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magnitude smaller than D„„.This fact has already
been recognized qualitatively by Hirst and Kaplan. '4

Moreover, the sign of D~„„is negative. This is so be-
cause there are two effects which contribute to the
diffusion constant, as they do also to the stiffness pa-
rameter. "The erst of these effects is the kinetic energy
it costs to create a spatially dependent spin polarization.
This effect gives rise to the second term in Eq. (27).
The second effect is that the exchange interactions par-
tially tend to compensate the change in kinetic energy.
The first term in Eq. (27) is due to the latter effect. In
a ferromagnet, the first effect dominates the second,
thus making Dt„„negative. The following alternative
argument also shows that the ferromagnetic diffusion

constant is negative. Suppose that at a certain time the

'4L. L. Hirst, Phys. Rev. 141, 503 (1966); J. I. Kaplan, ibid.
143, 351 (1966).

static ferromagnetic spin polarization is in the s direc-
tion at nearly every point in space, save for a small
spatial region where it makes an angle 0 with the s direc-
tion. Then, in the absence of a static magnetic held and
additional relaxation mechanisms (i.e., described by
Tu), the spin polarization will eventually make an angle
0 with the s direction at every point in space due to
diffusion and ferromagnetic exchange interactions. "

After this paper was submitted for publication, an
article by Fulde and Luther appeared, where indepen-
dently a similar problem was treated —however, from a
different point of view. "Because of the fact that differ-
ent approximations were used, a direct comparison with
the work of these authors is not feasible.

"For our theory to remain valid, we must require that the total
effective relaxation time T2/(1+T2Dq') be positive. This is satis-
fied under the usual experimental conditions."P.Fulde and A. Luther, Phys. Rev. 17S, 337 (1968).
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Spin and energy transport in spin-~ anisotropic magnetic chains with nearest-neighbor interactions are
studied in the high-temperature limit. The analysis is based on a calculation of the zeroth, second, and
fourth moments of the Fourier transforms of the spin and energy density correlation functions. Spin diffusion
is predicted for sufIiciently small values of the wave vector, except in the XI" limit. Energy transport is
nondiffusive for all values of the wave vector. Energy diffusion is predicted for chains with isotropic nearest-
neighbor interactions and spin greater than ~ as well as for spin-~ two-dimensional square lattices and
three-dimensional simple and body-centered cubic lattices having isotropic nearest-neighbor interactions.

ECENTLV there has been considerable interest in
the dynamical properties of spin-2 magnetic chains

in the high-temperature limit. ' ' This interest has been
stimulated partly by the availability of computer calcu-
lations by Carboni and Richards' for isotropic systems
with up to 10 spins and partly by the fact that the
Hamiltonian in the XV limit (see below) can be trans-
formed into that of a system of noninteracting fermions
whose dynamical properties are easily analyzed. 4

For the most part the calculations reported to date
have focused on spin transport. It is known that spin
transport is diffusive for small values of the wave vector
k for an isotropic interaction. ' The emphasis in this
paper is on the complementary phenomenon of energy
transport. ' YVe will show that the energy transport
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remains nondiffusive in the k ~ 0 limit. Qn the other
hand, energy diffusion is present in chains with 5& 2 and
in two- and three-dimensional lattices with 5= ~.

Our analysis is based on the Hamiltonian with nearest-
neighbor interactions and periodic boundary conditions

~(ir +) —& p (s ns n+1+s ns ++1)++ p s es ++1

n=l n=l

where the sum is over the X spins in the chain. B(n,0)
is the Hamiltonian for the XY model, while H(n, n) is
the isotropic (Heisenberg) Hamiltonian. In the high-
temperature region the dynamical behavior is most
conveniently analyzed in terms of the spin and energy
correlation functions f s~(t) and fz"(t), which are de-
fined as follows:

TrLA s,z(—k) exp(iKt)A s z(k) exp( —iXt)]f.."(t)=
Tr/As, z( &)&s,z(&)j—

(2)
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Here Tr signifies the trace operation and the A s,s(k) are
defined by the equations

As(k) = Q e'" "5."",
n=1

N

As(k) =-,' Q e"*nt n(5, "5,"+'+5„"5"+'+5,"5," '

+5 nS n i)+—+(5 nS n+1+5 nS n—I)] (4)

lt is seen that As(k) and As(k) are the Fourier trans-
forms of the spin and energy density operators,
respectively.

We introduce the Fourier time transforms of fs, @"(t)
by means of the equation

fs, s'(&) = 4k' e '"'Ps, z(-k,46).

~2n i)e d46 462 "&s,z(k, 4a) . (6)

The moments of Fs(k, a&)n are easily calculated from
equations given in Ref. 5:

o)ss 1

(462)s'= 2n2 sin'(-'ka)

(4e )s"=6n sin (22ka)+n'y' sin2(22ka),

where u is the lattice parameter. The calculation of the
moments of the energy density function is tedious but
straightforward. The results are

The dynamical behavior is rejected in the moments of
& s,z(k, 46)

The relation of the moments to the dynamical be-
havior is displayed in the moment fluctuation ratios
Rs,z(k) '

When Rs s(k)«1, the transport is diffusive, and when

Rs,z(k)))1, weakly damped wave propagation pre-
dominates. The appropriate ratios are

4 sins(-'k42)
Rs(k) =

2 sins('sk44)+ (y/42)2

~2 (~2+2~2)2

Rs(k) =
~6+$~4y2+2~2p4+~6

For TWO, Rs(k) =0 when ka«
~ y/n~, indicating diffu-

sive behavior in the long-wavelength limit; and Rs(k)
=4/t2+(y/n)'] for ka=2r, indicating a more complex
transport process on a shorter spatial scale. For y=O,
Rs(k) =2, so that there are no diffuse modes for any
value of k, as is to be expected for a gas of noninteracting
particles. ' On the other hand, Rs(k) is independent of
k and has the same value, 1, for y= 0 as it has for y =a.
These two features together point to the absence of
diffusion. '

The absence of energy diffusion appears to be limited
to the spin-22chain. We have calculated Rs(k) for the
two-dimensional square lattice and three-dimensional
simple and body-centered cubic lattices with isotropic
nearest-neighbor interactions and 5= ~ and have found
that Rs(k) ~ 0 as k —+ 0. The moments for the chain
with isotropic nearest-neighbor interactions and arbi-
trary spin have also been calculated. The moment
Quctuation ratio has the value

sin'(-', ka)
Rs(k) = (16)

sins (2k42)+ I-', —226/LS (5+1)]I
(~6) 2 —1

2n2(ns+ 2')
CO sin'(-,'ka),

2422+72

4~2 (~4+4~2~2+p4)
~4 k —sin4(-', ka,) .

2~2+p2
(12)

' H. S. Bennett, Phys. Rev. 174, 629 (1968).
7 K. Kawasaki, Ann. Phys. (¹Y.) 37, 142 (j.966).' The function J"~(k,or) can be computed in closed form for y =0:

Fs(k, 44) =[2 ~n sin(-,'ka) ~]-'L1—~2/4a2 sins(-,'ka)g"2
)n (

&2)n sin(ska) (

Es(k,~) =0, (~[)2(a sin(-', ka) (.

(10) indicating diffuse propagation for (ka)'«1 —3/
BS(5+1)].


