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The frequency-dependent correlations &, (w)= (So*(#)S*(¥') ), =0, 1, 2, 3, and 4, and their inverse-
lattice Fourier transforms ®(K,w), have recently been exactly calculated by Carboni and Richards for
finite linear chains consisting of N (N =6, 7, 8, 9, and 10) spins (S=3%) in contact with a heat bath at tem-
perature 7" — o and interacting via a nearest-neighbor isotropic Heisenberg exchange interaction. Carboni
and Richards have used plausible extrapolation procedures to predict the corresponding correlations in
the thermodynamic limit N — «. As the extension of these exact calculations to two and three dimensions
is of prohibitive difficulty, we have constructed an alternative theory, based upon a simple two-parameter
Gaussian representation of the generalized diffusivity, for calculating these correlations for general spin
and the dimensionality. To test the accuracy of this phenomenological theory (which is, however, free of
any arbitrariness in the sense that the diffusivity is exactly specified by the second and the fourth frequency
moments of the Fourier transform of the frequency-dependent correlation function, which are known at
infinite temperature), we first compare our results for ®,(w) with those given by Carboni and Richards
for the one-dimensional spin-} system and find the agreement to be excellent for n=0, good for n=1,2
and adequate for »=3,4. The comparison of the corresponding results for ®(K,w) reveals the agreement
to be quite satisfactory for|K| <37 but only adeguate for the higher-K range, i.e., 3r SKS#. Further
support in favor of our phenomenological theory is obtained from a comparison with another set of available
exact “computer experiment” results, whereby ®o(w), ®o(f), and ®,(f) are accurately known for a three-
dimensional (simple-cubic) lattice of infinite spins, i.e., § — . (This is the limit in which the classical
spin system studied by Windsor corresponds to the quantum spin system of interest to us.) The agreement
of our result with Windsor’s is excellent. The salient features of our results are as follows: (i) In two dimen-
sions, the divergence of ®,(w) for w — 0 becomes less sharp and disappears completely in three dimensions.
(ii) The cutoff frequency, beyond which ®y(w) is effectively zero, increases with the dimensionality, being
in three dimensions about twice what it is in one dimension. (iii) There exists a system of reduced units,
ie., &,/ (w) > P, (W[SES+DI I' > [S(S+1)]21, and o’ — (w/I’), in which the function I'®,’ (w') is
approximately the same for all spins, and the accuracy of this law of corresponding states seems to increase
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with the increase in the dimensionality.

I. INTRODUCTION

ECENTLY, Carboni and Richards! (CR) have
extended their abd initio numerical calculations of

the frequency Fourier transform of the self-correlation?
function for a one-dimensional quantum-mechanical
spin system with S=3% (we shall use Dirac’s units,
where #=1). Available now is also the time-dependent
self-correlation function (i.e., rather than only a histo-
gram version of its frequency Fourier transform), the
frequency Fourier transforms of the nearest-neighbor
and further-neighbor correlation functions, as well as
the frequency and wave-vector-dependent Fourier
transforms for a few selected values of K. In view of
the fact that these results are exact,® they provide an
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1 F, Carboni and P. M. Richards, Phys. Rev. 177, 889 (1969).

2 F. Carboni and P. M. Richards, J. Appl. Phys. 39, 967 (1968).

3In this regard, a few words of explanation are perhaps in
order. The CR calculations in Refs. 1 and 2 are carried out exactly
for a finite linear chain with periodic boundary conditions with
the implicit stipulation that the finite system be in contact with
a heat and angular momentum bath at temperature 7" —co.
Plausible extrapolation procedures are then used to predict the
corresponding correlation functions in the thermodynamic limit,
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excellent testing ground of the accuracy and the validity
of the various phenomenological approximations which
in our opinion form the basis of much of the existing

i.e., N =, in which the system possesses its own temperature
T (T is then assumed to be infinite). Because our present interests
are restricted to the consideration of the thermodynamic limit
only, it is desirable to clarify the limitations of the extrapolated
results, and in particular to have a feeling for how ‘“‘exact” the
various results are. In the opinion of CR, at the elevated tem-
perature of interest, a meaningful thermodynamic description of
the spin correlation functions can be achieved as long as clusters
extending to at least three spins or more (away from the two
spins under consideration) are considered exactly. With this
criterion, the calculation of the self-correlation function begins to
be meaningful when the total number of spins & in the array is
equal to about six and larger. Therefore, from among the compu-
tations of CR, which utilize arrays of up to N=10, the results
for the self-correlation may be considered to be the most exact,
while by the same token the relative exactness of the results for
the correlations of separated spins may be anticipated to be the
smaller the larger the separation.

To make the above discussion more quantitative, it should be
noted that CR used extrapolation procedures similar to those used
by J. C. Bonner and M. E. Fisher, Phys. Rev. 135, A640 (1964),
who found that the ground-state energy as a function of N
extrapolated to the limit N = o to about 0.19, of the true thermo-
dynamic limit. CR found that the extrapolation worked exceedingly
well for the self-correlation function for N =6 to the highest N con-
sidered, i.e., N =10, except for the very small frequencies, i.e.,
wS (0.1)1. For correlation functions of separated spins, they do
not give details of the adequacy of the extrapolation except for
the implication that the special attention paid to the extrapolation
of the self-correlation results was not used in the case of the
separated correlations.
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theoretical work on the in-equilibrium*?® phenomena
in many-body systems. Specifically, these results offer
a unique opportunity for verifying the adequacy of one
of the most popular phenomenological approximations
used for discussing the in-equilibrium effects in many-
spin systems. This approximation consists of the intro-
duction of a two-parameter Gaussian representation for
the frequency-wave vector-dependent diffusivity, and
it has been used to make statements about the nature
of the dynamic effects obtaining both in the extreme
paramagnetic regime and in the neighborhood of the
second-order phase transition in Heisenberg spin
systems.5—8

In this regard, it should be mentioned that in an
earlier calculation we carried out a limited test of the
validity of the two-parameter Gaussian representation
of the generalized diffusivity by comparing its predic-
tions for the self-correlation function of a one-dimen-
sional S=3% Heisenberg spin system against the, then
available, exact ab initio results of CR.2 The good agree-
ment of these results encourages us to enlarge the scope
of the earlier calculation and to further test the ade-
quacy of the Gaussian representation of the diffusivity
by comparing its predictions against the more expanded
program of ab initio calculations recently performed by
CR.!

In addition to the above, there is also an important
byproduct of this study, namely, the results for the
dynamical correlations themselves. The exact computer
studies of the type carried out by CR are expected to be
painstaking and costly as the magnitude of the spin
increases beyond 3. Moreover, in two and three dimen-
sions, the execution of the procedure even for spin %
would be prohibitive, except, of course, for the case of
the so-called “classical spins” which we discuss below.

The essential usefulness of the concept of classical
spins lies in the fact that when the magnitude of the
quantum-spin vector becomes extremely large, the role
of the spin quantization becomes diminished, and the
spins begin to behave “classically.” Thus the results
for classical spins, and those for quantum spins, are
expected to approach each other as S (the magnitude
of the spins) approaches infinity. Therefore, the avail-
ability of the exceedingly accurate numerical results for
the classical-spin case in three dimensions® offers yet

¢ The term “‘in-equilibrium” in the present context refers only
to those situations where the departures from the equilibrium
are exceedingly small, e.g., situations created by the application
of infinitesimally small space-time-dependent external fields on
systems in thermal equilibrium or, alternatively, to the regime of
linear transport phenomena where gradients of the local thermo-
dynamic potentials are infinitesimal (see, for example, Ref. 5
and references cited therein).

5P. C. Martin, in 1967 Les Houches Lectures, edited by C.
DeWitt and R. Balian (Gordon and Breach, Science Publishers,
Inc., New York, 1968).

6 H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).

7H. S. Bennett, Phys. Rev. 174, 629 (1968); R. Tahir-Kheli,
J. Appl. Phys. 40, 1550 (1969).

8 R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. 178,

800 (1969).
9 C. G. Windsor, Proc. Phys. Soc. (London) 91, 353 (1967).
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another limiting behavior that we can use for testing
our phenomenological construct of the generalized
diffusivity and, in turn, to get a feel for the reliability
of the results (i.e., the time-dependent correlation
functions for finite-spin magnitudes) that we have said
are the byproduct of the current analysis.

An outline of the salient details of the formulation
are given in Sec. II. The results for an infinite linear
chain (i.e., the one-dimensional case) are described in
Sec. III and those for two- and three-dimensional
systems are given in Secs. IV and V. The salient
features of these results are briefly recapitulated in
Sec. VI. The Appendix contains a mathematical detail
regarding the calculation of the principal-parts integral
needed in carrying out the calculations described in
Secs. II-V.

II. FORMULATION

We shall adopt the Heisenberg model of magnetism
which ascribes a localized spin to each lattice point of
the d (d=1, 2, 3) dimensional crystal, interacting only
with its nearest-neighbor spins through an isotropic
exchange interaction. We assume that the spacing
between the spins is uniform (for convenience, the
distances will be measured in the units of this spacing)
and that periodic boundary conditions apply. Further-
more, we assume that the spins are somehow not
coupled to the lattice, or, alternatively, that it is
sufficient to consider the strength of the exchange
integral I to be some suitable scalar function of the
temperature to describe any spin-lattice coupling.l®!
The relevant Hamiltonian therefore is

H=— Z I(fle)Sh'sz;

/1,12

(2.1)

where Sy is the spin vector associated with the lattice
point f, and I(fifs) is the strength of the exchange
interaction (being equal to I, when f; and f, are nearest
neighbors and zero otherwise), which is a known
implicit function of the temperature.

Let us define the spectral function Fx(w) which is
related to the frequency—wave-vector Fourier transform
of the correlation function:
Fg(w)=—Fg(—w)=—F_g(—w)=F_g(®)

1 Feo
== % emot [ (050,86 )])
2w f1—f2 o
Xewt=d(—t), (2.2)

10 For describing dynamic effects, this assumption is likely to
be an important restriction. The reason is that not only does the
average interspin separation vary with the temperature, but the
agitation of the lattice causes dynamic coupling between the
spins and the lattice vibrations. It is hoped that the investigation
of some of these effects will be the subject of a future study.

11 This assumption is, however, often made in the literature.
See, e.g., D. C. Mattis, The Theory of M agnetism (Harper and Row
Publishers, Inc., New York, 1965); S. V. Tyablikov, Methods in the
Quantum Theory of Magnetism (Plenum Press, Inc., New York,
1967), and references therein.
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where 3 s, s, indicates a single sum over all the relative
position vectors f1— f». The time dependence of the spin
operators is in the Heisenberg representation with
respect to the Hamiltonian 3¢, and the angular brackets,
as usual, denote the statistical average over a canonical

ensemble.
The retarded and advanced double-time Green’s

functions, i.e.,
Myt () =—1O = ){[Sr,*(1),Sr,* (1) ]-), (2.3a)
My, 20 (41)=+iO = )[Ss* 1,57 )], (2.3b)

where © is the Heaviside unit step function, have the
well-known spectral representation'?

1 +°°FKO)
Mx(Z) =——/ ( )dw,

T Z—w

(2.4)

where Mx(Z) is the analytic extension of the Fourier
transforms Mx™¢(E), and Mx*¥(E);

1
M/x,/za(t,t') = Z K- (f1—12)
N &
2.5
~+o0 ( )

X[ MxrB)eEedE,

a=ret, adv,

into the upper and the lower half of the complex energy
plane, respectively. The K sum in Eq. (2.5) is over the
first Brillouin zone. Note that as long as we work with
lattice structures which have inversion symmetry, we
have the result Mx(Z)=M_x(+Z), and, because of
the left-hand side of Eq. (2.2), we have the additional
important result that Mx(Z)=Mx(—2Z).

A convenient spectral representation®®® of M (Z) is
in terms of the generalized diffusivity Dx(w), i.e.,

MK(Z)=MK(O)[1—-(1——1- =D K(w)dw>_l:|, (2.6)

T Z2—w?

where Dk (w)=D_x(w)=D.x(—w). Equations (2.4) and
(2.6) specify an exact relationship between the spectral
function Fx(w) and the diffusivity Dg(w), i.e.,

Fx(w)//+m<_p_1f_(f°_)>dw
=D;:w) /[w2<1—9)— +°<’Dx(w’)dw,>2

+[DK<w>J2]. @.7)

12D, N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [ English transl. :
Soviet Phys.—Usp. 3, 320 (1960)7].

B L. P. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963); R. A. Tahir-Kheli, Phys. Rev. 159, 439 (1967).
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The usefulness of the above representation, however,
depends critically on whether the function Dx(w)
turns out to be a simple function or not.

It should be remarked that in complete analogy with
the above formulation, a variety of existing phenomeno-
logical theories of in-equilibrium phenomena can also
be conveniently formulated in terms of the generalized
diffusivity.®* In these analyses, the usual choices for
the functional form of the diffusivity are the two-
parameter exponential’® or the two-parameter Gaus-
sian.5—8:1416 I view of our recent observation,'” whereby
a two-parameter Gaussian representation of the dif-
fusivity led to very satisfactory results for the frequency
Fourier transform of the self-correlation function for a
one-dimensional spin-} system, we shall in the present
paper work only with the latter representation, i.e.,

Dx (w)=nA(K)T'(K)e—o"r*®) | (2.8)

where the choice of the coefficients A(%) and I'(%) is not
arbitrary but rather is given by the requirement that
it reproduce as many of the frequency moments of the
spectral function Fg(w) as possible. In addition to the
simple sum rule {«®)x=1, which is exactly satisfied for
all nontrivial choices of A and T" in Eq. (2.8), the
moments (w?)x and (w*)x, where

(@nyx= f_ -:O<Fljw)>w2”dw /

< ::o [Fx(w)/w]dw), (2.9

uniquely fix the coefficients A(K) and I'(K) through the
following relations [which are readily derived from Egs.

(2.4) and (2.6)]:

Dx© = (v/m)A(K) = (w?)x, (2.10)
Dg® = (v/m)(A(K)/2T%(K))= (w)x— [{*)x T, (2.11)
where

Dymat / +°° Dx(e)u?des. (2.12)

It should be emphasized that insofar as the represen-
tation (2.8) is approximate, it is not expected to pre-
serve the higher frequency moments exactly. Indeed, a
useful measure of the accuracy of this representation
would be to compare the exact result!® for the next

14 P, C, Martin and S. Yip, Phys. Rev. 170. 151 (1968).

15 B, J. Berne, J. P. Boon, and S. A. Rice, J. Chem. Phys. 45,
1086 (1966).

18 K, S. Singwi and M. P. Tosi, Phys. Rev. 157, 153 (1967).

17 Note that the remarks made in Ref. 8 concerning the struc-
ture of the results for the correlation functions referring to large
spins, i.e., S>>1, are irrelevant in view of the discovery of the
reduced scale in which these correlations obey an approximate
law of corresponding states. See also Ref. 20.

18 The computation of the moment (wS)k is a very tedious
business and, as far as we are aware, has not so far been carried
out. The present authors have recently undertaken its com-

putation.
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higher moment, (w®)x with the approximate one,
({@®k)app computed from Egs. (2.6) and (2.8), i.e.,

i (R
+7324%(K) .

(2.13)

Finally, in this section it remains to be recorded that
once, through the artifice of the phenomenological
construct for the diffusivity, the spectral function Fx (w)
is calculated [see Eq. (2.7)7], the correlation function is
readily obtained,? i.e.,

+o0
<Soz (l)S"z (O»Eq)n (t) =/ @, (w)e"'“"dw

1 +0 F(w)et K -Ratat)
-5 / e .
NE

P—— (2.14)

(For convenience, the subscript #» will denote both
the spatial location R, and the order of the neighbor;
e.g., n=1 denotes nearest-neighbor correlation.)

At the elevated temperatures of interest, an adequate
approximation is to replace the denominator of the
integrand in Eq. (2.14) by the first term in the expan-
sion, i.e., (1—ef*)~pBw. Moreover, since the wave-
vector-dependent susceptibility /[ Fx(w)/w]dw is
readily evaluated to have the form

-+ FK(w)
[ ( >dw=%65(5+1)[1+0(ﬁf)]- (2.15)

w

Therefore, at infinite temperatures, i.e., 83— 0, the
correlation function

1

P, (w) =E\—7 > cos(K-R,)®(K,w) (2.16)
is given by the relation [see Eq. (2.7)]
lim (2(K.0)]

Fx(w S(S 7 |Dx (w

_ x( )= [S(S+1)/37]Dxk (w) T

Bo W 1+Q(w) P+[Dx(w) P

where ) b D)

ow=+(Jef T e

III. RESULTS IN ONE DIMENSION

The exact calculation of the moments (w?)x and
(wYk at infinite temperatures has been performed by
Marshall and by others,® and for the one-dimensional

19 P, G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958). The
errors in this calculation were corrected and the results extended
to close-packed lattices by W. Marshall, in Critical Phenomena,
edited by M. S. Green and J. V. Sengers (National Bureau of
Standards Misc. Publ. 273, 1966). See also M. F. Collins and W.
Marshall, Proc. Phys. Soc. (London) 92, 390 (1967).
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case the results are
(= (212 £S(S+1)(1—cosK,), (3.1)
(hr=(2D*8/9[S(S+1)F(1—cosK.)
X{5—3 cosK,—3[S(S+1)T}. (3.2)

Inserting these values for (w?)x and (w*)x into Egs.
(2.10) and (2.11) and using Egs. (2.8), (2.17), and (A6),
the Fourier transforms ®,(w) for =0, 1, 2, 3, and
®(K,w) are determined by numerical integration for
various values of the spin .S in the range S=% and
S= oo, It turns out that in the reduced unit scale

I'—> ILSS+H1)1", &4/ (@) = [SS+1D)7®a(w),

the plots of I'®, (w) versus w’=w/I" have only a small
relative spread as .S varies between the extreme limits
S=1and S=.

The above behavior is, of course, not entirely un-
expected. The structure of the zeroth, second, and
fourth moments [see Egs. (2.15), (3.1), and (3.2)] is
clearly indicative of a law of ‘“‘corresponding states”
in terms of the reduced quantities I’, ®,'(w), and o',
except for a slight additional spin dependence of the
fourth moment through the occurence of the factor
3[S(S+1)T" in the last term on the right-hand side
of Eq. (3.2). We believe that this reduced scale corre-
spondence offers an explanation for the observation
made by CR,! namely, that the classical-spin results of
Windsor,?® which are traditionally plotted on a reduced
scale of the sort I — JS, &,/ (w) — ®,(w)(S)2, and
o'’ — w/I", can be made to yield results very close to
the CR results for spin 3 by the transformation®
S — %(3)!2, [Note that the classical spins have the
kinematic restriction S-S=S? in contrast to S-S
=.5(S+1) for the quantum spins. ]

The results for spin 3 are compared with the exact
results given by CR (see Figs. 1-11). In our opinion,
the agreement of our results for ®,(w) with the exact
results is excellent for the self-correlation ®o(w), good
for the nearest-neighbor ®;(w) and the next nearest-
neighbor correlation ®:(w), and barely adequate for
®3(w) and ®4(w). There can, of course, be only three
possible reasons for this, namely, that either our formu-
lation generates less accurate results for larger spin
separations, or the CR results are becoming rapidly
less exact with the increase in the spatial separation of
the spins (for example, compare Ref. 3), or, alterna-
tively, both these results are inaccurate for #23.

To investigate further this interesting question, we
compare our results for transforms ®(K,w) with the cor-

2 Note that since the classical-spin results are appropriate to
the limiting case S — o, one might have expected that the mere
use of the transformation S? — £ would not be sufficient to yield
reasonable results appropriate to the spin-§ case. However, our
observation that the results for the infinite-spin case are not too
different (the differences becomes even smaller in two and three
dimensions) when plotted in the reduced scale seems to explain
the good fit obtained by CR with the results of M. Windsor
(unpublished).
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1<sd (1) Sf) (O)%‘) X ( 45(330') )"I/Z

Fre. 1. Plot of the frequency
Fourier transform of the self-
correlation in one dimension versus
the frequency in the reduced units.
Note the similarity of the results
for S=3% and S= . The results
for intermediate values of S lie in
between the two curves.

-1/2
_(;J_ X (4»8§S‘I) )

responding ones supplied by CR, i.e., for K=[(2/9)mp],
p=1, 2, 3, and 4 (see Figs. 6-9). To our surprise, we
find that the agreement between our ®(K,w) and the
results of CR is excellent for the smaller |K|’s given by
CR, i.e., |K|=(2/9)7 and (4/9)w, whereas it is barely
adequate for | K| = (6/9)7 and (8/9)r. The reason why
this result is unexpected in the light of our previous
observation is, of course, the following: The corre-
lations with large spatial separation were expected to
contribute dominantly to small K Fourier transforms
®(K,w), and therefore the agreement of the CR results
with ours should be relatively less satisfactory for small
K’s. Similarly, since the correlations for smaller spatial
separations are expected to dominantly determine the

transform ®(Kw) for large K values the opposite
should be the case for these.

It should be added that so far the present authors
have not found a satisfactory resolution of this dilemma.

IV. RESULTS IN TWO DIMENSIONS

The motivation for studying the nature of the space-
and time-dependent correlation function in two dimen-
sions is twofold : Firstly, it is of interest to know whether
or not the structure of the results, especially the non-
Gaussian nature of the spectral line-shapes [i.e., the
Fourier transforms ®(K,w) for very small and large
|K]’s and ®,(w)] is a critical function of the lattice
dimensionality. Secondly, by analogy with the case of

026

020 -
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o

o
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o
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o
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1< st st o,

. Fi1e. 2. Comparison of our results
(given as the continuous curve) for
the frequency Fourier transform of
4 the nearest-neighbor correlation in
one dimension for spin % with the
corresponding exact results of CR
(given as the histogram).

o
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25 =

020 |-

0I5

F1c. 3. Continuous curve gives our 3 olo
results for the frequency Fourier é‘
transform of the second-neighbor e

correlation for S'=} in one dimension. 2 005}
The corresponding exact results of No
CR are plotted as a histogram. v
~

0
-005 -~
=00 |-

one dimension, where a reasonably good experimental
realization of a Heisenberg linear chain of exchange-
coupled spins exists in the form?! of Cu(INH;3)4SO4- H,0,
and which therefore makes the theoretical study of the
spectral line shapes physically relevant,!? the recent
efforts to find satisfactory experimental systems corre-
sponding to the two-dimensional model of the exchange-
coupled Heisenberg spin system have to a certain extent
succeeded.?® To this extent, the present study may also
be considered to be physically motivated.

For simplicity, we shall restrict our consideration to
the simplest two-dimensional lattice, the square net.
If desired, these results may be extended to other

2 3 4 5
w/p

lattice structures with only slight modification in the
algebra.

The frequency moments for this system at infinite
temperature are

(wr=(2I)*4S(S+1)[2—cosK ,—cosK , |, (4.1)
(whHr= 2D*(8/3)[S(S+1)JP[2— cosK ,—cosK |
X{4—cosK ,—cosK,—[4S(S+1)T1}. (4.2)

Using Egs. (4.1) and (4.2) and following the pro-
cedure described in the previous sections, we determine
the parameters A(K) and I'(K) ; consequently, through
the use of Egs. (2.8) and (A6), we write down the

T T T T
025 | .
020 |- -
.0I5 -
3
F16. 4. As in Figs. 2 and 3, our % 010 .
results (continuous curve) for the =
third-neighbor correlation for S=3% in "
one dimensjon are compared with the = 005 | ~
CR results. The quantitative agree- s
ment is unsatisfactory in the range of v \ l
small w, i.e., w1, = 0 1 .
-905 - -
-000 - ———I -
1 1 1 ]
2 3 4 5
w/y

2 R. B. Griffiths, Phys. Rev. 135, A659 (1964).

2 See, e.g., R. N. Rogers, F. Carboni, and P. M. Richards, Phys. Rev. Letters 19, 1016 (1964).

% M. E. Lines, J. Appl. Phys. 40, 1352 (1969).
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020 i
015 I~

OI0

¢

Fic. 5. Our results (continuous
curve) for the frequency Fourier
-1 transform of the fourth-neighbor
correlation in one dimension for spin
4 are compared with the CR results.
- The quantitative agreement of these
results is poor in the range of small-
small w, i.e.,, wSI and is probably
- somewhat worse than it was in the
case of third-neighbor correlation (see
Fig. 4). As mentioned in the text,
- there are three possible explanations
for this, namely, that esther our theory
is inadequate in describing corre-
lations of larger spatial separation or

[o]

1< S5 (18§ (0) >,

-005

{ . 1 I

the corresponding results of CR (the
reliability of which crucially depends
- upon the accuracy of the extrapolation
procedure used for predicting the
results in the thermodynamic limit
- N=c from their exact finite linear-
chain results) are less reliable for the
third and the fourth nearest-neighbor
correlations, or a bit of both these

Yt

summand given in the right-hand side of Eq. (2.17).
Now we exploit the symmetry of the square Brillouin
zone, noting that its boundary is square, and K, and
K, vary between the limits —= to <. In this manner,
we calculate the correlations ®,(w). The self-correlation,
i.e., =0 and the nearest-neighbor correlation, i.e.,
n=1, are the only ones we study here, but, if desired,
further neighbor correlations can also be calculated
readily in the same fashion.

In Fig. 12 we give a plot of I'® o(w’) versus o’
(primes indicate the reduced units) for the minimum,
i.e., %, and the maximum, i.e., «, values of the spin S.

[ 1 ) x
1 2 3
w/1
F16. 6. Continuous curve depicts our one-dimensional spin-
results for ®(Kw)=Fx(w)/Bw with K=2x/9. [The ordinate is

80®(K,w)I and the abscissa is w/I.] The crosses indicate the
corresponding results obtained by CR.

5 statements is true.

Three points are worth noting. Firstly, the divergence
of ®¢(w') as &' — 0 is much less pronounced in two
dimensions than is the case in one dimension (compare
Fig. 1). Secondly, the curves for S=% and S= are
closer together in two dimensions than in one. Thirdly,
the cutoff is not as sharp and dramatic in two dimen-
sions as was observed to be the case in one dimension
and occurs at a higher value.

Figure 13 depicts the nearest-neighbor correlation
®;(w) for spin 3 in two dimensions. The results are
mildly similar to the corresponding ones in one dimen-
sion (see Fig. 2) except for the general features of the

4

Bw

1F (W)

80X

1 1 1 1
] 2 3 4 5

w/1

F1G. 7. Plot of our one-dimensional spin-} results for (80 times)
I®(Kw), with K=4x/9 versus w/I. The crosses indicate the CR
results. Note that while the quantitative agreement of these
results for small w, i.e., w1, is no longer as good as was the case
in Fig. 6, they do demonstrate (as already noted in Ref. 1) that
®(K,w) is not a monotonically decreasing function of w when K
becomes bigger than roughly about a third of the zone boundary.
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Fi16. 8. Plot of our one-dimensional spin- results for 80/ (K,w)
versus (w/I) for |K|=6x/9. The crosses indicate the CR results.
The trend noted in Fig. 7 persists, namely, that the quantitative
agreement of these results is deteriorating for small w values.

differences noted in the first and third observations
made in the preceding paragraph and the fact that these
differences are somewhat less pronounced for the
neighboring correlations than is the case for the self-
correlations.

V. THREE DIMENSIONS

For convenience, we shall once again treat only the
simplest lattice, i.e., the simple-cubic (sc) lattice. The

T T T T T

1Fk (@)

80X —

F16. 9. Analogously to Figs. 7 and 8, the plot shows results for
80/®(K,w) versus w/I for a one-dimensional spin-} system for
| K| =8r/9. The quantitative agreement with the corresponding
results of CR (shown as crosses) is no longer adequate—except
at large frequencies. Notice that all ®(K,w) (compare Figs. 6-9)
seem to cut off before w gets to about 6. Moreover, the non-
Gaussian characteristics of ®(K,w) should be noted.
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F1c. 10. Plot of ®o(¢)/®o(0) versus It for one-dimensional
spin-} system. The broken curves marked C and O are the CR
and our results, respectively. The full curve marked W has been
taken from Ref. 1 and represents a transcription of Windsor’s
unpublished classical-spin results (which are appropriate to
S —w) to the spin-} case through the transformation S=3%V3.

results for other loose packed (three-dimensional)
lattices are likely to be qualitatively similar to these.

The infinite temperature-frequency moments for the
sc lattice with nearest-neighbor exchange are

(= (20)*$S(S+1)

X (3—cosK ;—cosK,—cosK.), (5.1)
(= I)*(8/3)LS(S+1)
X (3—cosK ,—cosK ,— cosK ;)
X {19/3—[4S(S+1)]*
—cosK ,—cosK,—cosK,}. (5.2)
# T T T
' n=1
3f -

-
<smsEox(55" l))
o
I
1

Tt

Fic. 11. Time-dependent nearest-neighbor and next-nearest-
neighbor results for S=% one-dimensional system.
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Fic. 12. Plot of I®,’(w) versus ' in a two-dimensional square
lattice. The continuous curve corresponds to the infinite-spin
case (this result should be compared with the corresponding
classical-spin calculations of Windsor whenever they become
available). The broken curve refers to spin 4. Compare with the
corresponding reduced unit plots for one dimension given in Fig. 1
and note the somewhat closer agreement of the two curves in two
dimensions.

The structure of the Brillouin zone for this system is
once again very simple, i.e., K, K, and K, vary
between —m and -+, and the correlations of interest
are computed by following the previously described
procedure and exploiting the symmetry of the integrand
and the Brillouin zone.

The self-correlation function is plotted in Fig. 14 for
spins S=% and .S= » in the reduced unit scale. These
three-dimensional results differ strikingly from the
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Fic. 13. Nearest-neighbor correlation ®;(w) in two dimensions
for spin 4. Compare this plot with the corresponding result in one
dimension given in Fig. 2 and note their general similarity except
for the fact that the relative scale of events in two dimensions is
extended in frequency by about 30-50%,. For instance, note the
cutoff frequencies and also the frequency at which ®;(w) attains
its minimum value.
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F1c. 14. Reduced unit plot of the self-correlation function in
three dimensions (i.e., in a sc lattice). The infinite-spin results
(full curve) are even closer to the S=3 results (dashed curve) in
three dimensions than in two (compare Figs. 1 and 12). Note also
that in striking contrast with the corresponding results in one and
two dimensions, ®o(w) remains as w — 0. In fact, for w=0,
[4S(SH1)T21{Sp*(£)S0*(0) ) (v)=0.0367 and 0.0383 for spin %
and o, respectively.

corresponding results in one and two dimensions in the
fact that the transform ®¢(w) remains finite as w— 0.
Moreover, in keeping with the trend noticed earlier,
the cutoff occurs at a higher frequency, and the results
for S=% and S= o are closer together here than was
the case in one and two dimensions. The results for the
nearest-neighbor correlation ®;(w) are plotted in Fig.
15, and when compared and contrasted with the corre-
sponding results in one and two dimensions (i.e., Figs.
2 and 13) they too confirm the general trend noted
earlier.

In Figs. 16 and 17 we compare our spin-c results
with the corresponding computer experiments results
of Windsor.? (Note that it is essential to use the reduced
scale for this purpose.) The agreement of these results
is generally quite good.
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Fic. 15. Nearest-neighbor correlation ®;(w) for spin
in the sc lattice.
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F1c. 16. Windsor’s computer experiment results for the self-
correlation ®y(w) for classical spins of magnitude S= in a sc
lattice (dashed curve) are compared with our results in the corre-
sponding limit (the plot is in the reduced units). The agreement is
excellent.

VI. CONCLUSIONS

The phenomenological two-parameter Gaussian con-
struct for the generalized diffusivity seems to be an
adequate approximation for calculating the dynamic
properties of Heisenberg spin systems at elevated
temperatures. This conclusion is based on the following
observations.

(a) In one dimension, the steep rise and the finite
cutoff frequency of the Fourier transform ®,(w) is
adequately reproduced by this procedure. Moreover,

the agreement between the present results for spin 1
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F1c. 17. Plots of the time-dependent self- and the nearest-
neighbor correlation in a sc lattice in the reduced units for classical
spins of magnitude « (the crosses indicate Windsor’s computer
experiment results for classical spins). For convenience of display
the magnitude of the nearest-neighbor correlation has been
multiplied by a factor of 6. Our results for S= are given as
continuous curves. The agreement is very good for the self-
correlation. The relative scatter between the corresponding results
for the nearest-neighbor correlation is somewhat greater.
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and the exact corresponding calculations of CR is
largely satisfactory. Nevertheless, it should be recorded
that some quantitative discrepancies between the pre-
dicted Fourier transforms ®(K,w) and those computed
by CR are observed for large | K|’s. Similarly, the agree-
ment of the corresponding results for ®,(w), #=>3, is
mainly qualitative.

(b) In three dimensions, our predicted results for
S —o are in very satisfactory agreement with the
computer-experiment results of Windsor for classical
spins.

It is therefore believed that the present calculations
are a meaningful first estimate of the structure of the
space-time-dependent correlation functions. In particu-
lar, our results for S>1 in one dimension, for S>1 in
two dimensions, and those for quantum spins in three
dimensions (i.e., all those cases for which no reliable
ab initio or computer-experiment type of calculations
are available) should be of value in analyzing the
relevant experiments.
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APPENDIX

The principal part integral Q(w) [see Eq. (2.18)] is
readily calculated when the diffusivity is represented
by the two-parameter Gaussian given in Eq. (2.8). To
see this, let us rewrite Q(w) as

AT +eo 1 1
Qw)= —(—-—')6’/ e_""2r2(———~+ >dw’. (A1)
27w _ w—w' wtw’

00

The two terms in the right-hand side of (Al) are
clearly equal, as can be ascertained by changing the
variable from o’ — —w’. The substitution I'(w' —w)=x
now transforms Q(w) to the following:

Q(w)=(AT/m0)U(y), (A2)

+o0 g (a+y)?
U(y)=—U(=3)=0 f S

—o x

(A3)

The function U(y) satisfies the first-order differential
equation ‘
dU/dy+2yU=—2+/r, (A4)

which, consistent with the boundary condition derived

from Eq. (A3), i.e., U(0)=—U(0)=0, has the solution

K
e”dx.

Uy) = — (@v/m)e / (AS)

0
Therefore, Q(w) has the result

24(K)T (K o)
Qw)= -—<——~——A(w\)/7r( )>e““’2“2(“> /0 e?dx. (A6)



