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A general theory of ferromagnetic resonance is developed assuming that the local, effective magnetic
field is inhomogeneous. The scattering processes induced by the inhomogeneity may be classified as “pri-
mary’’ processes (which couple the uniform mode to nonuniform modes) and “secondary” processes (which
couple nonuniform modes). In previous work only the primary processes were taken into account. The
effect of secondary processes upon the susceptibility is calculated in the present paper. A perturbation
series for the complex, effective resonant frequency of the uniform mode is derived. It is shown that the
important terms of this infinite series can in part be generated by a self-consistency condition for the com-
plex effective resonant frequency of spin waves. An approximate solution of this self-consistency condition
is derived. Applied to polycrystals with cubic crystal structure, the theory predicts a linewidth of ~2.07H,2/
4w M, for spherical samples and H,<K4w Mo but ~0.87H, for Ho2>4mwM,. Here H,, is the anisotropy field and
M the saturation magnetization. The off-resonance absorption is characterized by the existence of a “strong
absorption” region. When the intrinsic damping of the spin waves is assumed to approach zero the absorp-
tion goes to zero in the exterior of this region but to a finite value in its interior. If the Fourier spectrum of
the inhomogeneity has significant components only at long wavelength and the inhomogeneity is weak,
the strong absorption region coincides with the dc field interval in which the signal frequency is degenerate
with resonant frequencies of long-wavelength spin waves. With increasing inhomogeneity, the width of
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the strong absorption region increases by approximately twice the width of the resonance line.

1. INTRODUCTION

T is generally believed that the width of the ferro-
magnetic resonance line observed in polycrystalline
ferro- and ferrimagnetic materials is largely due to the
presence in the material of inhomogeneous, effective
local magnetic fields.! Such effective magnetic fields
can arise from crystalline anisotropy®™* (in conjunction
with variations in orientation of different grains), from
strain-induced anisotropy (in conjunction with local
strains) and from inhomogeneity of the local saturation
magnetization®? (caused for instance by the presence
of pores or inclusions of a secondary phase). Even in
single crystals, the linewidth is frequently largely caused
by surface roughness®8 which may be considered as a
special type of inhomogeneity of the local saturation
magnetization.

Two basically different approaches to the theory of
inhomogeneous line broadening can be envisaged.? If the
coupling between spins is very weak, the absorption
profile (absorption versus dc magnetic field for a given
frequency) is substantially determined by the volume
fraction in which the magnitude of the additional field
lies inside a given field interval. This ‘“distribution” of
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the additional field has been calculated for simple cases,
such as polycrystals of cubic* or hexagonal® materials
assuming random orientation of the grains. The absorp-
tion profiles observed in materials, for which this theory
is expected to apply, agree reasonably well with the
theoretical predictions.??1

Because of the strong coupling between spins pro-
duced by the dipolar interaction and the exchange
interaction, the theory sketched in the preceding
paragraph is valid only for rather extreme situations.
In general, the coupling is not negligible and must be
taken into account from the outset. Thus a collective
approach to the problem (i.e., a formulation in terms of
the normal modes of the system of coupled spins) is in
general more appropriate.*~13 For an infinite medium
(or a rectangular test volume with periodic boundary
conditions) the normal modes are plane waves, spin
waves. If the material is perfectly homogeneous and
the amplitudes of the waves are very small, they are
exact normal modes. Each one can be excited separately.
No energy is exchanged between them. If an inhomo-
geneous effective magnetic field is present in the
material, however, the plane waves are no longer
correct normal modes. If one wave is excited initially
its energy is scattered to other waves, primarily those
that have the same resonant frequency.

In ferromagnetic resonance experiments the rf
magnetic field is substantially homogeneous over the
volume of the sample. Thus it excites only the homo-
geneous (or uniform) mode of the spin-wave spectrum.
An inhomogeneous additional magnetic field broadens
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the resonance line because it leads to scattering of
energy into nonuniform modes. In general, the scatter-
ing processes may be classified into “primary” processes

(which couple the uniform mode to nonuniform modes)
and “secondary” processes (which couple nonuniform
modes). In all previous theoretical work only the
primary scattering has been taken into account. The
objective of the present paper is to describe a method of
taking the secondary scattering into account. It will be
shown that the secondary scattering modifies the
results of the collective theory of inhomogeneous line
broadening quite significantly.

In most cases of practical interest the additional
magnetic field varies relatively slowly with position and,
therefore, has significant Fourier components only at
low wave numbers. This implies that the uniform mode
interacts substantially only with spin waves of low
wavenumber, for which the exclange forces are of
negligible importance. If only the primary scattering
is taken into account, significant line broadening is
expected only as long as the resonant frequency of the
uniform mode lies inside the frequency band corre-
sponding to low wave number spin waves. By the same
token the losses in the wings of the absorption line are
increased by the scattering only as long as the signal
frequency lies inside this frequency band. At the high-
frequency edge of the band the linewidth is expected to
become very large, due to a singularity of the density
of states into which energy can be scattered from the
uniform model.

Experiments designed to test these rather dramatic
predictions of the collective theory of inhomogeneous
line broadening have generally shown that the effects
are considerably weaker than expected theoretically.!#9
Measurements of the linewidth as a function of fre-
quency on spherical samples indeed showed a detectable
peak in the vicinity of the point at which the uniform
mode coincides with the upper edge of the spin wave
band.’*-17 The height of the peak is much smaller than
expected on the basis of the existing they, however.
Measurements of the off-resonant absorption coefficient
as a function of dc field strength have also confirmed
that the loss diminishes considerably as the frequency
moves out of the band corresponding to spin waves of
long wavelength.!®* However, the transition is not as
rapid as expected theoretically. Considerable losses are
observed even when the resonant frequencies of all
long wavelength spin waves are much larger or much
smaller than the signal frequency.

These shortcomings of the existing theory of inhomo-
geneous line broadening are due to the neglect of
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secondary scattering. The principal effect of the second-
ary scattering is to increase the damping of the spin
waves with which the uniform mode interacts. If the
density of interacting modes is exceptionally large,
the damping of these modes is also exceptionally large.
Thus the peak expected in the linewidth versus fre-
quency curve is considerably reduced. By the same
token the secondary scattering increases the off-
resonance absorption in the far wings of the resonance
line.

The theory described in the present paper is primarily
applicable to broadening due to crystalline and/or
strain-induced anisotropy. The same principles apply
in the case of broadening due to inhomogeneity of the
saturation magnetization. The details are a little more
involved in the latter case, and are, therefore, not
considered in the present paper. In order to focus
attention on the essential points certain approximations
have been adopted, which can in principle be avoided
without major difficulty. It has been assumed, for
instance, that the effect of local (crystalline or strain-
induced) anisotropy can be described by an inhomo-
generous magnetic field 4 (r) which is applied parallel
to the dc field. Thus the tendency of the anisotropy to
make the spin procession elliptical (rather than circular)
has been neglected in this approach, as well as the
effect of the local anisotropy upon the alignment of the
local (static) magnetization vector with the dc field.
The dipolar interaction also tends to make the spin
precession elliptical. This ellipticity is also neglected
for similicity.

A quantum-mechanical formulation has been chosen
for convenience, even though the problem is basically a
classical one and can be discussed consistently on the
basis of the classical equations of motion. The canonical
formulation . described in the present paper has the
advantage that the results can be readily applied to
other physical systems, that are characterized by a
similar Hamiltonian.

A general theory of the high-frequency susceptibility
is developed in Sec. 2. The effect of the inhomogeneous
magnetic field 4(r) upon the susceptibility can be
expressed in terms of a complex effective resonant
frequency o ot Which is given as an infinite series of
ascending powers of the perturbation A4 (r). The first
correction term of the series depends only upon the
primary scattering; the higher correction terms are due
jointly to primary and secondary scattering. In Sec. 3,
the case in which the inhomogeneous effective magnetic
field A(r) varies sinusoidally with position is inves-
tigated. It is shown that in this case the susceptibility
can rigorously be expressed as a simple continued
fraction. In Sec. 4, the general case [arbitrary variation
of A(r)] is further considered. It is shown that the
most significant terms of the infinite series, which
represents Qg off, can alternatively be generated by a
self-consistency condition, which determines the effec-
tive complex resonant frequencies of the spin waves.
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An explicit approximate solution of the self-consistency
condition is constructed in Sec. 5, assuming that the
Fourier components A(k) of the inhomogeneous
magnetic field 4 (r) are significantly large only for small
wavenumbers | k|, so that the effect of exchange forces
becomes negligible. The results of detailed calculations
concerning linewidth and off-resonance absorption are
described in Secs. 6 and 7. The validity of the approxi-
mations upon which these results are based is reviewed
in Sec. 8.

2. GENERAL THEORY OF SUSCEPTIBILITY

We begin by expressing the Hamiltonian which
characterizes the system under consideration in terms
of creation and annihilation operators a'(r) and a(r)
which obey the commutation relations

a(n)a' (r')—a' (r)a(r) =6 (r—1'), M

where 8(r) is the & function. The components of the
local magnetization vector M(r) can be expressed in
terms of these operators as

M =M ill, = (QyhM ) e[ 1 — (vh/2M )ata ],
M,=M,—vha'a,

where v is the gyromagnetic ratio, # Planck’s constant,

@)

and M, the saturation magnetization.?21:7 As long as

the spins are substantially completely aligned (as we
assume), the square root in Eq. (2) can be approxi-
mated by unity.

Consider now a small, rectangular test volume,
which is representative of the sample as a whole. It is
permissible to assume that all local properties are
periodically repeated outside the test volume, and can
hence be expanded in Fourier Series. The Fourier
transforms

a(k)= V“I/Z/d3r a(r) exp(—ik-r) 3)

of the operator a(r) obey the commutation relation
a(k)a' (k') —a' (k")a (k) =8uv 4)

where V is the periodicity volume and 6, the Kronecker
symbol.

The energy of the system under consideration
comprises Zeeman, dipolar, and exchange contributions.
The Zeeman energy [including the contribution due to
the inhomogeneous field 4 (r)] is given by

Iee= -—-/(M -H+M . A)d?r
=const+viH Y at(k)a(k)
&
+vi 2 AW —k)a(k)a'(k’), (5)
2 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

2 L. R. Walker, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc., New York, 1963), Vol. 1, Chap. 8.
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where

Ak)= V“/d% A (r)eikr (6)

is the Fourier transform of the inhomogeneous magnetic
field. It may be assumed without loss of generality that
A(k=0)=0, because such a term (if nonzero) can
always be included in the magnetic field H.

The dipolar energy is

1
C‘Cdip=_5 /M'Hdipd3r7 (7)

where Hgip, is the magnetic field generated by the
magnetization. In the quasistatic approximation, this
part of the energy can be expressed as

Faip =vh2wM, Y, sin?6{a’ (k)a (k)
%

et (e (—R)+He T}, (8)

where higher powers of the operators a and @' have been
neglected, and H.c. denotes the Hermitian conjugate of
the expression preceding it, 65 is the angle between the
propagation vector k and the z axis, and ¢y, is the angle
between the projection of k upon the x-y plane and the
¥ axis.

The exchange energy is

Hex=7hD 3 k' (k)a(k), )
where D is a phenomenological exchange constant

(=~5X10~° Oe cm? for YIG).
We assume that a rotating driving field is applied:

By =h coswt,
e (10)
hy=h, sinwt.
The contribution of this field to the energy is
ICariv= —hgohgth (O)e“"“"—}—H.c.] y (11)
where
go= (yMoV/2h)'2. (12)

The second term in the dipolar energy [Eq. (8)]
relates to the ellipticity of the spin precession. In
principle, it can be transformed away by a canonical
transformation.?2.7 Since this contribution to the
energy does not add anything essential in the present
context, we neglect it for simplicity at this point.

The complete Hamiltonian is, thus,

se/h=Y wiat (W)ak)+X Prwalk)a (k')
(13)
(14)

—goh[at(0)e*+H.c.],

wr="7(H~+2wM, sin®0;+ Dk?)

is the resonant frequency of the spin wave with wave
number % and
(15)

where

P =vA (K —k).
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The equation of motion for a'(k) is
d* (k) = — (i/7)[a" (k),3¢] = (i/1)95¢/da (k).
Hence, according to Eq. (13),
' (k) =i[wra (k)-l—% Prwal (k') —gohdroe™]. (17)

(16)

The equations of motion in the form of Eq. (17) take
no account of the damping of the spin waves. A plausible
way of correcting this shortcoming would be to assign
a positive imaginary part to the resonant frequencies
wk. Such a damping term in the equations of motion
would describe relaxation towards the state in which
a(k) vanishes. This is not entirely satisfactory, because
actually relaxation proceeds towards the instantaneous
equilibrium value of a(k), which is consistent with the
driving forces acting upon this mode. Such a damping
can be described mathematically by multiplying the
left hand side of Eq. (17) by (1—ies), where € is a
small real parameter. It may in general be different for
different modes. If the driving field is periodic [as we
assume in Eq. (17)], this damping is equivalent to
assigning an imaginary part to the resonant frequency,
but the imaginary part of the resonant frequency is
now proportional to the signal frequency w. We define
the complex resonant frequency of the spin wave with
wave number % as

Qi =wp e =witiwey.

(18)

Here n,=we; is the relaxation rate of mode % due to
all processes not explicitly considered in the theory,
the “intrinsic” relaxation rate.

In the formalism used in this paper a negative w
corresponds to a driving field having ‘“negative”
circular polarization [see Eq. (10)]. If 9 did not change
sign with w, one would obtain negative absorption for
negative circular polarization.

The phenomenological description of losses in the
equations of motion is to some extent ambiguous.
Instead of modifying the left-hand side of Eq. (17) by
1—1ie, it would be equally as justifiable to modify it
by (1-4<ex)™! or by e~k In the present context these
differences are of no importance, because we are
primarily interested in the limit in which the intrinsic
damping is very small compared to the effective damp-
ing induced by the inhomogeneity.

The solution of the equations of motion (17) is
obviously of the form

at (k) =b(k)e?, (19)
where the &(k) are determined by
(Qo—w)b(0)+2 Pob (k) =gohe,
k (20)

(Qk"w)b(k)'i‘% Prwb(k')=0, k0.
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Fic. 1. Diagrams representing the lower-order corrections to the
effective resonant frequency of the uniform mode. For #=6 each
drawing in column 3 represents two different types of diagrams.

The circular susceptibility X, is the ratio of the
rotating magnetization to the rotating driving field, i.e.,

Xy= (2vhM o/ V)20 (0)/h;. (21)

To find the ratio 5(0)/4, we solve the second line of
Eq. (20) for b(k), and insert the result repeatedly into
the first line, collecting at each step of this iteration
procedure the terms that are proportional to 5(0).
The result is

(Qo eti—w)b(0) =gok:, (22)
where
P0k1Pk10 P0k1Pk1kszzO
Qo o1t =00— 2, +
B0 Qp—w b ka0 Qg —w) (Qpy —w)
PoiyPrykaPrarsPrso
0krd kiket kakst ks 4. (23)

- T
k ki, ka0 (Qgy —w) Qe —w) (R —w)

None of the summation indices in Eq. (23) can be
allowed to be zero, because the corresponding terms are
separately taken into account. The circular suscep-
tibility is now according to Egs. (21), (22), and (12)

Xy =vMo/ Qo ot —w). (24)

The lowest correction term in Eq. (23) (i.e., the
second term) is the contribution to the effective
resonant frequency arising entirely from the primary
scattering. The subsequent terms are due jointly to
primary and secondary scattering.

It is useful to visualize the various contributions to
the effective resonant frequency Qg o pictorially. If we
picture the wave numbers ki, ko, - - -, of the modes that
interact with the uniform mode as points in a plane
(actually they are, of course, distributed in three
dimensions), then the #th order correction to Qo e is
represented by an #z-sided polygon which starts and
ends at k=0 and connects #—1 intermediate points
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Fic. 2. Effective damping constant of the uniform mode in the
presence of a sinusoidal inhomogeneity of long wavelength,
considered as a function of signal frequency w. The conventional
theory, which neglects secondary scattering, predicts a sharp
peak at wi, the resonant frequency of spin waves that interact
with the uniform mode. The effect of secondary scattering is to
broaden the sharp peak into a semicircular profile. The area under
the sharp peak is the same as that under the semicircle.

ky, ks, - -, k,—1. Some of the intermediate points may
coincide, but none may coincide with the zero. The
second-order diagram consists of a doubly traversed
line. Some simple diagrams are shown in Fig. 1.

Before proceeding with an approximate evaluation of
the complex resonant frequency Qg .y according to
Eq. (23) it is advantageous to consider a simple model,
for which the problem can be solved rigorously.

3. RIGOROUS CALCULATION OF EFFECTIVE
RESONANT FREQUENCY FOR A
SIMPLE MODEL

Assume that the inhomogeneous magnetic field varies
sinusoidally. In this case the scattering coefficients Py
are nonzero only if k—k’=2k,, where ko is the wave
number of the inhomogeneity. Only those spin waves
whose wave numbers are multiples of ko are excited.
For simplicity, let

Pop,=P,

b(nko) =b(n). (25)

Equation (20) then becomes
(Q0—w)b(0)+Pb(1)+P*b(—1) =goh:, (26)
(@ —w)b()+Pb(n+1)+-P*b(n—1)=0, n=0. (27)

For n>1, Eq. (27) can alternatively be expressed as

(&, —w)b(n)+P*b(n—1)=0, (28)
where
. |P|?
Qn+1—-—w

is an effective resonant frequency for mode # which is
recursively defined by Eq. (29). The explicit solution of
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this equation is a continued fraction

Qn:‘:gn
Rk

Qn-}—l—w‘— [P[ 2/[Q7z+2—w— 1Pl 2/(9"+3_w. . .)] ’
(30)

To show that Egs. (28) and (29) are equivalent with
Eq. (27), insert (29) into (28) and then apply (28) with
n replaced by n+-1. This results in Eq. (27).

For n< —1, Eq. (27) can similarly be replaced by

(@n—w)b(n)+Pb(n+1)=0, 31)

where N .
Cn=Qn— (| P|?/Qnr—w). (32)

Since Q_, =8, it follows that $_,=,.

For n==+1, Egs. (28) and (31) can be solved for
b(£1) in terms of 5(0). By substituting these solutions
into Eq. (26), one finds the effective resonant frequency
of the uniform mode as

Qo eff=90—2[1Pl2/(Ql_—w)J)

where {; is the resonant frequency of mode 1 (or —1)
defined by Eq. (29) or alternatively by Eq. (30).

The results can be simplified further when the
unperturbed spin-wave frequencies ,(n0) are all
equal. This condition is approximately satisfied when
ko is small (i.e., Dky><<4mwM,). In this case, it follows
from Eq. (29) that the effective spin-wave frequencies
are also all equal and given by

f—o=3@—0)+ [ @—w)— | P[],

The positive sign of the square root must be taken to
assure that {, reduces to @, in the limit | P| — 0. The
effective resonant frequency of the uniform mode
according to Egs. (33) and (34) is now

Q0 ot =00 — Q1 —w) +[ (@1 —w)*—4| P|*]"2.

Consider now the effective damping constant of the
uniform mode (i.e., ImQ 1) in the limit of vanishing
intrinsic damping. According to Eq. (35),

(33)

(34)

(35)

hm Ion off
=[4]P|*— (w1—w)*]"*, if

=0, otherwise.

[wi—w| <2|P|
(36)

Thus the effective damping constant considered as a
a function of wi—w is represented by a semicircle as
shown in Fig. 2.

This should be contrasted with the behavior that
would be deduced for the same model (sinusoidal
inhomogeneity of long wavelength) but neglecting the
secondary scattering. In this approximation the
effective spin-wave frequency &1 in Eq. (33) should be
replaced by the unperturbed frequency ;. Hence in
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the limit of zero intrinsic damping in this case

hm Ion e;f=21rf ])125(601—”03) .

(37)

It is interesting to note that the frequency integral of
the effective damping constant is the same in the two
cases considered [Egs. (36) and (37)].

The effect of the secondary scattering upon the
effective damping constant of the uniform mode is
thus to broaden the sharp peak expected on the basis
of conventional theory by an amount comparable to
the maximum damping of the uniform mode.

4. SELF-CONSISTENCY CONDITION FOR
EFFECTIVE RESONANT FREQUENCY
OF SPIN WAVES

A complete evaluation of all the sums in Eq. (23)
does not appear feasible. It is, therefore, useful to ask,
which of the many terms in the summations are
likely to give strong contributions to the effective
resonant frequency. To help answer this question we
note that in actuality the inhomogeneous field A4 (r) is
not known in detail. Only statistical statements about
certain averages can be made. It is, therefore, reasonable
to average all quantities of interest over an ensemble of
macroscopically equivalent samples with microscop-
ically different local anisotropy fields A(r). The en-
semble may be characterized by the autocorrelation
function

&(r)= V—lfdsr’A (r41)A(x)={A (r+1)A(r)). (38)

Here the angular brackets denote the ensemble average.
The autocorrelation function $(r) determines only the
amplitudes of the Fourier coefficients 4 (k) not their
phases. The phases may, therefore, be assumed to be
randomly distributed.

The physical quantity that is directly measured in
most resonance experiments is the (complex) frequency
shift of a resonant cavity due to the presence of the
sample. When the sample is small, the frequency shift
is proportional to an “effective” or “external”’ suscept-
ibility X., which is related to the “true” or “internal”
susceptibility X by

X+e—1 = X+—1+47rNt . (39)

Here it is assumed for simplicity that the microwave
field is circularly polarized and that the sample is a
spheroid magnetized along its axis. IV, is the transverse
demagnetizing factor of the sample. The directly
measured quantity X, is thus according to Egs. (39)
and (24) linearly related to Qo ess.

Since Py =vA (k' —k) [see Eq. (15)] and since 4 (k)
has a random phase, only those diagrams contribute to
the ensemble average of Qg o that consist entirely of
pairs of branches that are parallel and are traversed in
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opposite directions. The two branches may (but need
not) fall on top of each other. Some examples of
diagrams that contribute to the ensemble average of
Q0 otz are shown in Fig. 1. All contributions of odd order
in the perturbation vanish. The diagrams that contribute
to the second-order correction (=2 in Fig. 1) all
survive the phase averaging. In fourth order (z=4), only
those diagrams that either consist of two doubly
traversed lines or have the shape of a parallelogram
give a contribution.

Although the number of significant diagrams is
considerably reduced by the random-phase postulate
the complete evaluation of the perturbation series (23)
to infinite order does not appear feasible in this approx-
imation. Even the evaluation of the lowest significant
correction term (proportional to | P|4) is very difficult.
A different approach has, therefore, been used for an
approximate evaluation. The discussion of the rigorously
solvable model in' Sec. 3 suggests the use of a self-
consistency condition for the effective resonant fre-
quency of spin waves as an alternative method of
taking account of the secondary scattering. Accordingly,
we define the effective resonant frequency of the spin
wave k, in analogy with Eq. (32), by

3 | Prae |2
G=0— )

B0 Qpr—w

(40)

Note that the denominator on the right-hand side
contains () rather than Q. Equation (4) also defines
(for k=0) an effective resonant frequency of the
uniform mode. Repeated application of the self-
consistency condition yields an infinite series for {o
in terms of Q; and the squares of the scattering coeffi-
cients | Py |2 This infinite series contains many, but
not all, of the terms in Qo ot; that survive the phase
averaging. The diagrams contributing to (o have only
doubly transversed branches and are therefore a more
restrictive class than the diagrams contributing to
(Qo of1). Some examples of diagrams that are taken into
account in the self-consisting condition (40) are given
in column 4 of Fig. 1.

It can be shown?? that (Q ) [see Eq. (23)] reduces
almost rigorously to (o [Eq. (40) with £=0], if the
phase of each scattering coefficient Py (as character-
ized by the two wave numbers % and %') is randomly
distributed (except for the condition Py = Pj*). This
random-phase assumption is more restrictive than the
random-phase postulate applied to the Fourier coeffi-
cient 4 (k) previously discussed. The latter postulate is
physically justified, the former is very problematic.

The significance of the terms neglected in the transi-
tion from (Qo o) to o is difficult to assess. (o agrees
with (Qo efs) in regard to the lower-order terms, which
are probably the most important in most cases of

2 E. Schlémann, Raytheon Technical Memo No. T-758, 1967
(unpublished).



Fic. 3. The wave numbers k’
of all spin waves that interact
significantly with the mode k
lie inside a sphere of radius k.
The figure applies when |k|
k.

interest. In addition {3 also contains selective terms of
the perturbation series, summed to infinite order. It is,
therefore, reasonable to expect that {y represents a
fairly good approximation of (o ef)-

The self-consistency condition (40) is in principle an
integral equation (provided that the summation over
k' is replaced by an integration, which is permissible).
Thus a general solution cannot readily be constructed.
In the present case, and subject to certain simplifying
assumptions, however, the integral equation can be
reduced to a simple transcendental equation as discussed
in the next section.

If the inhomogeneous magnetic field A4(r) varies
sinusoidally (the model discussed in the preceding
section), the wave-number vectors of all modes that
couple to the uniform mode are parallel. Thus all
diagrams have only multiply traversed branches in
this case. It is, therefore, not surprising that the
rigorous result obtained for this simple example is of
the same form as the result (40), which is approximately
valid under more general conditions.

5. APPROXIMATE SOLUTION OF THE
SELF-CONSISTENCY CONDITION FOR
COARSE-GRAIN INHOMOGENEITY

For the evaluation of the effective resonant frequency
Qo the “spectrum” |A(k)|? of the inhomogeneous
magnetic field 4 (r) must be determined. We note first
that the spectrum is generally related to the ‘“‘auto-
correlation” function ®(r) given in Eq. (38) by

|4 k)l“"l /dsr@( Je ks (41a)
( =7 r)e . a,

The behavior of the autocorrelation function has
previously been discussed on the basis of a simple one-
dimensional model.® This model assumes in effect that
all grains are equal in size and that the strengths of the
inhomogeneous field in different grains are uncorrelated.
On the basis of this assumption it is found that the
correlation function has a maximum at the origin and
that it decreases linearly with distance, becoming zero
when the distance equals the grain diameter.
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For the three-dimensional case it appears reasonable
to assume that the correlation decreases exponentially
with distance, i.e.,

B(r)=(0)e For, (41b)
where ko is of the order of the inverse grain size, and
®(0)=(A4?%. Equation (41b) describes the correlation
function in the interior of the periodicity volume. In
the exterior of this volume the function is periodically
repeated. The spectrum [4(k)|? corresponding to
this correlation function is according to Eq. (41a)

| 4 (k) [2=828(0)/ { Vko*[ 14 (k/ko)* T} .

Here the integration over r has been extended to
infinity for the sake of simplicity. According to the
definition (41a) the integration should actually be
extended only over the periodicity volume. The error
incurred in this step is very small, however, because
the correlation function is very small for large 7.

Equation (41c) shows that the spectrum is large
when the wave number is smaller than the inverse
grain size and rapidly approachés zero for wave numbers
that are large compared to the inverse grain size.

It is unlikely that the autocorrelation actually
realized in polycrystals is precisely of the exponential
form assumed in Egs. (41b) and (41c). The precise
form of the % dependence of the spectrum is not actually
used in the subsequent calculation, however. The
feature that is actually used is that the spectrum
|4(k)|? has significant components only below a
certain cutoff wave number k. This property of the
spectrum is likely to be independent of the detailed
structure of the autocorrelation function.

Consider now the case that the cutoff wave number
ko is sufficiently small, so that the effect of the exchange
interaction upon the unperturbed resonant frequencies
wy, is negligible. This case is of practical interest because
the grain size in polycrystals is typically of the order of
several microns. The effect of the exchange interaction
upon the resonant frequency of spin waves whose
wavelength equals the grain size (10~* cm) is equivalent
to a magnetic field of approximately 20 Og, i.e., much
smaller than the saturation magnetization. Under those
conditions it is permissible to disregard the effect of the
exchange interaction by way of approximation. The
unperturbed resonant frequencies wy, of the spin waves
that interact with the uniform mode then depend only
upon the direction of the wave number k, not upon its
magnitude.

We discuss the solution of the self-consistency
condition (40) for two limiting cases in which either
|k[>>ko or |k|<Kk, The wave numbers k' of the
spinwaves that interact with the mode k are sub-
stantially confined to the interior of a sphere with
radius k¢ and center at k. If |k|>>k,, the situation is
qualitatively as shown in Fig. 3. The resonant fre-
quencies of all modes k’ that interact significantly with

(41¢)
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2k,

//’

F16. 4. The wave numbers k’ of all spin waves that interact
significantly with the mode k lie inside a sphere of radius %o.
The figure applies when [k|<kq.

the mode k are approximately equal. Since

%IPW|2=72(A2>, (42)

the self-consistency condition (40), therefore, becomes
approximately

Q= U—yXA42)/ ((—w) (43a)
with the solution
O—w=3(U—w)+[F( Q—w)?—73 4} ], (43b)

In the limit of zero intrinsic loss (nx— 0,) and at
resonance the effective damping constant is according
to Eq. (43b)
7=Tm (@) =y (42" (44)
Note that the spinwaves that satisfy the condition
[k|>>k do not interact directly with the uniform mode.
If | k| <<ko the spinwave k interacts equally effectively
with waves propagating in all possible directions (see
Fig. 4). We replace the summation in Eq. (40) by an
integration. The first factor of the integrand [Py |?
depends only upon the magnitude of k—Kk’, i.e., for
| k|<<%o, substantially only upon the magnitude of k’.
The second factor ((3x—w)~! depends only upon the
direction of k’. The integration can, therefore, be
carried out by first integrating |Piw|? over all k'
(regardless of direction) and then averaging the second
factor over all directions. Hence the self-consistency
condition (40) becomes

- 1 d(cosbx)
Q].; =Qk—’)’2<A 2) . (45)

0o Qp—o

In the following we use this approximate self-
consistency relation derived under the condition |k|
<Kko to determine the effective resonant frequency of
all spin waves that interact with the uniform mode.
This procedure is only approximately correct, because
not all of the spin waves that interact with the uniform
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mode satisfy the condition |k|<%o. The significance of
this approximation is further discussed in Sec. 8.
For convenience we define a reduced, complex fre-
quency shift
z=x-F1y (46)
by
ﬁk = Qk+'y41ngz . (47)
It is readily shown that the self-consistency condition
(45) leads to a transcendental equation for the fre-

quency shift z:

2=pF(2,c), (48)
where

p={4%/(4rM)?, (49)

1 d¢ 1 &+1
F(z,c)= -—2/ =——In , (50)

o E2—§2 fo &1
§* =c+2iyot+2z, (51)
yo=n1/ (vdr M), (52)
c=cos?0y= (H+2xMo—w/v)/2xM,. (53)

0o is the angle between the dc field and the propagation
direction of those spinwaves that resonate under the
given conditions of frequency and field strength.

If real and imaginary parts of the complex function
F(z,) are defined as

F(Z,C) =F1 (x;y7€)+’iF2 (%%C) ’ (54)
one obtains from Egs. (50) and (51),
1 r+1 r—1
Fi(x,3,0) =—[ —p coth™! —+¢ cot™? J , (55)
7 2p 2g
1 r+1 r—1
Fy(x,3,0) =—[q coth™* Fp cot™ ] ,  (56)
7 2p 2q
where
p=2"1r+c42x]"2, (57)
4= 27— o+ 20) T2, (58)
r=L(H 20400k = e (59)

The principal value of the cot™ function, to be used in
these expressions, is taken to be such that 0< cot=x < .
The complex self-consistency condition (48) is equi-
valent to a set of two coupled real, transcendental
equations

x=PF1(x,y;C) )

60

y=PF2(x7y)C)- ( )

In the limit of zero damping (i.e., for yo+y—> 0,)
the expressions for F; and F. simplify considerably. In
this limit ¢— 0 for ¢+24>0 p—0 for ¢+2x<O0.
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- 20

Fig. 5. Real part of the function #(z,c) plotted versus ¢=cos’
[see Eq. (53)] for various values of yo+.

Hence for x=0

1 c+1 1 241
F1(0,04,c) = coth‘1< ) = ln( > ,
c

261/2 61/2 61/2“1
for ¢>0
1 —c—1
= cot‘1< , for ¢<0 (61)
(=g \2(=ge
and
Fy(0,0,,0)=mc2, for 0<c<1
=0, otherwise. (62)

The values of Fy and F; for 0 can generally be
found from the values at x=0 by replacing ¢ by ¢+ 2x.

In Figs. 5 and 6 the functions F1(x,y,c) and Fa(x,y,c)
are plotted versus ¢ for ¥=0 and several assumed
values of yo+7y. The function F, is always positive, as
it should because it is proportional to the damping of
the spinwaves. The function F; can be positive or
negative.

The self-consistency condition (60) can be solved
analytically both for p<<1 and for p>>1. It is clear that

Faloyc)
Yo+ ¥ = 10

20t

I

F16. 6. Imaginary part of the function F(zc) plotted versus
¢=cos% [see Eq. (53)] for various values of yo+y.
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Fi16. 7. Real part of the reduced frequency shift x divided by
the inhomogeneity parameter p plotted versus c¢=cos. The
curves were obtained by numerical solution of the self-consistency
condition (60) assuming yo=0.
for p— 0 both x and y vanish, so that for p<1,

x"r\—JpFl (O;O—hc) ’
yl’sz (O7O+7C) .

The behavior of the solution for p — « is discussed

in Appendix A, where it is shown that for p>>1,

(63)

x_’ﬁi (% - 6) ’
y~pi 240 (5 12) .

It should be noticed that x approaches a finite value,
whereas ¥ becomes very large, but only as p'/2.

For intermediate values of p, the self-consistency
condition (60) has been solved numerically on a digital
computer. Typical results are shown in Figs. 7 and 8.
Here x/p and y/p are plotted versus c¢=cos®y for
representative values of p, assuming y=0. It may be
seen that the results of the present theory are qualita-
tively similar to the results of earlier calculations in
which only the primary scattering was taken into
account.® The effect of the secondary scattering is to
“smear out” the effect of the primary scattering. Thus
the peaks in the x/p and y/p versus ¢ curves of Figs. 7
and 8 become less distinct as p increases. If only the
primary scattering is taken into account, the corre-
sponding curve becomes singular at the edges of the
spin wave band, i.e., for ¢=0 and for ¢=1.

Subject to the approximations that have been
adopted the complex shift of the resonant frequencies
is the same for all modes, including the uniform mode.
Thus ye+y is, apart from a factor y4rM, equal to
the imaginary part of 3o. Its value at resonance deter-
mines the linewidth, its value away from resonance
the off-resonance absorption.’® These two consequences
of the inhomogeneity-induced scattering are discussed
in more detail in Secs. 6 and 7.

(64)

6. LINEWIDTH AND LINE SHIFT

The linewidth AH is usually defined as the width at
half height of the absorption versus field curve, mea-
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sured at constant frequency. For small samples of
ellipsoidal shape the absorption is proportional to the
imaginary part of an ‘“‘effective” susceptibility. For a
spheroidal sample magnetized along its axis the positive
circular component of the effective susceptibility X, .
is related to the “true” susceptibility X; by [see Eq.

(39)]
Xy o= (144N X)X, (65)

where N, is the transverse demagnetizing factor. By
inserting Eq. (24) into Eq. (65) it may be seen that the
effective susceptibility is given by

Xpe=vMo/ (Qo ott+v4rM N —w). (66)
Thus the absorption coefficient uy,”=47X,," is
e’ = +30)/((u—v+Nta)+ (y+30)%),  (67)
where ‘
u=H/4wM,, v=w/v4rM,. (68)

As long as the complex frequency shift z=x-17y is
only weakly dependent upon the dc fields strength the
linewidth is substantially determined by its imaginary
part y taken at resonance:

AH
Tz (YotY)res- (69)

T

This equation is not rigorously correct, because at the
half-maximum absorption points the complex frequency
shift is in general different from that realized at res-
onance. A detailed study has shown, however, that this
correction is quite small, even when the linewidth is of
the order of the unperturbed spin-wave band (2rM ).
This comes about because the spin-wave band itself
also spreads out by an amount that is even larger than
the linewidth AH, as discussed in detail in Sec. 7.
Experimentally it is also possible to infer a ‘line-
width” from the magnitude of the absorption at

ol<

Cend?
c=cos 8,

Fic. 8. Imaginary part of the reduced frequency shift y divided
by the inhomogeneity parameter p plotted versus ¢=cos®)y. The
curves were obtained by numerical solution of the self-consistency
condition (60) assuming yo=0.
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thin disc

1% 3 sphere N
Y2 long rod
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3x10°° 10 3x10™ 1
P =<2 >/ (4TMo)?

F16. 9. Reduced linewidth y versus inhomogeneity parameter
p for different sample shapes.

resonance.'” The theoretical expression (69) corresponds
precisely to this definition of linewidth.

In order to calculate the linewidth the effective
damping v has to be evaluated at resonance, i.e., when
the first term in the denominator of Eq. (67) vanishes.
According to Eq. (53) this is the case when

c+2x=1—2N,. (70)

The functions F; and F, of the self-consistency condition
(60) depend upon ¢ and x only through the combination
c+2x [see Egs. (57)-(59)]. For finding y at resonance
it is therefore sufficient to consider only the second line
of Eq. (60), and solve it subject to the condition (70).

The results of numerical calculations of the reduced
linewidth yres for various sample shapes are shown in
Fig. 9. For p<1 and N4 the asymptotic dependence
of Yres is given by

yresgﬂ'(l - 2N:)"1/2p , P<<1 . (718,)

For N,=% (the case of a long, axially magnetized
cylinder)

YPres™= (WP/Z) 2/3, P<<1 . (71b>

-3 T T T T T T

-1

0003

000! L 1 L 1 L
0.001 0.003 0.0! 0.03 Ol 03 | 3

P =2 >/14TMo)?

F16. 10. Reduced line shift x versus inhomogeneity parameter
p for different sample shapes.
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Fic. 11. Graphical method for solving the
self-consistency condition.

For larger p, however,

yresgpl/2 y PZ 1 . (71C)

The asymptotic formulas (71a)-(71c) are represented
by the broken straight lines in Fig. 9.

Itis interesting to note thatfor thin disksthe predicted
linewidth depends quite strongly upon the demagnetiz-
ing factor in the region of fairly small p (i.e., p=102).

The line shift .S of the absorption maximum is
according to Eq. (67) given by

S/4:7rMo= —X,

where x is the solution of the first line of the self-
consistency condition (60). Figure 10 shows a plot of
the reduced line shift « versus { for spheres, thin disks,
and long cylinders. For spheres and thin discs the
solution z of the self-consistency condition is negative,
for long cylinders it is positive. This may be anticipated
from the behavior of the function F(0,y,c) shown in
Fig. 5. The predicted line shift is positive (shift towards
higher fields) for spheres and thin discs and negative
for long cylinders. In Fig. 10 |»| is plotted versus p.
As previously pointed out [Egs. (63) and (64)] |«|
increases linearly with p for p<<1 and approaches a
constant value for p>>1. In the case of spherical samples,
the asymptotic limit of |x| for p>>1 is zero. The
asymptotic limiting values of |x| for p>>1 are indicated
by the broken lines in Fig. 10.

(72)

7. OFF-RESONANCE ABSORPTION

If the intrinsic damping is small, the primary scatter-
ing contributes to the off-resonance absorption only as
long as the signal frequency lies inside the frequency
band corresponding to spin waves of long wavelength.
The previous theories of coarse-grain inhomogeneous
line broadening,?*12 in which secondary scattering was
neglected, therefore, predict a sharp break in the
absorption curve as the signal frequency goes through
the edge of the spin wave band. It may be seen from
Fig. 8 that with the inclusion of secondary scattering
the theory predicts a much more gradual transition,
even in the limit of zero intrinsic damping. As p in-
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creases, the region of substantial absorption spreads
over a wider field interval. In the present section the
width of this region of substantial absorption is discus-
sed in detail.

Consider first the behavior of the effective damping
constant ¥ [the solution of Eq. (60)] in the limit of
vanishingly small intrinsic damping . Figure 11
demonstrates a graphical method for solving the self-
consistency condition (60) in particular the second line
of this equation. It can readily be shown that for small
damping the function F,(x,y,c) increases approximately
linearly with y,+y provided that either ¢+42x<0 or
¢+2x>1. The function F.(x,y,c)=F:(y) considered as
a function of y for constant «, ¢ is, therefore, qualita-
tively described by the full, curved line in Fig. 11. The
solution of the self-consistency condition is given by the
intersection of the curve Fi(y) with the straight line
y/p also shown in Fig. 11. Two values of p have been
assumed giving rise to intersections at P and Q. Taking
the limit of vanishingly small intrinsic damping (yo— 0)

SH_/amM,

0.01 -

! ( L 1 I

0.001 0“003 O.IOI 003 0l 03 l 3 10
p=<B>/ammy’

Fic. 12. Shift of the low- and high-field absorption edges (8H -
and 6H,) versus inhomogeneity parameter p.

corresponds to shifting the curve representing Fa(y)
to the right until it intersects the origin. The solution
points P and Q then move to P’ and (', respectively.
This demonstrates that for sufficiently large p the
effective damping approaches a finite value in the
limit yo— 0, whereas it goes to zero for sufficiently
small p. For given p it is, therefore, possible to define a
‘‘strong absorption region’” in which y remains finite for
90— 0. For p<K1 this region coincides with the spin
wave band. It may be anticipated that with increasing
p the width of this region will increase.

According to the geometrical construction shown in
Fig. 11 the edges of the strong absorption region are
determined by

x=pF; (x,O,c) ’

1=P(3F2/33’) (xio’c) .

The solution of these equations for ¢ as a function of p

(73)
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is described in Appendix B. The results are summarized
in Fig. 12, where the shift 6H_ of the low-field absorp-
tion edge towards lower fields and the shift 6H, of
the high-field absorption edge toward higher fields are
plotted versus p. For p<<1 the predicted behavior is

OH_/4n M =5 (mp)*”,

74
S8, /Ax M e 11n(2/p)], 9

whereas for p>>1,
SH_/ArM ¢~0H . /4w M =202, (75)

It is interesting to note that for p>>16H_, 6H,, and
AH all become equal. Thus the strong absorption region
is broadened approximately twice as much as the
resonance line.

It is also interesting to note that the real and the

imaginary parts of the frequency shift contribute
approximately equally strongly to the broadening of the
strong absorption region. It is therefore not permissible
in the present context to disregard the real part of the
frequency shift.
Finally, consider the absorption outside of the strong
absorption region. In this case the damping is small,
so that the general self-consistency condition (60) can
be approximated by

x=pF1 (x,O,c) ) y=P(y+y0)aF2/33’(x;0,€) . (76)
From the second line of this equation
y+30=30/(1—p(3F2/3y)). an

Consider now the absorption coefficient u; osf’ as
given by Eq. (67). In the weak absorption regions the
linewidth term (y-+%0)? is usually negligible compared
to (u—v+N,+x)? in the denominator of Eq. (67). For
convenience we express the absorption coefficient as
the product of two terms

Bt et =[y0/ (u—v+N1)*JG(c,p) . (78)
The first factor is the absorption coefficient expected

100

50

¢ =cos? 8

F1c. 13. Enhancement factor G(c,p) which characterizes the
absorption in the exterior of the strong absorption region plotted
versus ¢= cos¥, for given p. The shaded area is the strong absorp-
tion region for p — 0.
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for a given intrinsic damping y, in the absence of
scattering (i.e., for p=0). The second factor describes to
what extent the absorption is increased by the scatter-
ing. According to Egs. (67), (77), and (78) the enhance-
ment factor is

G(c,p)={[1—p(3F2/0y)J(A+2x/ (c—1+2N )},
(79)

where #-v has been expressed in terms of ¢ by means of
Eq. (53) and « is to be determined as a function of p
and ¢ from the first line of Eq. (76). Equation (79) shows
that the enhancementfactor becomesinfinite at the edges
of the strong absorption region (since pdF,/dy— 1).
Explicit formulas for F; and dF,/dy are given in
Appendix B. With the help of these formulas the
enhancement factor has been calculated for various
assumed values of p. The results are shown in Fig. 13.

8. DISCUSSION

In order to compare the results of the theory described
in the present paper with experimental data the inhomo-
geneity parameter p defined by Eq. (49) must be
determined. For polycrystals of cubic materials, the
contribution of crystalline anisotropy to the mean
square of the inhomogeneous field is?

(4%)anss= (4/21)H,2, (80)
where H,=2K/M, and K is the first-order anisotropy

constant, provided that contributions of higher order

are negligible. Thus, the inhomogeneity parameter p
is in this case

Panis= (4/21) (Ho/4mM )2, (81)

Applying these results to the predictions concerning
the linewidth, one finds that for spherical samples

AH~2.07H2/4xMo, for H<K4nM,
~0.87H,, for H,24rM,. (82)

The transition between the two regimes occurs approx-
imately when p=0.05, ie., H,/4nM~%. The result
(82) for the weak-anisotropy case agrees exactly with
previous calculations.!:® For the case of large anisotropy
a rough estimate of the linewidth had previously lead to
AH~0.5H,.> The new calculation is considered to be
more reliable.

The theory described in the present paper is based
upon three significant approximations. The first of
these consists in neglecting those terms in the Hamil-
tonian that relate to the ellipticity of the spin precession.
This approximation is well justified when H>>>27M,,
a condition which is reasonably well satisfied in many
cases of practical interest. As a consequence of this
approximation the resonance frequency of the uniform
mode of long, axially magnetized cylinders coincides
with the upper edge of the frequencyband corresponding
to spin waves of long wavelength. In a more rigorous
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calculation the resonant frequency of the uniform mode
would fall outside of this band. The theory in its present
form should, therefore, not be expected to give reliable
predictions about the frequency dependence of the
linewidth when the frequency is smaller than or compar-
able with y4x M. This applies particularly to the case
of a weak inhomogeneity. For strong inhomogeneity
the structure in the frequency and field dependence of
the effective damping constant vy is largely smeared out
(see Fig. 8), so that the precise location of the uniform
mode in relation to the spin-wave band becomes
immaterial. A theory in which the ellipticity of the
spin precession is correctly taken into account, but
secondary scattering is neglected, has previously been
described.?

The second significant approximation consists in
replacing the infinite perturbation series which rep-
resents the effective resonant frequency [see Eq. (23)]
by the self-consistency condition [see Eq. (40)]. In
this transition all contributions of odd power in the
perturbation have been neglected. In its application to
cubic polycrystals the approximation has the con-
sequence that the sign of the anisotropy constant K,
becomes immaterial. Experimentally it is found that
the maximum of the absorption line is shifted toward
lower fields when K;<O and towards higher fields
when K;>0.5:2% This agrees with theoretical predictions
based upon the “independent grain’ approach described
briefly in the introduction. In the collective approach
described in the present paper the effect is contained in

the perturbation terms of odd order which were

neglected by way of approximation.

The third significant approximation lies in replacing
the self-consistence condition (40), which is an integral
equation, by the much simpler condition (45) [or
equivalently Eq. (48)]. The secondary scattering is
actually stronger than taken into account in this
approximation. A more rigorous calculation which
avoids this approximation may, therefore, be expected
to lead to a smaller linewidth AH and a larger broaden-
ing (6H, and 6H_) of the strong absorption region than
the present calculation.

According to the theory described in the present
paper the “effective’” damping of the spin waves that
interact with the uniform mode is of the same magnitude
as the damping of the uniform mode itself. Here the
effective spin wave damping is that experienced by any
given mode if only this mode is driven by an rf field.
It is in general different from the spin wave damping
inferred from the instability threshold at high power
levels.?* A more detailed calculation on this subject has
shown, in fact, that the scattering has only a minor
effect upon the instability threshold provided that the
wavenumber of the unstable modes is considerably

2 J. E. Pippin and C. L. Hogan, IRE Trans. Microwave Theory
Tech. MTT-6, 77 (1958).

24 R. W. Damon, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc., New York, 1963), Vol. 1, Chap. 11,
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larger than the cutoff wavenumber ko introduced in
Sec. 5.

The linewidth of polycrystalline garnets containing
calcium, vanadium and indium substitutions has
recently been investigated by Van Hook ef al.25~2" In
these materials the linewidth is primarily due to anisot-
ropy broadening. The strength of the anisotropy field
can be controlled by varying the temperature and
the amount of indium substitution. The data show
that the linewidth is proportional to H,2/4xM for
H.L4wM, but proportional to H, for H,24wM,. The
linewidth measured in these materials agrees very well
with the theory described in the present paper if
allowance is made for some residual porosity broaden-
ing, which becomes important when the anisotropy is
small. Reasonably good agreement with the theory is
obtained over more than three decades of the anisotropy
parameter p.

The off-resonance loss in porous polycrystalline
YIG has been studied by Kohane and Schlémann.? The
results demonstrate the existence of a well-defined
strong absorption region, which is observed to be
considerably broader than the spin-wave band at low
wave numbers. The results agree qualitatively with the
theory described in the present paper, but a quantitative
comparison cannot be made, because the line broaden-
ing is predominantly caused by magnetic inhomogeneity
in these materials.

Measurements of the off-resonance loss in materials
with strong anisotropy broadening have been reported
by Patton:?® The effective linewidth, considered as a
function of dc field strength, inferred from these
measurements agrees very well with the predictions of
the present theory.

Similar results have also been reported by Vrehen?
and Vrehen ef al.?® These authors have independently
developed a theory of inhomogeneous line broadening,
in which the secondary scattering is taken into account
in a different way.
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APPENDIX A: ASYMPTOTIC SOLUTION OF
SELF-CONSISTENCY CONDITION
(60) FOR LARGE o

For p>1, the solution x, y of the self-consistency
condition (60) can be represented by a power series in
p~ 172 of the form

x=2x_1pV2FxoF a0 V24 -,
y=y-1p Yoty

The calculation shows that x_;=0, y_;=1, so that for
p>1, y>>1, and y>«. Anticipating that x_;=0 and
y-1=1, one obtains from Eqs. (57)-(59),

r’>:2p"2(1+p‘”2yo+ .. ) ,

(A1)

ppV 143572 (yota0+30)+- -],  (A2)
g~p"'[1+37 " (yo— 20— 30)+- - ].

Hence

(r+0)/2p=p (1435702 H 1—50)

(r—1)/2q=p"*[ 143072 (yot@s—1+30)+ -+ ].

Higher powers of p~'/2 have been nelgected. Inserting
Egs. (A2) and (A3) into Egs. (55) and (56), one obtains

Fi(x,y,0)~p~ (3 —x0—3¢)+0(p~%2),
Fa(,9,0)p~ 12— p~190+-0 (p~%).

Thus the solutions of the self-consistency condition
(60) are, for p>>1, given by Eq. (A1) with

(A4)

v_1=0, xo=2%(—cos,),

(A5)

y._1=1, y0=0.

APPENDIX B: CALCULATION OF
ABSORPTION EDGES

Two cases must be distinguished in which either
c+2x-<0 or ¢c+2x> 1.

Case 1. c+2x<0.

We define
b= — (c+2%) (B1)
and obtain from Egs. (57)-(59) for y0=0, y— 0,
rog4-29%/8,  poydTl2 ) gz, (B2)

FERROMAGNETIC RESONANCE LINES

645

Hence from Egs. (55) and (56)
Fi(x,0,0c)= (1/8"2) cot=((6—1)/28'2),
+1/8%2 cot=1((6—1)/26Y%). (B3)

Inserting this into Eq. (73) the two variables § and « can
be determined for given p. The shift 6H_ of the absorp-
tion edge is now according to Eq. (B1) given by

SH_/4rM o= —}c=1x+15. (B4)

The asymptotic formulas (74) and (75) are obtained by
noting that for 6<1

Fioers V2 dFy/dy~m§=2, (BS)
whereas for 6>>1,
Fi~2671, dF./dy~452. (B6)
Case 2. c+2x>1.
We define
d=c+2x—1 (B7)
and obtain from Egs. (57)-(59) for y,=0, y— 0,
1464252/ (146)
p~(148)12, (B8)
g~y (14-8)17.
Hence from Egs. (55) and (56)
Fi(x,0,0)=— (14-68)~1/2
X coth=1[ (14-38)/(1+46) V%],
(dF»/dy) (x,0,c)=[2/86(1+8) ]+ (1+8)~**
Xcoth™1[ (1+438)/(148)12]. (BY)

These expressions are again inserted into Eq. (73) and
x and & are determined as functions of p. The shift 6H.,
of the absorption edge is in this case

SH., /ArMo=1(c—1)= —x+16. (B10)

The asymptotic formulas (74) and (75) follow from
the observation that for <1

Fi~—1In(467Y), dFs/dy~25"1, (B11)
whereas for 6>>1,
Fi~—2671, dFy/dy~456—2. (B12)



