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A modi6ed BCS g8p equation is used to obtain an approximate solution for the pressure derivative of the
superconducting transition temperature, dT,/dp, at values of the Fermi energy Lt,'y near critical points in. the
density of states. dT /dp is a functional of the energy derivative of the density of states, and therefore reiiects
strong structure Rt values of E'jP QcRr thc v8Q Hove slngulRx'ltlcs ln thc dcnslty of states RssoclRtcd v&th 8,

I'ermi-surface topology change. The model is extended to incIudc the case of a dilute random alloy system
in which impurity scattering broadens the singularities. A Lorentzian spectral distribution is assumed,
and an analytic equation is obtained for the broadened van Hove-singularity contributions to the density
of states. The model is applied to the case of indiuxn doped with cadmium, the rate of change of the Fermi
energy with concentration being estimated from a free-electx'on formula, and the xate of change of the life-
time estimated from the residual resistivity. A qualitative fit between the model calculation and thc struc-
ture of available dT,/dp data requires the existence of two singularities: an electron saddle point discon-

necting at 0.9 at. jo Cd, and Rn electron sphere vanishing at about 1.6 at.% Cd. A quantitative calculation
is made of the variation of d'T, /dp xvith alloy concentration, assuming only the empirically determined
singular polntsy Rnd dcl'lvlng Rll otheI' quRntltlcs fx'oIQ Rv8,llRblc lndlum Fermi-surface lnformatlon on thc
third-hand ring. The model calculation gives surprising quantitative agreement with the data, suggesting
that valuable infoxmation on the Fermi-surface topology of dilute alloys can bc obtained from measurements

of dT,/dp as a function of concentration.

INTRODUCTION

HK problem of the electron energy-band structure
of a random alloy has been of interest ever since

thc (Bscovcly that IDRny fcatUI'cs of Rlloy phase dIR-

grams and other physical properties are correlated with
the number of conduction electrons available to fiH

energy hands. ' Although some of the correlations werc
later found to be accidental, ' spurious, ' or inconsistent4
w1tll I'cccllt direct Fclllll-slit'face (FS) Illcasllrclllcllts 111

pUI'c Inctals, thc cxtcnt to which conduction clcctroD
concentration determines physical properties in an
alloy remains of interest. The problem is essentially how
to modify thc Bloch representation in a disordered.
1att1cc slllcc Inos't . Illc'talllc plopcltlcs (cxccp't those
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strongly influenced by impurity scattering) are not.
greatly RltcI'cd by thc 1Rck of R perfect lattice.

Direct methods to Ineasurc FS geometry in pure
metals' have become reined to the point where they
scI'vc as stI'IDgcnt tests fol rc6nlng cncI'gy-bRDd CRlcu-

lations. e Kith pure-metal band structures well under-

stood, progress in alloys has been renewed on 6rmer
ground. In alloy theory, several authors' ' have applied
Green s"function tcchniqUcs to modify thc Bloch
representation to take proper account of impurity,
scattering. Theoretical progress hRs bccD accompanied

by a search" for measurements which give unambiguous
information about alloy electronic structure.

' See, e.g., The Inhere+ Sgrfgce, edited by W. A. Harrison. Rnd
M. B.%ebb {Wiley-Interscience, Inc. , New York, 1960).

' See, e.g., W. A. Harrison, I'soldopotorttiots irt the Theory of
3Atals (W. A. Benjamin, Inc., New York, 1966).

7 H. Jones, Phys. Rev. 134, A958 (1964).' P. Soven, Phys. Rev. 151, 539 (1966).
9 Edward A. Stern, Phys. Rev. 168, 730 (1968),
'0 R. G. Chambers, in The 5&eorI, Easer Umjeers@y Lectgres oe

Sold 5/efe I'hypos, edited by J. F. Cochran and R. R. Haering
(Gordon and Breach, Science Publishers, Inc., New York, 1968),
Vol. 1.
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Some progress has been made" '4 in extending direct
FS measurements such as the de Haas —van Alphen
(dHvA) elfect into dilute alloys, using high magnetic
fields and sensitive measurement techniques to over-
come the amplitude reduction caused by impurity
scattering. (The effect requires oi.r) 1, where oi, is the
cyclotron frequency eIJ/m*c, and r is the lifetime of an
electron in a cyclotron orbit between scattering events. )
But, since direct FS measurements in alloys are dBBcult,
an alternative measurement is desirable to select
interesting alloy systems. If one's concern is with alloy
FS topology, the measurement should be unambigu-
ously related to the electronic density of states; hence
it should show structure due to van Hove singularities
as the Fermi energy E~ is varied with alloy composition.
One promising candidate is considered below: the pre-
rise measurement of superconducting transition tern-
perature T, and especially the pressure derivative
dT,/dp. In Sec. I, a simple model based on the BCS
theory is developed which shows that dT,/dp is essen-
tially proportional to the energy derivative of the elec-
tronic density of states dE(Er)/dEr, hence in a system
with no scattering dT,/dp would show strong singu-
larities (~E 'is) at critical points in the energy spec-
trum. The essential features of alloy electronic structure
are incorporated. by allowing a state of energy E to be
broadened by fi/r, where the lifetime r is estimated
from residual resistance measurements. This feature
produces a major modification in the density of states
near critical points, and results in substantial broaden-
ing of the structure in dT,/dp versus alloy composition.

The model is applied in Sec. II to In doped with Cd.
This system was chosen because reproducible I',""and
dTg/dp data exist and show strong composition
dependence below 2 at.% Cd. Considerable speculation
exists that anomalies in this and other physical proper-
ties'~ at this composition indic~~e a change in the In
FS topology. Reliable information about singularities
in the alloy density of states may also prove useful in
understanding the phase change" from face-centered
tetragonal to fcc which occurs at about 4 at.% Cd (at
25'C), especially since In is a nearly-free-electron-like
metal for which pseudopotential methods are applicable.
In the present paper, it is shown that, within the
framework of the model developed in Sec. I, there is an
unambiguous quantitative agreement with the dT,/dp

~ R. J. Higgins and J. A. Marcus, Phys. Rev. 141, 553 (1966).
~ J. P. G. Shepherd and W. L. Gordon, Phys. Rev. 169, 541

(1968).
'g P. Z. King-Smith, Phil. Mag. 12) 11'23 (1965).
~4 R. J. Higgins, H. D. Kaehn, and J. H. Condon, Phys. Rev.

181, 1509 (1969}.
~' M. F. Merriam, Phys. Rev. 144, 300 (1966).
~6 V. I.Makarov and I.Y. Volynskii, Zh. Eksperim. i Teor. Fiz.

Pis'ma v Redaktsiyu 4, 369 (1966) LEnglish transl. : Soviet
Phys. —IETP Letters 4, 249 (1966)g.

~'I. V. Svechkarev, Zh. Eksperim. i Teor. Fiz. 47, 960 (1964)
/English transl. : Soviet Phys. —JETP 20, 643 (1964)j; B. I.
Verkin and I.V. Svechkarev, ibid. 47, 404 (1964) t English transl. :
~. ZO, 267 (1964)j.

'8 Theo Heumann and Bruno Predel, Z. Metallk. 53, 240 (1962).

data. "The data are consistent with the disappearance
of an electron saddle point at about 0.9% Cd and sug-

gest the disappearance of an electron pocket at about
1.6% Cd. Impurity broadening effects play an im-

portant role in providing a quantitative fit to the data.
The interpretation is consistent with a recent band
calculation for In. '9 However, since In is borderline
between a weak coupling (BCS) and strong coupling
superconductor, as discussed in the Appendix, the
simple theory of Sec. I may not be precisely applicable.
But the model has the virtue of intuitive simplicity, and
since it predicts FS topology changes at a low enough
composition for direct dHvA measurements, there
exists a direct way of testing the general validity of the
model and its applicability to In alloys,

L STRUCTURE IN d2'. /dP DUE TO IMPURITY-
BROADENED VAN HOVE SINGULARITIES

IN THE DENSITY OF STATES

If, under pressure, the FS topology of a pure metal
changes, 'there is a van Hove singularity in. the density
of states which is reQected in many physical proper ties. '0

This approach has been generalized to include the
properties of nonsuperconducting impure metals. "
Anomalies in the superconducting transition tempera-
ture of pure metals under pressure have been treated"
by a modification of the BCS equation, which separates
oG a small singular part of the density of states from the
slowly varying background. In the treatment below, we
find an explicit, though approximate, solution to the
integral equation developed in Ref. 22. We find the
structure in T, as a function. of Fermi energy near
singular points to be broadened in energy by about kT,
in pure metals (kT.=BXIO s eV for In). The pre-
dominant broadening mechanism in a,lloys is impurity
broadening of the van Hove singularities in the density
of states (=5)&10 ' eV in the case considered in Sec.II).
An explicit form for the impurity-broadened density of
states ls developed which is applicable to the four most
typical topology changes.

In the calculation below, the Fermi energy is viewed
as a parameter which can be varied experimentally
either by alloying or by external pressure p. Therefore,
measurement of dT, /dp as a function of impurity
concentration X is essentially a modulation or deriva-
tive technique, which enhances fine structure in T,(X).

The solution of the BCS gap equation for T, must be
modided when the Fermi energy EJ is near a singular
point in the density of states X(E) of the normal metal,

«f'¹W, Ashcroft and W. E. Lawrence, Phys. Rev. 175, 938
(1968).

~0 I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 38, 1569 (1960)
t English transl. :Soviet Phys. —JETP ll, 1130 (1960)j.

~I M. A. Krivoglaz and T'yu Yu-Hao, Fiz. Metal. Metalloved.
21, 817 (1966) LEnglish transL: Phys. Metals Metallog. 21 (6), 15
(1966)g.

22 V. I. Makarov and V. G. Bar'yakhtar, Zh. Eksperim i Teor.
Fiz. 48, 1717 (1965} LEnglish transl. : Soviet Phys. —JETP 21,
1151 (1965)g.
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since the assumption that $(E) is constant over an
energy range Ei +kO~& (where 0'& is the Debye tern-
perature) is no longer valid. It is"cont.enient to b~eak
up 1V(Es) into two parts,

X(EF)=Xp(Ep)+oX(EF),

ELECTRON SPHEROID

Ei & Ec ( Ea

HOLE SPHEROID

Ea

K-SPACE TOPOLOGY SN(EF-) d ~N(EF.)
dEF

where Xs(Er) is essentially constant over energies
within kO~& of Es, and oX(Er) contains any rapid
variation due to van Hove singularities. 8X(Ei) may
correspond to the least occupied band in a multiband
metal, but its precise deinition is irrelevant since the
final result involves only the slope d)W(Er)]/dEr.
The four possible (barring band degeneracy) van Hove
singularities in the density of states are shown in Fig. i.
Their algebraic form is

bÃ(Es) = (VZ/a'ls') (mirissins)'"(E p —E )'" (2)

for energies Ep&E„and zero for energies Ep&E,.
Appropriate permutations in the sign of BE and of the
energy generate the four classes of singularity shown in
Fig. 1. The m;(i=1—3) are the effective-mass com-
ponents in a quadratic expansion of E(k) very near any
of the singular points E, in the density of states.

In order to extract the main qualitative features
necessary to explain the dT,/dp data, "the calculation
is carried out within the framework of the BCS one-
parameter model; e.g., electron-phonon coupling is
constant within &kO~n of Es and zero outside that
range. The further assumption will be made that the
electron-phonon coupling is unchanged within the range
of alloy compositions of interest (up to 4% impurity).
None of the essential conclusions is changed as long as
the coupling constant is slowly varying compared to
81lt (Es).

Following Ref. 22, Eq. (1) is inserted into the BCS
gap equation. The result is an integral equation for T„'

-~yxx+Xi&i- -iXxxXXSXiiii- -xiixXXXXXXii-

ELECTRON SADDLE POINT

, HOLE SADDLE POINT

I

I

c ( Ea

Fxo. 1. FS topology changes and the associated van Hove
singularities in the density of states and its energy derivative. The
notation is that of Eq. (1), where O'E is normally a small fraction
of the total density of states in a multiband metal.

provided that the alloy band gaps vary slowly with
impurity concentration (see the Appendix). In what
follows we consider only the first term in Eq. (6), which
will show structure due to FS topology changes. The
second term is larger in magnitude, but is not likely to
vary rapidly with alloying, since the fine details of FS
topology affect the phonon spectrum and the electron-
phonon coupling only slightly. 23 The erst term in Eq.
(6) may be evaluated from Eq. (3), using a first-order
iteration of Eq. (5) which is valid provided that Xo(Es)
))hS(Ep) (see the Appendix). The result is

dT, dEr//dP dFPN(Er), T s]—+0
dp 2Xs(Es) dEr

where

dFPX(E,),T,s]

where

F/@V (E,),T.]
~c ~c exp

2Xp(E p)

T, = 1.130' expL —1/'U1Vo(Eip)]

(3) se& tanh(iEi/2kT, ') d

sen
bX(Er E)dE. (8)—

dEJ

c dEp ~~c d'U

dT,/dp +-
8Er dp f)'U dp

(6)

F/'(Es), T,]
'en tanh(IEI/2kT, )

aV (E,—E)dE. (5)
se,

Here O~D is the Debye temperature, 'U is the electron-
phonon pairing potential, T, is the superconducting
transition temperature to be determined, and T, is the
transition temperature in the pure metal at atmospheric
pressure.

It is easily shown that

'8 Strongly impurity-dependent terms due to the response in 'U

to singular points in the electronic density of states are of higher
order than the fo.st term in Eq. (6), because two successive aver-
ages are involved. Using the formalism of Ref. 38 LEqs. (5), (15),
(19), and (23)j, the SCS Ep3 is closely related to the average
electron-phonon coupling constant X (they are equal in the weak-
coupled limit). Now X is an average over the phonon spectrum of
the phonon density of states P(co~) times the square of the electron-
phonon interaction averaged over the Fermi surface OP(60,) with a
weight factor co~ '. Although the electronic structure aRects the
phonon spectrum co~, even so gross a feature as the FS itself
produces a minor disturbance (the Kohn anomaly) in co~. The
fraction of the FS which contributes to the singular points in
question is really quite small (&0.1'Pz of the FS area in the case of
In). Subtle topological features in the FS could acct co„but they
are averaged twice in obtaining X: once in obtaining F(co~) and a
second average over au~ in the integral for X. Furthermore, that
integral is weighted towards low-frequency phonons by the factor
co~ ', which weighs against phonons influenced by the electron FS.
Thus, a single derivative of the second term in Eq. (6) is unlikely
to bring out structure due to singular points in the electronic
density of states.
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Therefore, the shape of dT,/dp as a function of impurity
composition rejects the energy dependence of the
slope of the singular part of the density of states
[~ (E—E.) '"7. The effect of the convolution integral
in Eq. (8) is to broaden the structure by an amount of
order kT,O, so that dT, /dp does not diverge at critical
points E,.

In the alloy systems of interest, however, the van
Hove singularities in the density of states are blurred

by impurity scattering; this broadening will be shown
to be far more important than the k'1, broadening
discussed above. The algebraic form of the singularities
written in Eq. (2) is correct only when E is an eigenstate
of wave vector k. In an impure system, there is scatter-
ing, and the amplitude to be in a state k decays with
time. This may be represented by a complex energy

E(k) —+ E(k)+Z(k)+ii'(k), (9)

where E(k) is the quasiparticle dispersion relation in the
pure system, and Z(k) and I'(k) are the real and
imaginary parts of the self-energy change due to the
added impurities. '4 In what follows, it is assumed that
Z(k) and I'(k) are dependent only on E (surfaces of
constant energy unchanged in shape by alloying, and
relaxation-time isotropic on any energy surface). This
allows us to absorb Z(k) into E(k) for computational
simplicity"; note that the location of the critical points
E, in alloys does not locate critical points in the pure
metal density of states until Z (E) has been determined.
As is well known for the impurity problem, "E and k
are now connected by a spectral distribution function

r
~[E'—L (k) 7 ~— . (10)

2m. [E'—L"(k) —Z7'+ (-'I')'

Physically, a quasiparticle in an alloy in state k does not
have a uniquely defined energy, since a state which had
energy E& in the pure system now has a finite lifetime
Ar= /r (E~). This broadens the van Hove singularities;
the square-root density of states [Eq. (2)7 is convoluted
with a Lorentzian:

r &2(m+)»2
RV (Ei E„I') =——

2vr vr~hs

(E—E,)'"dE

~ (Ep E —E)'+[-',I'(Ep)7'—
This integral may be evaluated analytically":

(m*)'~2
mV (E,—E„,r) =(-,'/I)

m-h'

X[(1+a')'i' sin(-,'m- —-' tan 'e)7—' (12)

24 L. P. Kadano6 and G. Baym, Quantum Statistical Jt/Iechanics
(K. A. Benjamin, Inc. , New York, 1962), p. 28.

"Relaxing the isotropy restriction on Z would allow the eQ'ec-
tive-mass parameters in Eq. (2) to change, which aA'ects only the

where energy dependence is measured in units of the
linewidth:

~= (E~—E.)/I'(E~) . (13)

The impurity-broadened density of states is shown in
Fig. 2(a). Note that this is a universal curve valid
whenever the spectral distribution function is I.orent-
zian, and involves no assumptions about how F and
Ez vary with alloying. Equation (12) approaches
(Ei —E,)'~' as Ep approaches infinity, and approaches
~il'(Ep —E,) '~2 for Ep far below E„where there were
no states in the pure system.

The evaluation of dT„/dP via Kq. (7) involves the
energy derivative of Eq. (12), shown in Fig. 2(b). The
strong E ' ' singularity is removed by impurity scatter-
ing, but the sign and shape of the curve still determine
a unique correspondence with the type of van Hove
singularity, as in the pure system (Fig. 1).

II. APPLICATION TO INDIUM DOPED
WITH CADMIUM

A. Density-of-States Information from
d T,/dP Measurements

The general results of Eqs. (7), (8), and (12) are
applied in this section to the example of In-Cd alloys.
Fermi-energy changes (measured from the bottom of
the first band) are estimated from the free-electron

(E:, - E, )yr

FIG. 2. Impurity-broadened density of states (a) LEq. (j.2)j and
its energy derivative (b) near a singular point E„when the spec-
tral distribution function connecting k and E is Lorentzian. The
curves are plotted in appropriate units so that they are functions
only of the dimensionless energy (measured in units of the imagin-
ary part of the self-energy, or scattering linewidth). For com-
parison, the familiar square-root density of states and its energy
derivative are also plotted in the same units. Impurity scattering
is seen to remove the singularity in slope at E, and to produce
below E, a rionvanishing density of states, which decreases as
(gg gq~)

—1/2

amplitude of the result and not the energy dependence. Anisotropy
in I'(k) would further smear the structure in dT,/dp."Ke are indebted to Professor J. W. McClure for carrying out
this integral. Although the form of the result is quite different
from that used earlier f'ref. 21), we Qnd the two to be numerically
identical. .
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formula, as is justified by the recent band-structure
calculation, "which found a value of Er within 1%of the
free-electron value, and by the successful use of changes
in the free-electron Fermi energy to interpret recent
FS measurements" in this alloy system. For the con-
duction-electron concentration, we take 3.00 for In and
2.00 for Cd, which is consistent with the pure-metal
band structures and the existing alloy FS measure-
ments. '4 In evaluating the imaginary part of the self-

energy, perturbation theory is not valid (charged
impurities), and, rather than perform a detailed phase-
shift analysis or Green's-function calculation, we prefer
to rely on experiment and estimate I' from the meas-
ured" residual resistance ratio as a function of com-
position. The value of I' obtained is likely to be an

L
O

u
UJ

LQ 5
'D

I 2
at. '/o Cd in In

10

(a)-3.48—

-4.04-

-4.62pl

50-

IP5 dTc K
dP kg/cms

~p, g Makarov and
~ Volynskii

~ I
I

I Pq ~
I I IIX

L~
/

~ (R(4.2) / R (298)) ~o

2 4 6 8 lp l2
(b)

~ Makarov and
Valynskii

I Merriam

FIG. 4. Impurity-broadened density-of-states derivative as a
function of Cd impurity content in In. The dT, /dp data (Fig. 3)
are consistent with an electron saddlepoint opening up at 0.9at.%
Cd and an electron spheroid disappearing at 1.6 at. 'P& Cd. Starting
from this postulate, the impurity-broadened density of states was
calculated by computer from the derivative of Eq. (12), using a
rate of change of Fermi energy Ez and linewidth F with impurity
content estimated as described in the text. In order to check the
estimates against experiment, curves were also calculated using
values of F half and twice as large as that estimated from residual
resistivity (j.;in this figure). (a) Electron saddlepoint opening up
at 0.85 at.% Cd (AEg= —4.25)&10 ' eV). Arrows labeled E,
locate the critical points in the unbroadened density of states. (b)
Electron spheroid disappearing at 1.65 at.% Cd (AEJ = —8.25
0(10 ' eV).

IPO—

150—

Fio. 3. Superconductivity data of Makarov and Volynskii
(Ref. 16) for In alloys. (a) Pressure derivative of the supercon-
ducting transition temperature as a function of atomic percent
Cd. The initial data, plotted as a function of residual resistance
ratio, has been converted to impurity composition using 8 (4.2 I)/
E(300K)=0.042/at. 'P& Cd (Ref. 16). The dashed curves were
suggested by Makarov and Volynskii in interpreting their data.
(b) Zero pressure change in the superconducting transition tem-
perature, confirming Merriam's earlier work (Ref. 15) which led
to the suggestion of a FS topology change in this system.

underestimate, since small-angle scattering events which
shorten the lifetime of the state do not aGect the
resistivity. The estimates which result are

dEr/dX= —0.0051 eV/(at. % Cd),

dl'/dX=+0. 0039 eV/(at. % Cd).

In evaluating the rate of change in EI:, changes in
conduction-electron concentration, volume, and axial
ratio have been taken into account. ' In evaluating the
rate of change in I', a free-electron conductivity ex-
pression with free-electron mass has been used, justified
by the band-structure calculation, " which shows an
average band mass near the free-electron value. Re-
laxation-time isotropy has been assumed. The numbers
quoted above are precise but not necessai. ily accurate,
b(:caust: of thege asgumptions, Kb@t matters is the ratio

of the two numbers which will be treated as a parameter
for comparison with experiment. It is convenient to
vary only dF/dX, with dF /dX being the value quoted
above.

The dT,/dp data" which are to be interpreted is
shown in Fig. 3(a). The predominant structure is a
sharp, asymmetric positive peak, rising above a nega-
tive background. '~ "The results of Sec. I show that
singularities in the density of states are located by the
shoulders or points of steep slope in dT, /dp rather than

by the peaks. Taking the data at face value, there is a
pronounced shoulder at about 0.9% Cd, and a less
pronounced shoulder at 1.6 at.% Cd. The sign and shape
of the shoulder at 0.9 at.% Cd are consistent with the
disappearance of an electron saddle point at this com-
position. This assignment may be made more quanti-
tative by evaluating the impurity-broadened density of
states

I Eq. (12)j for such a topology change using the
EI and I' values estimated above. The most striking
aspect of the result

I plotted in Fig. 4(a)] is that the

2 The observation that T, decreases with increasing pressure is
a common observation in the polyvalent metals (Ref. 28) and has
to do with the electron-phonon coupling becoming weaker (lattice
stiGer) more rapidly than the density of states E(Ez) increases.
This gross feature is described by the second term in Eq. (6), and
is outside the scope of the theory of Sec. I. We will also not discuss
the atmospheric-pressure variation of T,(X) LFig. 3 (b)j since the
structure in that measurement is complicated by a rapid variation
with composition (anisotropy e8ect; see Ref. 29), which, however,
contributes only to the nearly constant background in dT, /dp."J.L. Olsen and H. Rohrer, Helv. Phys. Acta 33, 872 (1960).

'90. Markowitz and L. P, KadanoB, Phys. Rev. 131, 563
(1963),
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curve does not fall to the (Er E,—) '~' shape for com-
positions above the critical point. This is because I'
varies nearly as fast as Ep, so that the asymptotic limit
of Fig. 2(b) is reached very slowly. Because of this, the
model calculation requires that a second singularity
must be added to 6t the data. The more disuse shoulder
at 1.6 at.% Cd is consistent with the disappearance of
an electron spheroid at that composition. The diftuse-
ness makes the assignment less certain than for the
saddlepoint at 0.9 at.% Cd, since the impurity broaden-
ing is nearly a factor of 2 larger. The appropriate
derivative density-of-states curve for such a singularity
is shown in Fig. 4(b). Here the asymptotic E '~' limit
of Fig. 2(b) is reached on the low-composition side, but
the simultaneous changes in E~ and I' skew the shape
of the curve from that of Fig. 2(b). It is clear that'the
sum of such density of states derivatives (Fig. 4) has'the
right shape to account for the structure in dT,/dp
tFig. 3(a)7, and that the use of a lifetime determined
from resistivity (I'= I;) is in reasonable agreement with
the experimental broadening.

(c)
fOOl]

Ei

E4

oU
0'

I

S

[IIOI
r

U

FIG. 5. Geometry of the third-band electron ring in In. (a)
Perspective view looking towards the corner at T, showing the
bulge in the $001j direction predicted by the band-structure
calculation (Ref. 19). (b) View of the ring lying in the (001) plane.
The T-U line is in the L110jdirection. (c) Schematic equal-energy
contours for a cross section perpendicular to the $110j direction,
and dispersion relation in the T-U direction consistent with
Fig. 5(a).

B. Quantitative Estimate of d T,/dP and the FS
of Indium Alloys

Section, IIA demonstrated that the structure in
dT, /dp data is remarkably close to the shape of the
energy derivative of an impurity-broadened density-
of-states curve, using postulated topology changes'in"as
yet unspecihed bands and simple estimates of the rate
of change of Fermi energy and Bloch-state lifetime'due

to alloying. We now show that the postulated topology
changes are the owly ones consistent with what is known
about the FS of pure In, and the magnitude of the
calculated dT,/dp anomaly is in quantitative agreement
with the data, with rio free parurmeters except the con-
centrations at which topology changes are inferred.

The FS of pure In consists of a full erst band, a large
second-band surface of holes, and a ring of electrons in
the third band. "There may be small regions of contact
of the second-band surface with the Brillouin zone, "
though evidence for this is Dot consistent, and the fea-
ture may be removed by spin-orbit coupling. ' This
question is not relevant to the In-Cd system, since, if
the contact exists in pure In, it would show up as a
singularity in dT, /dp data only with impurities of
higher valence. The third-band electron ring, which is
of most interest here, is shown in Fig. 5. The dominant
e6ect with decreasing Fermi energy would be a decrease
in size of the corners of the ring at T, followed by a
pinching off of the ring into four disconnected ellipsoidal
pieces." This corresponds to an electron saddlepoint
singularity in the density of states, as required in Sec.
II A to explain the dominant shoulder in the dT,/dp
data at 0.9 at.% Cd. Moreover, recent measurements"
of the ring cross-sectional area at U in In doped with up
to 2 at.% Cd give a rate of change of area which is
entirely consistent with this interpretation. 32 .

In addition, the band-structure results" obtained
from fitting FS data give a slight bulge in the corner of
the ring at T t Fig. 5(a)7. No direct evidence exists for
this bulge, which would show up only with the applied
6eld H very near $1007. Unfortunately, the published
dHvA measurements' were made with a torsion
balance, and with this technique the amplitude of this
dHvA oscillation vanishes at D007. Our interpretation
of the dT,/dp data (Sec. II A) requires more than a
simple saddlepoint, and the nature of the electron bulge
at the corners of the ring is consistent with the density-
of-states anomaly suggested by the weak shoulder in
dT,/dp at 1.6 at.% Cd. There are three reservations in
this conclusion, all of which may be clari6ed by further
work. First, the existence of a bulge at the corner of the
ring is as yet unproven in pure In. Second, density-of-
states evidence from alloy measurements need not
correspond directly to the energy dependence of the
density of states in the pure system, because of our
neglect of the real part of the self-energy change in
alloys t Eq. (9)7. This is especially true for fine details
of topology such as this which are quite sensitive to the
band gaps. Third, the form of the van Hove singularities

'0 J.P. G. Shepherd, J.Phys. C (to be published), and references
therein."Further geometry changes come from the decrease in the axial
ratio c/u with Cd impurity. The efFect is to accelerate the rate of
change in size of the third-band ring (Ref. 14)."Scaling the results and interpretation of Ref. 14 to the small
orbit at the corner of the ring predict its disappearance at well
below 1'P& Cd. No precise statement will be made at present,
because the details in this case are extremely sensitive to the
pseudopotential form factor and its change with alloying.
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dEg dEg dV 2EJ dV

dp dVdp 3 Vdp
eV

= —gaEg ——1.2X10-' . , (14)
. kg/cm'

where the erst equality is correct only if band-gap
changes with pressure affect Ep negligibly, and the
second equality follows from the free-electron Fermi-
energy formula. The calculate(PO Fermi energy Eg= 8.7
eV and the compressibility ~= —2.2&(10 ' kbar ~

measured" at 4.2'K have been used. For the over-all
density of states, it is convenient to write

used in Secs. I and II A is valid only within the energy
range for which a quadratic expansion of the electron-
dispersion law is valid. For the corner of the third-band
ring, the simplest dispersion relati. on which can give
both a saddlepoint and a bulge is shown in Fig. 5 (c). It
is clear that quadratic expansions such as Eq. (2) are
valid. only for energies small compared to the energy
gap Eg in Fig. 5 (c).Use of Eq. (2) should give the shape
of the shoulders but is likely to distort the peak in
dT,/dp, for instance. However, since impurity broaden-
ing is likely to smear all structure except that very near
critical points, it is of interest to carry out the dT,/dp
calculation within the framework of the simple density-
of-states model. Refinements in the density-of-states
model will be shown to produce only minor changes in
the result.

A calculation of dT,/dp t Eq. (7)j has been carried
out, using the impurity-broadened density of states
curves (Fig. 4) for the postulated topology changes, and
performing the convolution integral LEq. (8)j numeri-
cally. There are no free parameters, except the location
of the singular points as determined by inspection of the
d&,/dp data. The numerical quantities involved are

EXPER.
"3.5 "

IO5 dTc K

dP kg rom'

CALC.

2.0-

(phonon-enhanced) em*= 0.15teo in calculating the
density of states bE at the third-band corner, and the
specific-heat mass" (phonon-enhanced) m*=1.6mo in
evaluating Eo(Ep).

The dT,/dp results are shown in Fig. 6. The zero on
the y axis has been shifted to give optimum matching
of the curves, since this calculation does not attempt to
give the (monotonic) shift in 2', which is observed when
a lattice is compressed. ""The resistivity linewidth has
been used (curves marked I' in Fig. 4) since this value
of hE~/61' gave density-of-states curves in reasonable
correspondence with dT./dp data. This choice seems
well justified by the excellent correspondence in the size
of the calculated dT,/dp peak with experiment. Curve
a makes use of the density-of-states curves presented in
Fig. 4. Curves b and c are attempts to incorporate a
more realistic model which recognizes that the two
singularities are not likely to be in separate bands but
are both from the third band (Fig. 5). Curve b assumes
that the electron spheroid can continue to expand with
increasing E~ in two directions after the electron saddle-
point has made contact. Curve c allows the spheroid to
expand only in one direction after the saddlepoint makes
contact, which is the present prediction of the band-
structure calculation" for pure In LFig. 5(a)j. It
appears that more realistic models LFig. 6(b) and 6(c)j
go in the right direction to improve the agreement with
experiment, and that if the monotonic (lattice stiffness)
part of dT, /dp is slowly varying, curve b is the most
consistent with experiment. No attempt has been Inade

(Eo(Eg)
Pp(Eg) =

i

— Xo'(Eg),
k%00(E~}

(15}

where $0'(Eg) is the free-electron density of states. The
quantity in large parentheses has been calculated by
Ashcroft and Lawrence. '~ Note that a density-of-states
term appears in both the numerator and denominator
of Eq. (7), so that electron-phonon enhancement of the
normal metal density of states cancels to erst order. "
However, there is substantial anisotropy in the electron-
phonon enhancement in indium, '~ and we choose to
account for this by using the measured cyclotron mass"

~ B. S. Chandrasekhar and J. A. Rayne, Phys. Rev. 124, 1101
(1961).

The electron-phonon eftective-mass enhancement factor in
In is of order 1.6-1.8 (Ref. 19),so that use of the band mass rather.
than the quasiparticle mass in evaluating No(EJ) would result in
an error of more than a factor of 2 in dT, /dp. On the other hand,
if it is the band mass (no electron-phonon enhancement) which
should be used in Eq. (7), the amplitude calculated for dT, /dp
would be reduced by 25%, because our calculation takes electron-
phonon enhancement anisotropy (Ref. 19) into account.

4.5

t

I.O 2,Q
«. ro Cd in In

Fn. 6. Computed dT, /dp for In doped with Cd compared with
experiment (Ref. 16). The experimental error bars have been
estimated by us based on the precision in composition and the
breadths of the superconducting transition quoted in Ref. 16.The
calculated curves have been shifted vertically to meet the experi-
mental peak, since this calculation attempts only to determine
size and shape of the rapid-composition-dependent peak (FS
topology efkct) superposed on a larger but slowly varying back-
ground (lattice-sti8ness e8'ect). Curve u sho~s impurity-broad-
ened density of states of Fig. 4 (F=I' ) used in Eq. {8),assuming
independent bands. Curves b and e are attempts to recognize the
likely structure of the third band (Fig. 5) by allowing the spheroid
to expand in two directions and one direction, respectively, after
the saddlepoint makes contact.
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to make a minimum error fit by varying critical-point
energies, etc., since it is our intention to emphasize the
physical information which can be extracted from such
measurements using a very simple model for dT, /dp
and the impurity-broadened density of states. The
appeal of the model is that it results in predictions which
may be tested by direct FS measurements, using the
dHvA effect or related techniques.

III. CONCLUSIONS

(1) A modified BCS gap equation has been formu-
lated, following Ref. 22, to take into account the rapid
variation in the density of states 1V(E&) near an energy
at which the FS topology changes. An approximate
solution has been found for the pressure derivative of
the superconducting transition temperature, dT./dp.
This quantity rejects structure proportional to the
energy derivative of the density of states, which varies
as (Ei E.) '" ne—ar critical points, convoluted with a
broadening factor of width kT, .

(2) In a random-alloy system, sharp van Hove
singularities in the density of states are not expected
because impurity scattering limits the lifetime of a state
k and hence broadens the energy associated with that
state. An exact expression has been evaluated for the
broadened van Hove singularities, assuming a Loren-
tzian line shape for the spectral distribution function
relating k and E, and neglecting relaxation-time
anisotropy at a given energy. The broadened density of
states approaches the usual square-root form above the
singular point, is smeared in slope at the singular point,
and falls off as P/(E, —Ei )'" below the singularity.

(3) This general model for dT, /dp in an alloy has
been applied to explain existing data" on In doped with
Cd. The rate of change of Fermi energy with impurity
concentration was estimated from a free-electron
formula. The rate of change of lifetime was estimated
from residual resistivity. The ratio of these quantities
gives qualitatively good agreement with the curve of
dT./dp versus concentration, with an electron saddle-
point opening up at 0.9 at.% Cd and an electron
spheroid vanishing at 1.6 at.%%uoCdbein g th eonly
topology changes consistent with the data.

(4) The numerical calculation of the structure in
dT, /dp versus concentration is in quantitative agree-
ment with the data. The calculation involves no free
parameters aside from the empirically determined
singular points mentioned above, but makes use of
available information on the portion of the FS (the
third-band ring) believed to be responsible for the
structure in dT, /dp.

(5) The theory is a simple one, whose primary
advantage is the intuitive connection between dT,/dp
and density-of-states anomalies. Though agreement
with experiment is excellent, many - estimates are
involved, and in fact the validity of the BCS model for
Jp is uncertain. However, a direct test of the model and

its applicability to In is possible, since the composition
of the postulated FS anomalies is low enough for direct
measurement, using the dnvA eAect. Such a test is now
in progress. "
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APPENDIX

A. Validity of the BCS Gap Equation
for In Doped with Cd

Pure In is borderline between a weak-coupling super-
conductor, for which the BCS model is valid, and a
strong-coupling superconductor, for which a more
complex theory is required. This is seen by the value of
the interaction strength E(Ep)'U, "and by the value of
2D/kT, which is close to the BCS value of 3.53.'"

Metal
S(EJ)
2a/kT,

Al Sn In Hg Pb
0.1g 0.25 0.30 0.35 0.39
3.3 3.5 3.6 4.6 4.6

Moreover, tunneling J—V curves for In are well Gtted
by a BCS expression, " and do not show the obvious
structure typical of a strong-coupling superconductor
such as Pb. Recently, McMillan" has evaluated an ex-
pression for the critical temperature of strong-coupling
superconductors. In that formulation, the quantity
l~ —p* plays the role of X(Ez)'U in the BCS limit, where
'A is the electron-phonon coupling constant and p* is the
Coulomb pseudopotential. For small p*, the expression
fol T ls

T /Q~~ —s—(&+X) /) (A1)

» R. J. Higgins et al. (unpublished).
3' G. Rickayzen, Theory of Superconducti ity (Wiley-Inter-

science, Inc. , New York, 1940), p. 187.
3~ C. Kittel, Introduction to Solid State Physics (Wiley-Inter-

science, Inc. , New York), 3rd ed. , p. 344.
38 I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).
"W. L. McMillan, Phys. Rev. 167, 331 (1968).

R. E. Prange and I. P. Kadano8, Phys. Rev. 134, A566
(1964).

The factor 1+X is the electron-phonon renormalization
factor which appears in the cyclotron mass, the speci6c
heat, and other properties. "For A, &1, by associating X

with the BCS X(Ei )'U, the additional 1+ii in Eq. (A1)
removes the electron-phonon enhancement from the
density of states, so that the expression for T. depends
on the band-structure density of states rather than the
phonon-enhanced density of states. But since this
enhancement cancels to first order in our theory Lsee
discussion below Eq. (15)j, the strong-coupling theory
does not appear to change the physical nature of our
results, '4 as long as X(1(X=0.7 for In).

One further concern is the possible variation of pair-
ing interaction as the system is made less pure. How-
ever, the variation of alloy quasiparticle lifetime does
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not change the strength of the pair interaction for
"dirty" alloys (mean free path less than the coherence
length). 4' One estimate suggests that this criterion is
satis6ed for Cd impurity concentrations exceeding
0.4 at.m. i5 Further, this theorem makes the BCS one-
parameter model more valid in the alloys than in pure
In, since anisotropy in the pair interaction in the pure
system is removed as the "dirty" regime is reached. "

sech'(i E i/2kT. ')

E
Xgy(E,.-E) — (A3)

2kT.'
4E

W(Er E)—
2kT

(A4)

This last quantity is of orde~ -', (~*/idio)'"(&:OD)'"
Er ii2(QT, ) i. Foi iiidiuiil, the paiailieters used
Sec. 11 give an upper bound for P of less than 0.02,
justifying the approximation used.

C. Pressure Modulation of the Density of States

In Sec. I, applying pressure to the system was viewed
as a way of modulating the Fermi energy, apd hence the
density of states E(Er), through the volume depend-
ence of the Fermi energy. This useful simplification is
not strictly correct, since pressure also varies the axial
ratio of tetragonal In, shifting the relative population
of various bands, and in addition varies the lattice
potential, further RGccting the density of states. For

41 P. W. Anderson, J. Phys. Chem. Solids j.l, 26 {I959).

B. Validity of the First-Order Solution
for d T,/dp JEST. P) g

The integral equation for T. LEqs. (3)—(5)] has no
apparent analytic solution when Ep is near a singular
polQt ln the dcnslty of stRtcs. Howcvcr ln cvRluRtlng
dT, /dp, a first-order iteration can be used to arrive at
Eq. (7), assuming that dT, /dp is small. The approxi-
mation consists in holding T. constant in Eq. (8) while

differentiating with respect to EJ. Relaxing this re-
striction and evaluating Eq. (7),

dT./dp=(dT, /dp) '&+pdT. /dp, (A2)

where superscript (1) designates the first-order solution
Qq. (8)j and the correction term p is given by

small portions of the Fs such as have been discussed in
this paper, the latter two CGects need not be small. '4

These CGects will, of course, play a role in determining
the composition at which topology changes occur, but
these are not determined in our calculation. In addition,
the amplitude of dT, /dp will be affected, so that the
excellent agreement between theory and experiment
demonstrated by Fig. 6 may perhaps be accidental. An
estimate of these corrections will now be made. A more
accurate expression for the first term in Eq. (6) is

BE/ 80.'
X —+P- ——. (A5)

Bn Bp x BVx Bp

Here the first term is the one calculated in the text, and
thc second term contalQs thc RxlRl 1Rtlo Q Rnd bRQd-gRp
Vx. effects. cV stands for RV(Ep) associated with the
third band in the region of the corner T (Fig. 5). For
simplicity, R rigid-band assumption has been made,
e.g., the shift in the density of states with a change in
axial ratio or band gap is proportional to the derivative
of the density of states at E~ times the shift in the
energy Ep of the bottom of the third band at T.

Under pressure at 4.2'K, In (c/a=1.08) becomes
less cubic. 4' This surprising observation is unexplained,
but would result in extra population of states near the
point T, resulting in a positive contribution to dT./dp.
Under pressure, the lattice band gaps in In become
smallcl ln magnitudes which Rlso lncreRscs thc popu-
lation of states near T, with an additional positive
contribution to dT./dp An upper bou.nd to the quantity
in parentheses in Eq. (A5) can be estimated by using
data from Refs. I9 and 42 for comparison with the
volume effect (BEr/BV)(BV/Bp), which was estimated
to be of order 1.2X10 ' eV (kg/cm') '

t Eq. (14)j.We
6nd the axial ratio and lattice band gap effects to be at
most 0./X10 ' and 0.4X10 ' eV (kg/cm') ', respec-
tively. These two corrections are therefore not negli-
gible, and, being of the same sign as the volume CGect
calculated in the text, increase the size of the peak in
dT,/dp. These upper bounds are crude estimates in-
volving rather subtle features of portions of the band
structure not yet fully determined by experiment.

42 Vf. J. O' Sullivan, J. E. Schirber, and J, R. Anderson, SoM
State Commun. 5, 52$ (I96"l).


