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The one-dimensional Ising model with random exchange energy is formulated in terms of a homogeneous
integral equation. Assuming the input distribution has a narrow width proportional to N1, the integral
equation is solved by perturbation in N1, The shift in the free energy of the system up to the order of N2
is given. It is found that for a symmetrical distribution, the shift due to the randomness is second order
in N-! and negative, depending only upon the variance of the input distribution. The first-order shift for
the asymmetric distribution comes entirely from the asymmetry. After a shift in energy is made to account
for this asymmetry, the effective shift is identical to that for the symmetrical case. The shifts of all the
thermodynamic properties of the system are also given. The randomness is found to decrease the magnetiza-
tion for all temperature and applied field. However, shifts in magnetic susceptibility and specific heat are

oscillatory in sign.

1. INTRODUCTION

ECENTLY the two-dimensional Ising model with
limited amount of randomness in exchange energy
was studied by McCoy and Wu.! The object of their
study was to ascertain what the effect of random im-
purities would be on the nature of the phase transition.
Because of the mathematical complexity associated
with the phase transition, they were able to study this
problem only for one particular narrow distribution of
the exchange energy. They conjectured that the results
are much more general than the particular example
that they solved and stated their belief that the qualita-
tive effect of randomness on the phase transition should
be the same for a large class of narrow distributions of
exchange energy.

It is the purpose of this paper to study the corre-
sponding problem of randomness in the 1-dimensional
Ising model in the presence of a magnetic field. Random-
ness is introduced by allowing each exchange energy to
be an independent random variable £ with a probability
density function P(E). Because there is no phase tran-
sition at nonzero temperature,??® the mathematics is
sufficiently simple to allow us to study the problem for
a large class of narrow distributions. We demonstrate
that for any symmetrical narrow distribution P(E)
the free energy is decreased by an amount proportional
to the second moment of P(E). We furthermore find
for an asymmetrical P(E) the only effect of the asym-
metry is to replace the most probable energy by the
mean energy. Once this additional first-order shift is
made, the second-order term is the same as in the
symmetrical case. This calculation therefore explicitly
exhibits a system where the effect of randomness is
determined by general properties of the distribution
rather than its detailed form.

Along with the change in the free energy due to
randomness in Eq. (4.18) and Fig. 3, we have also com-
puted leading order shifts of several thermodynamic

1B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).

2 G. Rushbrooke and H. Ursell, Proc. Cambridge Phil. Soc.

44, 263 (1948).
31L. Van Hove, Physica 16, 137 (1950).
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quantities: the magnetization M, the magnetic sus-
ceptibility X, and the specific heat C,;,. They are ex-
pressed in Egs. (5.2), (5.4), (5.6), and Figs. 4-6. The
shift of the magnetization is negative and vanishes at
zero field. It approaches zero exponentially as H — o,
where H is the external magnetic field. The shift of
magnetic susceptibility X; is found to be negative at
H=0. With increasing H is rises to a positive maximum
and then decreases to zero, also exponentially. The shift
of the specific heat C,, at any magnetic field vanishes
both at zero temperature and infinite temperature. It
oscillates in sign as temperature rises from zero to in-
finity. This shift due to randomness is seen to flatten
the nonrandom specific heat curve.

We present the mathematical formulation of this
problem in Sec. 2 which is based upon the application
of theory of noncommuting random products by Fur-
stenberg.* We closely follow the procedure of Ref. 1
and express the free energy per site in the presence of a
constant magnetic field in terms of an average over an
auxiliary variable x whose distribution function »(x) is
determined by a homogeneous integral equation. In
Sec. 3, we discuss the properties of this integral equa-
tion. We assume that P(E) has a narrow width pro-
portional to N—1 and possesses well-defined asymptotic
behavior. We then obtain a set of integral equations for
respective orders in N=! of »(x) which are readily solved
by Fourier transform. The shift in the free energy due
to this randomness in energy is given in Sec. 4. It is
related to the moments of P(E) and »(x). In Sec. 5, we
give the corresponding shifts in the thermodynamic
quantities as mentioned above.

2. GENERAL FORMULATION

We consider a one-dimensional array of 9 Ising spins,
which are labelled from 1 to 9t along the chain from
left to right. The Hamiltonian of the system is

N—1 N
H=—=3 EM)ony10n—H Y 0., (2.1)
n=1 n=1

4 H. Furstenberg, Ann. Math. Soc. Trans. 108, 377 (1963).
614
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where o,==1, E(n) is the exchange energy between
nth and (»+1)th sites, H is the magnetic field, and
sites 1 and 9T are not connected together.

Denote the partition function for #(»<9T) spins
counted from the left end of the linear chain from 1 to
n by Z,. Clearly, Z, can be separated into two parts
corresponding to the two states of the last (nth) spin.

Zy=Uns+V.,

where U, is the part of Z, with 0,=-41 and V, is the
part of Z, with ¢, =—1.

Consider the addition of the (z-41)th spin to the
chain. The partition function Z,; is built up from Z,
by the following transfer matrix which transforms the
column vector:

Un Un+1 Un+1 Un
() (), ()= ().
Vn Vn+1 Vn+1 Vn

where
z*(n)
T=(wz*(n))1 2( ) (2.3)
wz*(n)  w
and
w=¢WH )= M - B=(kT)™', (2.4)

and % is Boltzmann’s constant.
Equation (2.2) represents a recursion relation for the
two-dimensional vectors

()
Va
with an initial condition for the column vector of

(r)=)

=12 .

V1 w.

The free energy per site of the Ising system & in the
thermodynamic limit is

F=—F"1 s)lzlm N In(Ug+Vor)

. i Un+1+ Vn+1
=—1lim 9! ¥ lnl:——-————— . (25)
T n=1 Un+ Vn

We consider E(n) to be random variables with their
probability distribution P(E). Then T, is a random
matrix acting upon a two-dimensional vector space.

We define

2n=Va/Un, (2.6)
which corresponds to the tangent of the angle which

([’ﬂ)
n
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makes with the V axis. From (2.2) we see that whenever

T, acts on
Un
( Vn) ’

% 18 changed into x,41 by

Enpr=w(Z*(n)+xn)/(142*(n)x) . 2.7)

The matrices in (2.3) form a noncommuting set of
random matrices. Furstenberg? has proved that as »
becomes large the random variable «, will approach a
limiting stationary distribution »(x) that is independent
of the initial vector. This stationary distribution is
characterized by the property that if we apply a random
matrix (2.3) to it and average the resulting distribution
over P(E) that »(x) will transform into itself. Therefore

v(x)= /“’ a’x’/00 dE P(Ew(x')

X[ x—w(z*+2)/(142*x')]. (2.8)
The existence and uniqueness of a solution to this
equation is also proven by Furstenberg.
With the stationary distribution »(x), we can then
replace the average over # in Eq. (2.5) by an average
over the random variables E and x. Using (2.2), we have

kA
F=—p"1lim 9 X In{[wz*(n)]~'/2
J( >0 n=1
X[ 1+2*n)xn+wz*(n)+wx, |/ (1+x.)}  (2.9)
and we arrive at the final result that with probability 1

=—p"1 SyIlim Nt In(Ux+ Vo)

- / EP(E)dE—H—B~ / dE / dx

Xv(x)P(E) In[ (14z*x+wz*+wx)/(14+x)]. (2.10)

It is expected that, since the free energy in (2.10) is
essentially the average rate of growth of the quantity
(Un+7Vs,), it must be equal to the average rate of
growth of each of the component of the column vector,
U, and V,. We denote

. i U'n+1
§1=—p~" lim 91 Y In )
-»00 ne=l "

(2.11)

x Vn+1
§2=—p~! lim 9 ' 1 1n< >
>0 =l "
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F16. 1. Contours along which the function
P(—3 In[(x—wa’)/(w—wxx')])

is constant. The kernel of the integral equation for »(x) is different
from zero only in the shaded region. The value of w is taken to be

0.8.

We shall prove that indeed §=5'=g?2. Following the
same line of argument, we find with probability 1

Fl=— / EP(E)dE—H—p~ / dE / dxP (E)v(x)

XIn(1+42z*x), (2.12)
Fl= -—/EP(E)(ZE—H—B“I/dE/de(E)u(x)
Xn(wz—(z*+2x)). (2.13)

We call d; =F'—32, dy=F—F!; from (2.12) and (2.13)
we have

di=—g" / dE / dxP(E)v(x) Inew'(14+2%)/(2*+%)) ,

=—p"1 / dav(x) Inw+p~1 / dE / dxP(E)v(x)

XIn[w(z*+x)/(14z*x)]. (2.14)
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Now we use the relation

In[w(z*+x)/(1435*x)]

d= —B“l/dxv(x) lnx+ﬁ‘1/dE/dx/d§‘P(E)y(x)

X6 —w(z*+x)/(1+2*)) Inf.  (2.16)

Interchanging the order of integration, we have

dy=—f" I/dxu(x) lnx—{—ﬂ‘l/dg‘ lng‘/dE/de(E)v(x)

X —w(z*+2x)/(1+2*x)).  (2.17)
As seen from the integral Eq. (2.8), dy is identically
zero.
Similarly, using

In(14w(z*+x)/(142%x))

=/d§6(§‘——w(z*+x)/(1+z*x)) In(1+¢), (2.18)
d2=0.

We note that when the distribution function P(E)
is a & function, P(E)=8(E—E,), then »(x) will also be
a ¢ function at that value of x which remains unchanged
by the application of the transform of Eq. (2.7),

vo=w(s¢*+20)/ (1 +2d*xo) , (2.19)

where
zo* = 2F0,

There are two solutions to this equation because the
2 by 2 matrix has two eigenvalues. Since the free energy
is obtained through the selection of the larger eigen-
value, we must accordingly choose the correct one for x

xo(Eo) =3[w—1+4((w—1)2+4z.*2w) /2] /z¢*.  (2.20)
Inserting %o into (2.12), we find
Fo=—Eo¢—B! In(14-2¢*x0) — H ,
= — Eo—B~! In[ coshBH -+ (cosh,8H
—2¢-%8F0 §inh28Ey) V2], (2.21)

which is exactly the solution obtained by Ising in 1925.5
For the case where the magnetic field is zero (w=1),
we have from (2.10) and (2.4)

F= ——6“1/ In(2 coshBE)P(E)dE. (2.22)

We observe that in this expression there is no de-
pendence upon x and »(x); the free energy is just an

§ E. Ising, Z. Physik 31, 253 (1925).
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average over P(E). This result is to be expected because
when H =0 it is elementary to show that for any set of
E(n) that

1

9
—BInZy=3_ In[2 coshBE(x)].
1

n=

(2.23)

3. INTEGRAL EQUATIONS

In this section, we study the integral Eq. (2.8). In-
tegrating over F, we obtain

v(%) =‘/°° 18- 10(1 —4'2) (w—ax’ )~ (x —10x) 1

X P(—3~ In[ (x—10w’)/ (w—ax) o). (3.1)

We readily see that the kernel in Eq. (3.1) will not be-
come singular if the given distribution P(E) vanishes
rapidly at infinity such that

efP(E)—>0 as E—o, 3.2)

The integration limits formally written as —o to
4 are actually determined by the domain of P(E)
and Eq. (2.11), that is,

E\<E<E,

Xe=x<x1

if P(E)=0, unless

then »(x)=0, (33)

unless

where x1=xo(E1), x2=x¢(F,). The detail is shown in
Figs. 1 and 2.

The exact solution to the integral Eq. (3.1) is difficult,
here we shall only explore some general characteristic
of the solution for the class of narrow input distributions.

Assume that the input distribution p(E) is of the
following form:

P(E)=NA"f(NA~W(E—Eo))+N-"h(E—E,), (3.4)

where A is a unit for the width of the energy spread,
N is a dimensionless scaling factor introduced to in-
dicate the narrowness of the width, E, is the most
probable energy where f is a maximum. Since P(E) is
a probability distribution function so clearly, we have

00

fdy=1; (3.5

—00

for concreteness we further make the following assump-
tions:

(i) f(») is an entire function.
(i) It also possesses finite moments of every order
which behave asymtotically as

/y"f(y)dy=0(n!/s") as n — (3.6a)

for some positive number s.
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Fic. 2. Enlargement of Fig. 1. The shaded region is the only
region in which »(x) and »(«’) are different from zero.

(iii) A(y) is regular at y=0.°
The second assumption directly implies? that:

(a) The condition (3.2) is met by this class of dis-
tribution functions; hence no singularity will occur in
the kernel of the integral equations.

(b) The Fourier transform of f(y), F(k), where

00

F()=| e ™ f(y)dy,

~—00

possesses derivatives of arbitrarily high order on an
interval —s<k<s and it has a Taylor series near the
origin with a radius of convergence s, i.e.,

max|(d"/dk")F (k)| =0(n!/s") for —s<k<s. (3.6b)

(c) The moments of the distribution f(y) are related
to the derivatives of F(k) at the origin by

myn=(—i)~(d"/dk")F(R) | kmo.- 3.7)

With these conditions P(E) will approach é function
8(E—E,) as N —«, Correspondingly, »(x) will also be
a function of N(x—x,), where xo=x¢(Es). We further-

6 These assumptions are not the weakest possible set and are
made merely to simplify some of our notations. They are broad
enough, however, to illustrate the physics of the situation.’

7 A. Winter, The Fourier Transform of Probability Distributions
(Johns Hopkins University Press, Balitmore, Md., 1947).



618

more expand »(x) as

v() = Ngo(N (x—2x0)) +21(NV (¥ —0))

+NTB(N(x—x0)+---, (3.8)

where go1, g1, and g» are all unknown functions to be
determined from the integral equation with the nor-
malization requirement

/ Zi(®)dx=0; 1=1,2,0---. (3.9)
We change the variables to
=N(x—xo),
e (3.10)
¢=N(x"—x).

The argument in P(E) in (3.1) can be expanded in
terms of £ and ¢ by substitution of (3.4) and (3.8) and
an expansion in series of N1, Thus,

P(=387 In[(x—wa’) (w—aa") P=NA"f(y),  (3.11)

where
y=—%3(BAx)" (1 —w) " {(1+zo*x0) (§—4¢)
—3[Vxo(1—w) (1 —2*2e?) (§— 4 &)*

— Az xo(§—AE)E +2* wo(w—1)4£H)+O0(N-2)}
(3.12)

C. FAN AND B. M. McCOY
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and
A = (w—z¢*x0)/ (1+20*x0) . (3.13)
We note also that 0< A4 <1.
Define the new variables
n=—3(BA)E(1420*x0)/ (xo(1—w)).  (3.14)

We then have
y=(n—An")+BANT (1+z¢*x0) [ (n— A7) (1 —2**x0”)
—dag*xo(n—An )0 + 2z x0(w—1) A9’ 2]H0(N72).
From assumption (i) we can expand f(y) into a Taylor
series near the value n—A47’.
JO)=fln—An')+BANT ' (n—An") (14-2¢*20)~
XL(1—2¢*2x?) (n—An')? —4zc*xo(n—An)n’
+2z0*x0(w—1)An'2]4+0O(N72).
Similarly, we expand
367 w(1—a")/[(w—aa") (x —wa’) |
=3(Bxo) " (1+20*x0)/(1—w)[1—2BAN!
X Qzo*xon’ (14-20*x0) =2+ (1+20*x0) 2
X (ze*%e* —1) (n—A 7)) +O(N2) ].
We further expand
p(n) =go(n) +N~"g1(n)+O(N7?), (3.17)

where () is related to »(x) by »(x) =5(n)|dn/dx|.
Thus, we have

(3.15)

(3.16)

go(n)+N""g1(n)+ON"*) = / n [1—=2BAN(1+20*20) "2 (220* 501"+ (20**20*— 1) (n— A7) +O(N~*) ]

X[ f(n—An")+BANT (A+20*x0) 2" (n—An") (1 —20*26®) (n — An") 2 —4zo*xo(n — An")n' +2z0*x0(w—1) A 7'%) ]

where

ni= —§N (Bx0) " (1+ae¥ee) (ri—wo)/(1~w)

XLgo(n')+N=1g1(n")+ON-2)1dn’, (3.18)

i=1,2. (3.19)

For very large NV, the integration limits can be approximated by — to « since as a consequence of assumption

(ii) the error introduced by this approximation is exponentially small in V. The contribution of N-4(E— Ey) in

(3.4) is only of N—2 order which can be neglected as we are only interested in the terms up to N=1 in (3.16).
Equating the two sides with respect to orders in N—!, we obtain

00

go(m)=[ fn—An")go(n")dn’,

—0

0

(3.20a)

gln)= f(n—An')gl(n')dn’—2ﬁA(1+Zo*xo)‘2{ / dn'go(n’) f (n—An")[ 220*xvon’ + (20*2x0® —1) (n — An") ]

—o0

+/ an’go(n') f' (n—An")[3 (20" %02 — 1) (n— An") 2+ 2z0*x0(n — A" )0’ —z0¥x0A (w—1)n'2] } . (3.20b)
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We may readily solve (3.20a) by Fourier transform. Define

00

Go(k)= [  go(n)e~*rdn

-0

and

0

Fe)=| f(y)e *udy.

—00

Note in particular that from (3.5) F(0)=1. Then (3.18a) yields
Go(k) =Go(Ak)F (k).
Since 4 <1, we may formally solve (3.22) to find
Gok) =Go(0) }:io F(4k).

619

(3.21a)

(3.21b)

(3.22)

(3.23)

The infinite product converges if F(k) is analytic at 2=0. This follows from assumption (ii). Furthermore, from

(3.9) we find G(0) =1, so that

Go(k)=T1I F(4A"k). (3.24)
n=0
We similarly Fourier transform (3.20b) to obtain
Gi(k)= | gi(n)e*rdn
=,[ g e Ady" [ f(n—An)e*4ndy
*ZBA(l +Zo*xo)~2 {/ 220*xo77’go(77’)6“ik‘4'"d17' f(7’l ——An’)e“ik(”—‘&"')dﬂ
+ | (@*e®—1)f(n—An")(n—An")e "4 dy / go(n e *Ady' 4 | go(n")e=*A dy’
X/ %(‘20*29‘702 - 1)(’7 —Aﬂl)2fl (77 —4 n')e"ik(”"A""dn-l- n'go(n')e“’“"'dﬂ'
X / 2ac*w0o(n— A f' (n— A e +r=A40) iy — / 0¥ 0 (10— 1)1 2go(n )= *47 df
X f'(n —An/)‘f"ik("‘“')d”}
=Gi(AR)F(E)+L(k), - (3.25)
where £(%) is the expression with the curly bracket. We then have

With the assumptions for f(y)

£ (k) =2iBAk(1+5"20) (3 (20" 2" = )Go(AR)F" (k)

+220*x0A—1F,(k)GoI(A k) ‘—A'—IZO*X()(W - 1)

0

' (n)e=*rdn =ikF (k) , (3.26) XG(AREFR)]. (3.27)
- With the requirement (3.9) that G1(0) =0, Eq. (3.25)
is readily solved as
e d ) n—1
f n"f(n)e‘ik”dn=(—i)“"£F(k). (3.26b) Gi(k)=3X £(4k) II F(4A™k). (3.28)
—c0 n=0 m=0
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F1c. 3. Shift of the free energy
1 as a function of the applied
field H. §, has the unit of EwN 2,
while H has the unit of H/E,. A
is taken to be equal to Eo. Temper-
ature is used as a parameter in
unit of Ey/k.

This infinite series is easily proved to be convergent
using assumptions (i) and (ii).

With (3.24), (3.27), and (3.28), we have obtained the
Fourier transform of an approximate solution to the
integral Eq. (3.1).

4. FREE ENERGY

In Sec. 2, we showed that § may be represented by
the three equivalent expressions (2.10), (2.12), and
(2.13). To compute the N~! and N2 correction to the
free energy, it is most convenient to use (2.12) and ex-
pand the integrand about xo and E, to. obtain

F= ffo—*“gl )

where &y is the nonrandom part of the free energy, it is
just the Ising expression as in (2.21).
F1 represents the correction due to presence of ran-

domness in the exchange energy

(4.1)

Fi=—AN"? / ¥ (¥)dy—B~[ 2z0*x0/ (1+20*x0) ]
X / / dndy5() ) (BN L (=) (150*0) n =]
+(BA/N)~2((1+ay*x9) "y —z0* 29 (0~ 1)2(1+-350*x0)

Xn2=2(w~—1)(1420%20) " 29y)+O0(N¥)} . (4.2)

We denote the moments of the distributions f(y),
g(n), etc. by the following convention:

MYn= / yf(y)dy,
(4.3)

— / o).

The first index is the order of perturbation, the
second index indicates the order of the moments.
In terms of this notation (4.2) becomes

F1=—AN"Imy,— B[ 2z¢*x0/ (1+2¢%x0) ]
X{(BANTY) (—my1+(w—1)(1+z¢*x0) " mno)
+2z0*x0(14-20*20) 2(BA/N)*(my: — (w—1)*
Xzo*xo(14-20%x10) " 2mnos— 2(w—1) (1 4-20*x0) 2
Xmnormy1)+(BAN=2) (w—1) (1420 x0) " 'mn11}
+O(N-3).

These moments of the output distributions, mno1,
mnos, and mny1 can be expressed explicitly in terms of
the moments of the input distribution f(y) by using
Eqgs. (3.24), (3.25), (3.28), and (3.7). We have

mni =Z£/(0)/(1 —A) = —ZﬁA(l*l—Zo*:JC())“Z(l —A4 )_1
X [%(1 —Zo*zxoz)myz —ZZo*xomylmnm

(4.4)

+zo*xo(w—1)Amnoe |, (4.5)
mya=my1/(1—4), (4.6)
mnp=my?/(1—4)*+0/(1—42) 4.7)
[where ¢ is the variance of f(y)],
a=myy—my®. 4.8)
With these relations (4.4) becomes
F1=—AN "y +B71(226%x0) (220* 20+ 220w)
X (142¢*x0)~ 1 (2z0% 10+ 1 —w) !
X {BAN—IMjﬁ - (ﬁA/]V) 2(1 +ZO*JC0)—1
XA+ (w—1)22z0*w+1—w)2
A-2z0% 202 (w — 1) (2z0¥ 0o+ 1 —w) " 2)my,?
+(2z0*x0+1—w) (1 —w)Fzo*xo(14+w) Jo ]}
+O(N-3). (4.9)
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From (4.9) we observe that for all symmetric distribu-
tions, i.e., my1=0, we only have second-order term in
F1, which is negative and proportional to ¢. In the case
of an asymmetric P(E) &, will have first-order term
with opposite sign to my;. It can be accounted for
entirely by the discrepancy between the mean value and
the most probable value of the exchange energy, where
the mean-energy value is defined by the expectation
value.

E= / EP(E)JE= f ENA-1f(NA-Y(E—Eo))dE

= / (Eot+AN1y) f(y)dy

=Ey+AN"Ymy,. (4.10)

This shift in energy gives correction to the free energy
in the Ising expression of (2.21). Denote this correction
term by Fy'.

51/ = (50) E=E— (50) E=E,- (4 1 1)

By using a Taylor series expansion and the relation

T=08
408
+o0.6
T=1 + 0.4
=
T=1.6 0.2
3
- MAGNETIC FIELD H
L4
N 0.2 0.4 0.6
L—J 1 1 1 1 1
z 0.6 0.4 -0.2 )
< T=1
=
z
Z -0.2 16
-
3
& 1:0.8
-0aT
-061
-08

F1c. 4. Shift of the magnetization M in unit of sN~2 versus the
applied magnetic field in H/E, with temperature as parameter.
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F1c. 5. Shift of the magnetic susceptibility x; versus applied field.
The unit for X; is ¢/(IV2Ey).

(2.19) we have

Fi' = —AN"my; — B (23¢*x0) (220*x0+2 —2w)
X (1420*x0) 1 (220%x0+1 —w) !
X{BAN " my1—(BA/N)*(1+20*20)
X (1 +(w -_ 1)2(220*x0+1 '—'ZU)—'Z
+220 %02 (w—1) (226 +1—w) ) my,?}
+O(N-9).

The difference between (4.12) and (4.9) is then the
effective correction which depends solely upon the
variance of P(E).

F1,ott =F1—F1 = —B(A/N )220 xo(14-20*x0)
X (2z6%x0+1—0)"2(2z¢*x0+2 —2w)
XA —w+zirs(1+w))o.

F1,0t1, always negative and second-order, is identical
to the correction by the symmetrical distribution in
(4.5) when my;=0.

Using the definition of x in (2.19), we obtain

Fr,ete= _AN_2(26A)220*‘”0(1 +0°) (1 Fa0?+2z0%x0) 20 .
(4.14)

(4.12)

(4.13)

As expected, this correction term to free energy is
indeed symmetrical with respect to the magnetic field.
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This can be seen more directly by using a further change

of variable,
t=(2z¢*x0)/ (1+2¢?). (4.15)

Following (2.19),
1 =2¢*2(z0* 2021 (20" 2402 —a* ') 12 —2'?) | (4.16)

where
w’ =tanhBH. (4.17)
In terms of ¢ we finally obtain
F1,eit=—AN"2(28A)0t/(141)2. (4.18)

The dependence of F1,e¢ upon the temperature and
magnetic field is shown in Fig. 3. It can be seen that
F1,et¢ vanishes both in the limit of infinite temperature
and zero temperature. It is also seen that at low tem-
perature, the correction due to the randomness is small
and it is nonzero only in a very narrow low-field region.
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We see for | H|>> | Hn|,where H,,=8"1sinh~2¢*, F1 o1
will assume the following asymptotic expression,

F1 o= —4BATN -2zt o+O(N-F).  (4.19)
For low field |H|<K|Hn|,
F1, et = — 2BA2N2(z¢* (1 +20*) 2

+i(o* —Dlz*(ze* +1) ] (w—1)?).  (4.20)

It is obvious that the free energy behaves as a
parabola near zero-field region, while at high field it
approaches zero exponentially.

5. THERMODYNAMIC PROPERTIES

With the expression for the effective correction to
free energy (4.18), we can obtain all the corresponding
correction terms to thermodynamic quantities such as
magnetization, magnetic susceptibility and specific heat
by using the relations (2.4), (2.19), (4.16), and (4.17).

(i) Magnetization

0F 1,68t 0F1,0rr OF O
= - _ (5.1)
oH o ow 0H
=(Ad/N?)(28A)Bw' (1 —w'?) (w'24-20*2 —20* 2w/ 2) ~250*4(1 — 1) (z*24-£) L. (5.2)
This is plotted in Fig. 4. M is strictly negative like &1,e51, and vanishes at H=0.
(¢1) Magnetic Susceptibility
X1=(0M1/0H) = (dw'/0H)[ M /ow'+ (M /dt)(dt/dw')] (5.3)
= —2(BA/N)2cz5*8(1 —w'?) (z0*2+ (1 —2¢*2)w'2) 2 (1 —1) (35*2 — 3w’2+w't—55*20'4)

X (20*241)"1(zo* 2+ (1 —20*2)w'2) 1402 (1 —w'2) (1+426*2) (o2 +w' ) tHw'2) 1], (5.4)

This susceptibility is plotted in Fig. 5. It starts from an initial negative value which is
(5.5)

X1,0=—(BA/N)?2B0e?P% tanhBE,

e S

4 L
T T T
1 . 2 . 3
TEMPERATURE T

-05}

Frc. 6. Shift of the specific heat
for H=0 in unit of kN2 versus
temperature in Eo/k.
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and then rises to a positive maximum and eventually decreases to zero exponentially at high field. The magnitude
of this maximum is largest at zero temperature and decreases to zero exponentially at 7'— o,

(441) Specific Heat

T323’1,eff " 0 (ﬂf%.eﬁ)
a7 a8 B

=2k(BA/N*)o(1+1)~*[ 2t —48(1—1)B+B°B*(1—3)+B*(t—1)(0B/9B) ], (5.6)

where
B=—(141)71(81/3B) = (ae**+-1)~ (@ *+50*2 22w ) [ 2Eo(w *2 43 (1—w'?) ) +-Hu' (1—w'?) (2 +1)2]  (5.7)
and
38 o\ow 38 om* 98/ ow 9B ozt 08
= (20*2+1)"2((20*2 420" 2) t+20* 20 2) 1 (' 24-20%2 — 0% 20/ 2) " [4 Eo 220 212 (w 22 +-20*4 (3 —w'?))
— H2'2(1—'2) (20*2+1)t — 4 EoHw' 3t (1 —w'2) (20*241)3] — 420*2 Eo (20* 2+ £) ~2(w 2+4-20*2(1 —w'2)~2)
X[2E(z*4(1 —w'?)2+w'2(1 —w'2) (2¢¥44 220%2% — 220*22 — 13) — ' 42) + Hw' (1 —'2) (z0*2+-)?
X 2w/ 4(220"24-1) (1 —w'?)) ]+ (1 —w' ) H (w*+20**(1 —w'?) )[4 Eow'z0*(20*+1)
X (2—20*?) —(1=w'%) (3 —20*9) )+ (20" + O H (2™ (1 —w'?)? —w/*(1 —w'?) = 2w'Y) ].  (5.8)

Similar to the magnetic susceptibility, this shift in specific heat does not have a constant sign. It vanishes both
at zero temperature and infinite temperature. For H =0, it is reduced to the following:

0B 0B ( at ow' At 6z0*) 9B 9w’ 9B 9z0*

Co1=k(BA/N)?o sech?BEo(1 —B2E2+3B32E,? tanh?BE,—48E, tanhSE,) (5.9)

and is shown in Fig. 6. The magnitude of the oscillations depends upon the applied field. It is largest for zero
field and approaches zero exponentially rapidly as H —.
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