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One-Dimensional Ising Model with Random Exchange Energy
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The one-dimensional Ising model with random exchange energy is formulated in terms of a homogeneous
integral equation. Assuming the input distribution has a narrow width proportional to lV, the integral
equation is solved by perturbation in 37 '. The shift in the free energy of the system up to the order of cV '
is given. It is found that for a symmetrical distribution, the shift due to the randomness is second order
in N ' and negative, depending only upon the variance of the input distribution. The first-order shift for
the asymmetric distribution comes entirely from the asymmetry. After a shift in energy is made to account
for this asymmetry, the effective shift is identical to that for the symmetrical case. The shifts of all the
thermodynamic properties of the system are also given. The randomness is found to decrease the magnetiza-
tion for all temperature and applied field. However, shifts in magnetic susceptibility and specific heat are
oscillatory in sign.

quantities: the magnetization M&, the magnetic sus-
ceptibility X&, and the speci6c heat C„. They are ex-
pressed in Zqs. (5.2), (5.4), (5.6), and Figs. 4-6. The
shift of the magnetizatioii is negative and vanishes at
zero field. It approaches zero exponentially as H ~,
where H is the external magnetic field. The shift of
magnetic susceptibility X1 is found to be negative at
II=0. With increasing II is rises to a positive maximum
and then decreases to zero, also exponentially. The shift
of the speci6c heat C„at any Inagnetic held vanishes
both at zero temperature and in6nite temperature. It
oscillates in sign as temperature rises from zero to in-
6nity. This shift due to randomness is seen to Batten
the nonrandom specific heat curve.

We present the mathematical formulation of this
problem in Sec. 2 which is based upon the application
of theory of noncommuting random products by Fur-
stenberg. 4 We closely follow the procedure of Ref. 1
and express the free energy per site in the presence of a
constant magnetic field in terms of an average over an
auxiliary variable x whose distribution function v(x) is
determined by a homogeneous integral equation. In
Sec. 3, we discuss the properties of this integral equa-
tion. We assume that I'(E) has a narrow width pro-
portional to Ã ' and possesses well-defined asymptotic
behavior. Ke then obtain a set of integral equations for
respective orders in /V ' of v(x) which are readily solved

by Fourier transform. The shift in the free energy due
to this randomness in energy is given in Sec. 4. It is
related to the moments of I'(E) and v(x). In Sec. 5, we

give the corresponding shifts in the thermodynamic
quantities as mentioned above.

1. INTRODUCTION

ECENTLY the two-dimensional Ising model with
limited amount of randomness in exchange energy

was studied by McCoy and Wu. ' The object of their
study was to ascertain what the effect of random im-
purities would be on the nature of the phase transition.
Because of the mathematical complexity associated
with the phase transition, they were able to study this
problem only for one particular narrow distribution of
the exchange energy. They conjectured that the results
are much more general than the particular example
that they solved and stated their belief that the qualita-
tive effect of randomness on the phase transition should
be the same for a large class of narrow distributions of
exchange energy.

It is the purpose of this paper to study the corre-
sponding problem of randomness in the i-dimensional
Ising model in the presence of a magnetic 6eld. Random-
ness is introduced by allowing each exchange energy to
be an independent random variable E with a probability
density function I'(E). Because there is no phase tran-
sition at nonzero temperature, ' ' the mathematics is
su%.ciently simple to allow us to study the problem for
a large class of narrow distributions. We demonstrate
that for any symmetrical narrow distribution I'(E)
the free energy is decreased by an amount proportional
to the second moment of I'(E). We furthermore find
for an asymmetrical I'(E) the only effect of the asym-
metry is to replace the most probable energy by the
mean energy. Once this additional 6rst-order shift is
made, the second-order term is the same as in the
symmetrical case. This calculation therefore explicitly
exhibits a system where the effect of randomness is
determined by general properties of the distribution
rather than its detailed form.

Along with the change in the free energy due to
randomness in Eq. (4.18) and Fig. 3, we have also com-
puted leading order shifts of several thermodynamic

' B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).
'G. Rushbrooke and H. Ursell, Proc. Cambridge Phil. Soc.

44, 263 (1948).' L. Van Hove, Physica 16, 137 (1950).

2. GENERAL FORMULATION

Ke consider a one-dimensional array of K Ising spins,
which are labelled from 1 to X along the chain from
left to right. The Hamiltonian of the system is

n=i n, =i

4 H. Furstenberg, Ann. Math. Soc. Trans. 108, 377 (1963).
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where cr =&1, E(N) is the exchange energy between
vith and (v+1)th sites, H is the magnetic field, and
sites 1 and X are not connected together.

Denote the partition function for e(n&X) spins
counted from the left end of the linear chain from 1 to
e by Z . Clearly, Z can be separated into two parts
corresponding to the two states of the last (nth) spin.

makes with the U axis. From (2.2) we see that whenever
T acts on

x is changed into x„+& by

Z =U+V, x„~i——w(s*(vi)+x.)/(1+s*(n)x.) . (2.'/)

where U is the part of Z with o =+1 and U is the
part of Z with a„=—1.

Consider the a,ddition of the (x+1)th spin to the
chain. The partition function Z +~ is built up from Z„
by the following transfer matrix which transforms the
column vector:

The matrices in (2.3) form a noncommuting set of
random matrices. Furstenberg4 has proved that as e
becomes large the random variable x will approach a
limiting stationary distribution v(x) that is independent
of the initial vector. This stationary distribution is
characterized by the property that if we apply a random
matrix (2.3) to it and average the resulting distribution.
over P(E) that v(x) will transform into itself. Therefore

where

and

1 s*(e)
T„=(ws*(ii)) '"

ws*(e) w
(2.3)

v(x) = dx' dE~ P(E)v(x')

X&t x—w(s*+x')/(1+s*x')]. (2.8)

w=e '~~ F(e) =e '~s'"' P=(kT) ' (2.4)

and k is Boltzmann's constant.
Equation (2.2) represents a recursion relation for the

two-dimensional vectors

The existence and uniqueness of a solution to this
equation is also proven by Furstenberg. 4

With the stationary distribution v(x), we can then
replace the average over vi in Eq. (2.5) by an average
over the random variables E and x. Using (2.2), we have

F= —p ' lim K ' Q in(Lws*(ii)j 'i'
+~00 n=l

with an initial condition for the column vector of XL1+s*(e)x.+ws*(e)+wx. j/(1+x.)) (2.9)

and we arrive at the final result that with probability 1

F= —P
—' lim X-'1n(Ug, +Usr)

g, ~00

U pi+U pi= —P-' lim X ' Q ln
U+U

(2 3)

We consider E(e) to be random variables with their
probability distribution P(E). Then T„ is a random
matrix acting upon a two-dimensional vector space.

We define

The free energy per site of the Ising system 5 in the
thermodynamic limit is

F= —P
—' lim K—' ln(U@+Vsr)

Q ~00

EP(E)dE H P' dE C—x—

Xv(x)P(E) InL(1+s*x+ws*+wx)/(1+x)j. (2.10)

It is expected that, since the free energy in (2.10) is
essentially the average rate of growth of the quantity
(U„+V ), it must be equal to the average rate of
growth of each of the component of the column vector,
U„and t/'„. We denote

x„=V„/U, (2.6)

which corresponds to the tangent of the angle which
the random vector

(;;)

K U
F'= —p ' lim K ' Q ln

U„

X
S'= —p

—' lim K ' Q ln

(2.11)
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Now we use the relation

lnLw(s*+x)/(1+s*x)]

(I& (i(f' (((—(s~+x)/(1+s*x)) hil, (2.15)

X'

di ———P-' dxv(x) lnx+P ' dE dx dl P(E)v(x)

X~A —w(s*+x)/(1+s*x))»f. . (2.16)

Interchanging the order of integration, we have

di ———P ' dxv(x) lnx+P ' dl in' dE dxP(E)v(x)

X &(l w(s—*+x)/(1+s**)) (2..17)

As seen from the integral Kq. (2.8), di is identically
zero.

Similarly, using

ln(1+w(s*+x)/(1+s*x) )

X

I'zG. 1. Contours along which the function

P(—'p ' in)(x —xx')/(m —xx') ))
is constant. The kernel of the integral equation for p(x) is different
from zero only in the shaded region. The value of z is taken to be

dfh(f —(*+ )/(1+ * )) 1 (1+1), (2 Ifl)

dg=o.

where
xo ——w(s((*+xp)/(1+so*xo), (2.19)

We note that when the distribution function P(E)
is a 5 function, P(E) =5(E Eo), then —v(x) will also be
a 6 function at that value of x which remains unchanged
by the application of the transform of Kq. (2.7),

We shall prove that indeed F=F'=F'. Following the
same line of argument, we find with probability 1

EP(E)dE H P 'dE dxP(E—)v(x—)—

Xln(1+s*x), (2.12)

EP(E)dE H P' dE —dxP—(E)v(x)

Xln(wx-'(s*+x)). (2.13)

We call di =5' —5', d2 ——7—F', from (2.12) and (2.13)
we have

There are two solutions to this equation because the
2b 2y matrix has two eigenvalues. Since the free energy
is obtained through the selection of the larger eigen-
value, we must accordingly choose the correct one for x

x.(EO) =-.Lw —1+((w—1)'+4s "w)"']/s *. (2.2o)

Inserting x(( into (2.12), we find

5'o ———Eo—P ' ln(1+so*xo) H, —
E0 P' ln—Lcosh—PH+ (cosh~PH

2e 2~s' sinh2PEO)—'i ] (2.21)

which is exactly the solution obtained by Ising in 1925.'
For the case where the magnetic field is zero (w =1),

we have from (2.10) and (2.4)

di ———p
—' dE dxP(E)v(x) ln(xw '(1+s*x)/(s*+x)), (l:=—p ' ln(2 coshpE)P(E)dE. (2.22)

= —P-' dxv(x) lnx+P-' dE dxP(E)v(x)

Xlnfw(s*+x)/(1+s*x)]. (2.14)

We observe that in this expression there is no de-
pendence upon x and v(x); the free energy is just an

' E. Ising, Z. Physik 31, 253 (1925}.
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average over F(E).This result is to be expected because
when II=0 it is elementary to show that for. any set of
E(n) that

X—I—P lnZsr = P int 2 coshPE(n)]. (2.23)
2.o

3. INTEGRAL EQUATIONS

In this section, we study the integral Eq. (2.8). In-
tegrating over E&, we obtain l.5

v(x) = —,'p 'w(1 —x")(w —xx') '(x —wx') '

XF(——',p ' !np(x —wx')/(w —xx')])v(x')dx'. (3.1)

We readily see that the kernel in Eq. (3.1) will not be-
come singular if the given distribution F(E) vanishes
rapidly at in6nity such that

I.O

e~F(E) v 0 as E —+oo . (3.2)

The integration limits formally written as —~ to
+~ are actually determined by the domain of F(E)
and Eq. (2.11), that is,

if F(E)=0, unless Et(E(Eo
then v(x) =0, unless xo ——x(xt (3.3)

where xt=xo(Et), xo=xo(Eo). The detail is shown in
Figs. i and 2.

The exact solution to the integral Kq. (3.1) is difficult,
here we shall only explore some general characteristic
of the solution for the class of narrow input distributions.

Assume that the input distribution p(E) is of the
following form:

F(E)=1VA 'f(1VA '(E E))+—N 'k(E —E—) (3 4)

I,O l.5

FIG. 2. Enlargement of Fig. 1. The shaded region is the only
region in which v(x) and v(x') are diFFerent From zero.

(iii) h(y) is regular at y =0.'

The second assumption directly implies" that:

(a) The condition (3.2) is met by this class of dis-
tribution functions; hence no singularity will occur in
the kernel of the integral equations.

(b) The Fourier transform of f(y), F(k), where

where 6 is a unit for the width of the energy spread,
E is a dimensionless scaling factor introduced to in-
dicate the narrowness of the width, Eo is the most
probable energy where f is a maximum. Since F(E) is
a probability distribution function so clearly, we have

F(k) = e '"vf(y)dy

possesses derivatives of arbitrarily high order on an
interval —s(k&s and it has a Taylor series near the
origin with a radius of convergence s, i.e.,

f(y)dy =1' (3 5) max~ (d"/dk")F(k)
~
=0(n!/s") for —s(k(s. (3.6b)

for concreteness we further make the following assump-
tions:

(i) f(y) is an entire function.
(ii) It also possesses finite moments of every order

which behave asymtotically as

(c) The moments of the distribution f(y) are related
to the derivatives of F(k) at the origin by

noy =( i) ~(d~/—dk~)F(k)
~
o=o. (3.7)

,With these conditions F(E) will approach 8 function
8(E—Eo) as X~oo. Correspondingly, v(x) will also be
a function of X(x—xo), where xo=xo(Eo). We further-

y"f(y)dy =0(n!/s") as n —v ~

for some positive number s.

(3.6a) 'These assumptions are not the weakest possible set and are
made merely to simplify some of our notations. They are broad
enough, however, to illustrate the physics of the situation.

A. Winter, The Fogrier Transform of Probability Distributions
Johns Hopkins University Press, Balitmore, Md. , 1947).
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more expand v(x) as
A = (w —sp*xp)/(1+so*xo) .

v(x) =1Vgp(1V(x —xp))+gg(1V(x —xp))

(1V( ))+ (3 8)
We note also that 0(A (1.

Deine the new variables

(3.13)

where g01 gl, and g2 are all unknown functions to be
determined from the integral equation with the nor-
malization requirement

~= —-'(P~) '$(1+ **o)/(*o(1—)).
Ke then have

g, (x)Zx=S,o p=1, 2, 0" .

Ke change the variables to

(=1V(x—xp),
t'=1V(x' —xo) .

(3 9)

(3.10)

y = (g —A g')+P61V '(1+so*xo) '[(g —A p')'(1 —sp*'xoo)

—4sp*xo(r!—A g') g'+2sp*xp(w —1)Aq"]+0(!7—') .

From assumption (i) we can expand f(y) into a Taylor
series near the value q —Aq'.

f(y) =f(r! Ar!')+—Phi V 'f (q Ag')(1—+zp*xo) '
X[(1—so*'xo')(g —Ag')' —4so*xo(q —Ag')r!

+2so*xp(w —1)A q "7+0(1V ') . (3.15)

The argument in P(E) in (3.1) can be expa, nded in
terms of $ and $' by substitution of (3.4) and (3.8) and
an expansion in series of E '. Thus,

P(—,'P—' jn[(x—wx')(w —xx')])=!Vh 'f(y), —(3.11)

where

y= —l(P~ o) '(1—) '((1+ o**o)(5—Ae)
—,'[1',(1—w)]- ((1—..* x, )(~—Ag')

4zo*x,((—AP') f+—2s*ox'o(w 1)A ]' )—+0(1V ')}-
(3.12)

Similarly, we expand

Ke further expand

v(n) =go(n)+1V 'g~(v)+0(1V '),
where v(g) is related to v(x) by v(x) =v(g)

~
dr!/dx ~

.
Thus, we have

(3.17)

-,'P-'w(1 —x")/[(w —xx') (x—wx')]
=—(Pxo) '(1+so*xo)/(1 —w) [1—2P61V '

X(2so*xog'(1+sp*xp) '+(1+sp*xo) '
X (so*'xo' —1)(g —A g'))+0(1V ')]. (3.16)

gp(g)+!V 'gg(v))+0(1V ') = [1—2P61V '(1+so*xo)-'(2so*xog'+(so*'xo' —1)(r!—Ag'))+0(1V ')]

X[f(g —A g')+P61V '(1+sp*xp) 'f'(g —A g') ((1 sp~'xp') (r! —Ar!')' 4sp—*xp(r! —Ag') r!'+2s—p*xp(w 1)Aq")]—

X[go(q')+1V 'gg(r!')+0(1V ')]dg', (3.18)
where

g; = ——',1V(Phx )
—'(1+so*xo)(x;—xp)/(1 —w), i=1 2. (3.19)

For very large X, the integration limits can be approximated by —~ to ~ since as a consequence of assumption
(ii) the error introduced by this approximation is exponentially small in 1V. The contribution of 1V 'h(E Eo) in—
(3.4) is only of 1V ' order which can be neglected as we are only interested in the terms up to 1V ' in (3.16).

Equating the two sides with respect to orders in iV ', we obtain

go(n) = f(n An') go(n')A'-, (3.20a)

gg(q) = f(r! Ag') g, (r!')dr!' 2PA—(1+so*xo)—dr!'go(g') f(g —A g') [2so*xog'+ (so* xo' —1)(g —A q') ]

+ A'go(n') f'(g —A n') [s (so*'xo —1)(g —A r!') +2so*xo(g —A g') r!
' —so*xoA (w —1)g'o] . (3.20b)
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De6nedi so . b Fourier transform.dil solve (3.20a) by our'We may readi y so
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and

Gp(k) =

F(k) =

g (ii)e "dpi

f(y)e '""dy'

(3.21a)

(3.21b)

n 3.18a) yields3.5) F(0) =1.Then ( .o
' '

ular that from (3.Note in particu ar

Gp(k) =Gp(Ak)F(k) . (3.22)

f rmally solve 3.22) to findwe may ormSi

Gp(k) =Gp(0)g F(A"k . (3.23)

nce A&

ii . e fromii). Furthermore, rom assumption ii .ic at k=0. This follows fromes if F(k) is analytic at k =0. isroduct converges ip
(3.9) we find G(0) =1, so

Gp(k) = g F(A "k).
n=p

(3 24)

(3.20b) to obtainurier transformWe similarly Fourie

Gi(k) = ( )e fkpdii-

00

/ /-ikAg d~gyp 8
I e-ik(g —Aq')d~f(g —Aii e

—2PA(1+sp*xp) ' ~ &-ikA&'d~I2sp*sp'g'gp(7) e I ~-ik(g-Ag')d~f(ii Aii e-'—

I &-ik(~A~')d~( xp — ( Ari')(g A—g )e-'—+ sp sp*'x '—1)f g— -ikAp'd~I+

gpss

e gp g

~ e ak(p-Ap')d~+-sp sp 7/
*'x '—1 g Arl')'f'(ri Ar—i)e-—2

~ ~-ikAy'd~Iy'gp g e

~ ~-ik(~A&r~d&Ag') f'(g A—g')e—X 2sp*xp(ii—
f' ~-ikAq'd~~sp*xpA(w —1)ii"gp(ri e

'

=Gi(A k)F (k) +2(k),

~ e-ik(~Ai1')d~f'(g Aq e-'—
(3.25)

"&drl =ikF (k),iie
'

(3.26a)

q e '"& = i -"—F(k—). (3.26b)n"f(n)e *"'4=( i) "

'
h the curly bracacket.k is the expression witwhere Z(k) is

With the assumptions

lved as

= Q Z(A "k) g F(A k .G,(k) =
n=p

(3.28)

We the hav

2sp*xpA 'F'(k)Gp'

XGp Ak

nt 3 =0 Kq. (3.25)ment 3.9) that Gi(0) =0, q.Wit
'

h the requirement 3.
is readily so
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Fromrom (4.9) we observe that for all s ma symmetric distribu-

FI, which is ne a
, nsyj. —— , we onl hy ave second-order term in

I, w ic is negative and proportional to 0.. In
of i I'(E) I will have first-or

1 bhd'
'

n o my'. It can

y y e iscrepancy between the mean value and
os pro a e value of the exchange ener

th — 1
'

d fi
value.

vaue is efined bv fi by the expectation

E= EP(E)dE= END 'f(1VD '(E Ep))dE—

(Eo+» 'y)f(y)dy

IO

I-
0.
hl
O
Ch

40

u~
g -0.6
CO

X

6-
T= 0.8

=Ep+» 'nsy1. (4.1O)

gy gives correction to the free enerThis shift in ener i
m the Ising expression of (2.21). D
term b

enote this correction

&1'=go)z z (&o)z=—z, = (4 11)

By using a Ta loy or series expansion and the relation

T= 0.8

FIG. 5. Shift o'ft o the magnetic susceptibility X1 versus a li
unit for X is g/(+2+ )

0
I-
hl

UJ
X
C9
CC

X

FIG. 4. Shift of the magnetization M& in un'
l' (l t' fi ld

' H'8e in / o with temperature as parameter

(2.19) we have

IF1 ———51V 'my1 —P '(2zo*xo) (2zo*xp+2 —2w

X(1+sp*xp) '(2so*xo+1—w)
—'

X{P» 'zoy1 —(PA/N)'(1+so*xo) '

X(1+(w —1)'(2so*xo+1—w)
—'

+2sp*'xp'(w —1)(2so*x+1—w) ')z1

+O(N ') . (4.12)

Thehe difference between (4.12) and 4.9 is
ff ti o t'o h' h d

variance of P(E .
ion w ic de ends sod p solely upon the

1,eff =+1 Fl = p(6/1V) 2so xo(1+so xp

X(2so*xp+1 —w) '(2so*xo+2 —2w)

X(1 w+sp*xp(1—+w))(r (4.13).

P1,.1f = —61V '(2Pd )2sp*xp(1+xp') (1+xoo+2zo*xo) 'o .
4.14( )

As expected, this correction term to f
e rica with respect to the magnetic field.

5J, ,i' f always negative and second-order
t th t b h

" '""'"""""*'
'on y t e symmetrical distribution in

Using the definition of x in 2.19,xo in . , we obtain
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This can be seen more directly by using a further change
of variable,

t =(2so*xo)/(1+so') (4.15)

Following (2.19),

t —s +2(s 42+w~2) —1((s 42+w12 s 42 w&2)1/2 w~2) (4 16)

where

w' = tanhPH.

In terms of t we finally obtain

(4.17)

off —5N—'(2ph)ot/(1+I)' (4.18)

The dependence of F~,,~g upon the temperature and
magnetic Geld is shown in Fig. 3. It can be seen that

ff vanishes both in the limit of inGnite temperature
and zero temperature. It is also seen that at low tem-
perature, the correction due to the randomness is small
and it is nonzero only in a very narrow low-Geld region.

Weseefor(H[))[H ~, whereH =P 'sinh 'sp Pg off

will assume the following asymptotic expression,

p1 ff = 4pgoN —pwso*a+0(N o) . (4.19)

5. THERMODYNAMIC PROPERTIES

Kith the expression for the effective correction to
free energy (4.18), we can obtain all the corresponding
correction terms to thermodynamic quantities such as
magnetization, magnetic susceptibility and specific heat
by using the relations (2.4), (2.19), (4.16), and (4.17).

For low field jH~&&[H

Fi.at = —2P~'& '(so*(1+so*) '
+e(so*—1)yo*(so*+1)] '(w —1)') (4 20)

It is obvious that the free energy behaves as a
parabola near zero-Geld region, while at high Geld it
approaches zero exponentially.

(i) Magletisation

85y, &g 8$ 8Ã~

Bk Bm' 8II
(5.1)

=(Aa/N')(2PA)Pw'(1 —w")(w"+so*'—so*'w") 'sp*'(1 —t)(so*'+t)—'.
This is plotted in Fig. 4. M& is strictly negative like Fg, ff and vanishes at B=0.

(5.3)

This susceptibility is plotted in Fig. 5. It starts from an initial negative value which is

(ii) Magnetic SNsceptibitity

xg ——(BMg/BH) = (Bw'/BH) ['BM/Bw'+ (BM/Bt) (R/Bw')]
= —2(PA/N)'esp*'P(1 —w") (sp*'+(1—so*')w") 'L(1—t) (so*'—3w"+w"—sp*'w'4)

)((s 42+I)—1(s 42+(1 s 82)w&2)—1+w&p(1 w&o)(1+s o2)((s 42+w~o)t+w~2) —1] (5 4)

Xy, p = (P5/N) 2P&reo—e@o tanhPEp (5.5)

0.5

0.2

O. I

TEMPERA TUR E T

FIG. 6. Shift of the specific heat
for H=O in unit of koN ' versus
temperature in Eo/k.
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and then rises to a positive maximum and eventually decreases to zero exponentially at high field. The magnitude
of this maximum is largest at zero temperature and decreases to zero exponentially at T —+~.

(iii) SPecif3c Heat

~ +l,eff ~ ~+1,eff
C., &

—T —— -= —kP—P2
BT' BP BP

=2k(PA/1V2)a(1+t) 2[2t—4P(1—t)B+P2B2(t—3)+P2(t —1)(BB/BP)], (5.6)

and

where

B=—(1+t) '(Bt/BP) =(sp*2+t) '(w"+sp*' —sp*'w") '[2Ep(w"t2+sp*4(1 —w"))+Hw'(1 —w")(sp*2+t)'] (5 7)

BB BB$ Bt Bw' Bt Bsp* BB Bw' BB Bsp*

BP Bt ~BW' BP Bsp* BP Bw' BP Bsp* BP

= (s +2+t) 2((zo+2+w~2)t+zp+2w~2) 3(w~2+zp+2 zp+2w~2) 1[4Eppso+2t2(w~pt2+s 4'4(3 w~2))

H2W&2(1 w&2)(s 42+t)4 4E Hw~3t(1 W~2)(s 42+t)3] 4Z 42E (s 42+t)—2(W~2+s 42(1 W~2)—2)

X[2Ep(sp3'4t(1 —w'2) 2+ w'2(1 —w'2) (s 4'4+ 2s *2t—2spp'2t2 —t3) —w'4t2)+Hw'(1 —w'2) (z 4'2+t) 2

X(2W"+(2Z *'+t)(1—w"))]+(1—w")H(w"+zo*'(1 —w")) '[4Eow's *'(s *'+t) '

X ((t2 —zp*') —(1—w") (-', —sp*2) ')+(zp*'+t)H(s *'(1—w")' —w"(1—w") —2w'4)]. (5.8)

Similar to the magnetic susceptibility, this shift in speci6c heat does not have a constant sign. It vanishes both
at zero temperature and in6nite temperature. For H=0, it is reduced to the following:

Cyr=k(pt2/S) g sech pEp(1 p Ep +3p Ep tanh pEp 4pEp tanhp—Ep) (5.9)

and is shown in Fig. 6. The magnitude of the oscillations depends upon the applied field. It is largest for zero
Qeld and approaches zero exponentially rapidly as H —+~.
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