL(iM+5) (t —tp)

kR, (c—s otppcos~,—t )),p(28)

where v(t) is the electron's velocity at time t, of which
the x component is V& costs, t and the y component is
Vp since, t. The dispersion relation of the unattenuated
electromagnetic wave can be obtained by solving

r =0. (29)
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After carrying out the integrations and eliminating
the parameter a, one will obtain the same result as
solving Eq. (18) for the cylindrical FS case. Since the
integrand in Eq. (28) is a periodic function of t and tp,

one expects more than one value of kE, which satisfies
the condition (29). This means an electromagnetic wave
of frequency co can propagate through such a simple
magnetized electron gas with multivalued wavelengths.
This is the origin of the oscillatory behavior shown in
the HFW dispersion curves.


