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Ref. 8, we estimate that for the AI-A1203-GeTe junc-
tions 0. ' is approximately 0.45 eV and for Al-A1203-
SnTe junctions a ' is approximately 0.35 eV. For the
In-SrTi03 junction used in Ref. 10, 0= is smaller.

If we consider a positive voltage applied to the
normal metal so that tunneling occurs from the super-
conducting semiconductor into the metal, we have

de ~

s'(.„.)V([),
A(V) Z(&k')

(35)
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Cng ~ e+X)-'
I(V)'=+ de v

~
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4Z ~ Zi

where F'(eI, ) is obtained from &(e&.) by replacing C,
by C,.=2(C~+C„—CV).

Expressions analogous to Eqs. (28) and (29) may be
obtained for tunneling from the superconductor. We
have, for example,

dy„„(/d V = —qV(B)-,'Ll —V/(V' —dP)"'jSx

+c&'(~)lLI+ v/(v' —~')'"js2

which correspond to Eqs. (29) and (30). When ~r&&C'~

and gV«C, &'(e) can be obtained from Eq. (32) by
replacing V by —V. Also, I(V)' can be obtained from
Eq. (33) by replacing V by —V and N($)' by v($)'.

The derivative of current with respect to voltage for
tunneling into a low-carrier-density superconductor
obtained from Eq. (29) with Z= 1, X=O, and A= const
is plotted as a function of voltage in Fig. 2. Tunneling
from the superconductor into the normal metal using
the same parameters in Eq. (36) is given in Fig. 3.

The decrease in conductance shown in Fig. 3 for all
voltages shown may be contrasted with tunneling from
a nonsuperconducting semiconductor into a metal,
where the conductance increases when qV&~g. The
decreasing conductance shown in Fig. 3 arises from the
superconducting interaction, specihcally from the 6rst
term of Eq. (36), which is zero when 6=0.

V. CONCLUSIONS

The equations derived for dj/dV in Secs. III and
IV may be used to determine the energy gap function
from experimental tunneling curves in low-carrier-
density superconductors. These equations may also be
used in conjunction with equations for the energy gap~
and knowledge of barrier dimensions to predict tun-
neling characteristics of metal-insulator-superconduct-
ing semiconductor junctions.

These equations, with slight modifi. cations, may
a]so be used to obtain the conductance for tunnel-

ing from a degenerate semiconductor into a metallic
superconductor.
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The structure of the theory of impurity spin excitations in a one-band model of a ferromagnetic metal is
examined. The existence of a local magnetic moment and an oG-diagonal spin correlation in the impurity
ground state is shown to be closely related to the occurrence of localized spin excitations (localized magnons).
Expressions for both the transverse and longitudinal reduced susceptibility functions are obtained in terms of
single-particle Green's functions. Poles of the reduced transverse susceptibility function are shown to corre-
spond to local magnon states, and poles of the reduced longitudinal susceptibility are identi6ed with Quctua-
tions in the magnitude of the impurity moment. The role of localized electronic states is brieQy discussed.
Some of the well-known results for the unperturbed ferromagnet are derived in the Appendix.

I. INTRODUCTION

'HK nature of impurity spin excitations in mag-
netic insulators which may be described by the

Heisenberg spin Hamiltonian were 6rst studied in
detail by Wolfram and Callaway' and more recently

~ T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).

by others. " Spin-wave impurity states (localized
magnons) outside of the host ferromagnetic spin-wave
band, as well as virtual or resonance impurity states
within the spin-wave band, may occur when the im-

~ S. Takeno, Progr. Theoret. Phys. (Kyoto) 30, 731 (1963).
3 D. Hone, H. Callen, and L. R. Walker, Phys. Rev. 144, 283

(&966).
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purity spin and exchange interaction diQ'ers from that
of the host system. Comments by Jaccarino, Walker,
and Wertheim4 on ferromagnetic I'e samples with
dilute concentrations of Mn stimulated calculations of
the temperature dependence of the impurity mag-
netization by Hone and Callen' and also by Wolfram
and Hall' who in addition showed that a spin-wave
specihc-heat anomaly should result when low-lying
spin-wave impurity states occur.

We are concerned here with the question of how the
above qualitative features of the impure insulating
ferromagnet carry over to the case of the metallic
ferromagnet. To date, no detailed analysis of localized
spin excitations in ferromagnetic metals has been given,
although, the problem has been brieQy considered by
I.ederer who pointed out that localized magnons
should show up as additional poles in the transverse
susceptibility function. In this paper we formulate a
theory for the impure ferromagnetic metal and examine
some of its properties which are relevant to the localized
spin-excitation problem.

The theory of impurities in a ferromagnetic metal is
very complex, and therefore very interesting, because
of the rich structure of the problem. Many impurity
eGects, which have been studied individually, are
simultaneously present in the impure ferromagnetic
system and must be treated with equal respect. Ques-
tions concerning the existence of localized electronic
states, localized magnetic moments, and localized spin
canting in the impure ferromagnetic ground state are
inseparable from the questions we wish to ask about the
impurity spin excitations.

In principle, the problem is straightforward: cal-
culate the susceptibility of the impure ferromagnetic
system, identify the poles associated with the formation
of localized spin excitations and determine the depen-
dence of the localized excitation energy on the important
parameters. The problem is greatly complicated by the
fact that the proper impurity ground state, which de-
pends upon the impurity perturbation, is not known
a priori but must be calculated self-consistently. This
leads to the situation described above in which the
problem of the stability of the assumed ground state
must be considered concomitantly with the excited
spin-state problem. The connection between these two
problems is a central feature of this paper.

We consider the Wolf model~ for an impure ferro-
magnetic metal having a single band with ari intra-
atomic Coulomb repulsion between electrons occupying
Wannier states of diferent spin on the same atomic site.
The theory is developed in the Wannier representation
using the generalized random phase approximation

(RPA). We assume that the Hamiltonian describes a
system whose ground corresponds to a spatially uni-
form ferromagnet in the absence of the impurity. The
impurity is characterized by the perturbation in the
Coulomb interaction hU and the core scattering poten-
tial V. In Sec. II, we first calculate by self-consistent
perturbation theory the conditions for the existence of
off-diagonal spin correlation (ODSC) in the impurity
ground state. We obtain an equation which determines
sets of values for hU and V corresponding to a transi-
tion curve in the AU —V plane. A similar equation is
derived for the existence of a local magnetic moment
(different from the moment of the ferromagnetic host).
In Sec. III, expressions for the local reduced transverse
and longitudinal susceptibility functions are derived.
in terms of the single-particle Green's functions. Equa-
tions are derived for the localized spin excitations
and it is shown that the conditions for the existence of a
low-lying spin excitation is directly related to the condi-
tion for the existence of either ODSC or local moment
formation in the ground state. In particular, it is shown
that the condition for a zero-energy local magnon is
identical to the condition for the formation of ODSC
or spin canting in the ground state. Similarly, the condi-
tion for the formation of a local magnetic moment is
shown to be identical to the condition for a zero-energy
pole in the longitudinal susceptibility. The role of the
localized electronic state is briefly discussed. In Sec. IV,
the results are brieQy summarized and some of the im-
portant features of the unperturbed ferromagnetic metal
are discussed in the Appendix. A brief discussion
of some of the results in this paper has been given
elsewhere 8

II. GROUND-STATE PROPERTIES

A. Hamiltonian

We consider the simple one-band strong-correlation
model' for a ferromagnetic metal with an impurity
atom at the lattice position Ro

Z=Q b;,C, C;,+Q U;n, tn, )+V Q no, (1)

where C;,t (C;,) creates (destroys) an electron in a
Wannier state at the lattice position R; with spin cr

(o=), $), and n,. is the number operator for the
Wannier state. The 8,; are the matrix elements of the
single-particle Hamiltonian between Wannier states
located at R; and R;. These matrix elements are related
to the band energy, e&, by the relation,

V. Jaccarino, L. R. Walker, and G. K. Wertheim, Phys. Rev.
Letters 13, 752 (1964).

' T. Wolfram and W. Hall, Phys. Rev. 143, 284 (1966).
' P. Lederer, thesis, A. La Faculte Des Sciences De L'universite

De Paris, 1967 (unpublished).
7 P. A. Wolff, Phys. Rev. 124, 1030 (1961).

Single-particle scattering from the impurity core poten-
tial V is represented by the last term of Eq. (1). Elec-

8 T. Wolfram J. Appl. Phys. (to be published}.
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trons with diferent spins experience a Coulomb repul- where ef is the Fermi energy. Thus in order to obtain
sion U; when they occupy Wannier states on the same G, (a&), Eq. (6) must be solved self-consistently.
lattice site R;. For the impurity system we have

U;= U, (i/0)
= U+AU (i=0).

(3)

[G., (t)) '= —io(t) &Lc (t),c "'(o))+), (4)

where the brackets indicate the zero-temperature
(T=O) expectation value of the enclosed operator for
the impurity ground state of the system and [A,B)+ & &

indicates the anticommutator (commutator) of the
operators A and B. The function 8(t) is unity for t) 0
and vanishes otherwise. We use a caret over the symbols
for functions to indicate a matrix. We introduce the
Fourier-transform Green's functions

[G.,"(~)1'=(k~) dt e'"'[G....( )t);,

The equations of motion for the Green's functions are
obtained in the usual manner. ' Use of the generalized
RPA yields the matrix equation,

coG...(&o) = (8,;/2n-)I+ (8+P.)G,;(ra)

+M.G.-. (s&), (6)

B. Single-Particle Green's Functions

The single-particle retarded Green's functions' are
defined by

G..(a)) =G..'((o),

G.;((o)= 2~G.. (a&)M.G;; ((o).
(10)

If we impose self-consistency by means of Eq. (9),
then we must have,

C. 08-Diagonal Spin Correlation

In this paper we assume that the Hamiltonian of
Eq. (1) describes a system whose ground state, in the
absence of the impurity, is a spatially uniform ferro-
magnetic state with &n; )=n, and vanishing ODSC.
The latter condition means that the local and bulk
magnetization vectors are parallel to the spin-quantiza-
tion axis and that there is no component of local or
bulk magnetization perpendicular to the spin-quantiza-
tion axis.

The conditions for which Eq. (6) has self-consistent
solutions with a small but finite ODSC can be deter-
mined by means of a self-consistent perturbation cal-
culation. There may exist critical values of V and AU
which define a transition curve in the V-AU plane. On
one side of this curve (region Ia) the ODSC exists,
while on the other side (region IIa) the ODSC van-
ishes. "Let G . (co) be the solution of Eq. (6) for V
and hU corresponding to a point infinitesimally near
the transition curve in region IIa. If V and hU are
changed infinitesimally to give a point in region Ia we
find the new Green's function to first order in the ODSC
to be

where G ..(~) is an E by E matrix whose elements are
[G (&o));~, 8„. is a Kroneker 8 function which is
unity for a =0' and vanishes otherwise, and we use 0 to
denote the spin state opposite to that of 0. The remain-
ing matrices in Eq. (6) are dined as follows:

&C;,C;;t)=4 Im &P [G.,'(~));,[M.),g

X[G;; (~)).; . (11)

[P.);,= U, &n,.)S;,+VS„S„, -

[~.)v= U &c'.c'.-')4, (7) =EU(J UR„-) 4;h-p„-, — (12)

Substitution of the matrix elements of M, from Eq. (7)
and some matrix algebra yields the matrix equation

(CG,CO- )
&c,.c,.-t)

~ ~ ~

.&C~.c~g ).G., ((o) = (2s)—'[A..((a)+ArÃ. ;(co)).

where the X-element columns vectors tt, - and hp; are
given by

We shall refer to the quantity &C;,C;;~) as the ODSC.
The real and imaginary parts of the Green's functions
matrix are defined by (13)

The ground-state averages, &n;,) and &C;,C;;~) are
related at T= 0 to the Green's function by the relation'

&Co.co;t)
0
0 (14)

(C;. C;.)= d [&-( ))'*, 0

"Transition curves for the various magnetically ordered states
'See, for example, D. N. Zubarev; Usp. Fiz. Nauk 71, 71 of thepurehost are discussed byo, R. Penn, Phys. Rev. 142, 350

(1960) /English transl. : Soviet Phys. —Usp. 3, 320 (1960)j. (1966).
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The matrix $, - has elements

d~([A.'(~)]' P'-.-'(~)],'
+[&.-.-'(~)] '[&- (~)]';) (1~)

In a later section, we shall relate $,.; to the local reduced
transverse susceptibility matrix. The components of
Eq. (12) give the ODSC functions

(C;,C;; )=Av[(I UR„-—)
—'X„-];p(C0,Cg,- ). (16)

For i=0, Eq. (16) requires that

1=AU[(I—UR,.-) 4.;]00, (17)

in order that ODSC exist. The existence of ODSC for
the ground state would imply that the magnetization is
canted with respect to the unperturbed ferromagnetic
ground state. The magnitude or (C;,C,.-t) is expected to
be maximum at the impurity site and to decrease
rapidly with increasing distance from the impurity. "
We shall refer to Eq. (17) as the local spin-canting condi-
tion (LSCC). We are assuming here that a state in
region Ia lies lower in energy than a state without the
ODSC having the same values for V and AU. Although
this assumption has not yet been established rigorously,
we show in a later section that the converse leads to a
situation in which the ground state is unstable to the
formation of localized magnons. "

It should be noted that it is necessary to use the cor-
rect impurity ground state for G„when investigating
the LSCC. In the derivation of the LSCC no assump-
tions were made concerning the quantities (n;,). The
ground state corresponding to 6, may or may not
have uniform magnetization depending upon the values
of U and AU.

corresponding to a point infinitesimally near the transi-
tion curve in region IIb and let G„~(a&) be the solution
of Eq. (6) for these values of V and Av. If V and Av
change infinitesimally, so that they now correspond to a
point near the transition curve in region Ib, then the
matrix elements of ~, are small but finite, and first-
order perturbation in AP yields the new Green's
function

G.;(~)=G"'(~),
G..(co) G=..'(co) AP,G..'((u)+ G, '(a.))

(20)

The matrix elements of R are given by

d~{[&-'(~)]'[&-'(~)]'
+[&-'(~)]'[~-'(~)]') (22)

We show in a later section that R, is related to the local
reduced longitudinal susceptibility of the system. Equa-
tion (21) may be written in the supermatrix form

(
Anq ( 0 —UR, —AUAR, ~

An g E—Ukg AUARg 0— !

X( i, (23)

where the S-element column vectors hn, are defined by

Using Eq. (9) the following set of coupled equations for
the change in the population factors is obtained:

—Ae,.= U Q (R,);,Ae;;+AU(R, );0Aepg.

'
Anp

Any,
hn, =

D. Local Magnetic Moments

Next we turn our attention to the problem of deter-
mining the conditions under which the quantity (n;, )
of the impurity system is nonuniform. We write the
matrix elements of P appearing in Eq. (7) in the form

[&.]' = [&.']a+ [Ap.]'

.hn~ .
(AR.);,= bo, [R.],o. (25)

where [i.&],,= (Vn.+VS,„)S;,y A-VN.

[AP.];,= UAn;. s,;+AUAn;. -
UR, +AUAR,

(26)=0.In Eq. (19),n, is the uniform value of (n,,) for the un-
perturbed ferromagnet and An;, = (e;,) n, is impu—rity-
induced change. There exist critical values for U and
hU which define a transition curve. On one side of this
curve (region Ib) An„, is nonvanishing while on the
other side (region IIb), An;, =0. Choose V and AU

We may express this requirement in the Iorni

(27)

In order to obtain nonzero values for the AN;, it is
necessary that the determinant of the coeKcients

( )
vanish '

"This conjecture is based upon an approximate calculation of
the function ([I—UX "] 9, -j'p using an unperturbed ferro-
magnetic ground state.

"The author is indebted to I-. M. Falicov for valuable sug-
gestions concerning this point.

vrhere

( i sR~)
ELAN I
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in the paramagnetic case. [X -Joo is the paramagnetic
local susceptibility at the impurity site. Similarly the
LMSC obtained from Eq. (21) is

1= (U+hU)'[kggoggE)$o0. (33)

&1—U~U[k, (I—U'44)-'4]„)
X(1-U~Ug„g-U ~,~,)- ~,~..)
—(AU)'[(I—U9gRg) 9.g]00

X[(I-U ~,S,)- ~,j..=0. (30) III. LOCAL REDUCED SUSCEPTIBILITY
FUNCTIONS

Because of the simple form of d,R, the determinant of
In a paramagnetic system R&='R&=X„-, and proper

Eq. (27) is easily evaluated, with the result that

components of the local longitudinal susceptibility
matrix as will be shown in Sec. III.

(n,.—n;.-)Wn. —n.-. (31)

The magnitude of the local moment is expected to be
maximum on the impurity atom and to decrease
rapidly with increasing distance from the impurity site.
We refer to Eq. (30) as the local-moment stability
condition (LMSC). In the derivation of the LMSC no
assumptions have been made concerning the ODSC.
The V-dU plane may contain two transition curves;
one corresponding to the LSCC and a second cor-
responding to the LMSC. These curves divide the V-hU
plane into the following possible four regions; (i) no
local moment exists and no ODSC exists, (ii) no local
moments exist but ODSC does exist, (iii) a local mo-
ment exists but ODSC does not, and (iv) a local mo-
ment and ODSC both exist.

In a paramagnetic host the two transition curves
coincide and the LSCC is simply a statement of the rota-
tional invariance of the local moment. A ferromagnetic
host is not isotropic since there is a preferred direction
associated with the magnetization and, in general, the
local-moment transition curve and the spin-canting
transition curve are different.

E. Localized Perturbation

Equation (30) defines the transition curve for the
existence of nonzero An;, and also for the existence of
local magnetic moments diferent from that of the host
ferromagnet,

In this section, we calculate expressions for the local
reduced transverse susceptibility matrix x(&o) and the
longitudinal susceptibility matrix g.(o&). We show that
the functions A„- and 7I, of Sec. II are related to the
transverse and longitudinal susceptibility function
X(au) and 7t, (ur) at zero energy. The impurity spin excita-
tions may be associated with the occurrence of new poles
or structure in the susceptibility functions. We show
that the existence of low-energy impurity spin excita-
tions is closely related to the instability of the impurity
ground state to the formation of local spin canting
and/or local magnetic moment formation. In fact, it is
shown that condition for the formation of a zero-fre-
quency localized magnon is identical with the LSCC.
New poles may also appear in the longitudinal sus-
ceptibility corresponding to fiuctuations in the magni-
tude of the impurity moment. We refer to these modes
as polar spin excitations. The condition for the occur-
rence of a zero-frequency polar spin excitation is shown
to be identical with the LMSC.

A. Local Reduced Transverse Susceptibility

We begin by examining the properties of the two-
particle Green's-function matrix 5(t) defined by"

[S(t)1,,„=—ie(t)([C' '(t)C;t(t), C. '(o)C (0)3-). (34)

The Fourier transform S(co) defined by
It is interesting to consider the form of the LSCC and

the LMSC in limit that only the impurity site is per-
turbed. If we require that the ODSC vanish except at
the impurity site then Eq. (12) yields the LSCC,

5(co) = (-,'n-) dt s(t)e'"' (35)

1= (U+AU)[R -gpo.
satisfies in the generalized RPA, the matrix equation,

(32)

This condition is structurally the same as the usual
local moment criterion for an impurity in a paramag-
netic host. "Here P, ;joo is related to the local trans-
verse susceptibility for a band-split ferromagnet while

"See, for example, D. I.. Mills and P. Lederer, Phys. Rev. 160,
590 (1967l.

(uS(cu) = (X+W+J+j)5(a))+D, (36)

'4 These functions are the Wannier components of the momen-
tum space (Bloch representation) operators pCf,+,g~(t)Cf,g(t),
Ck.~(0)Cf,.+, (0)g usually studied; see, for example, Refs. 13
and 15.

if the ODSC vanishes for the ground state. The matrices
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have the following elements:
A

E&7'&k1= R, f'&*& &—
*& &1;,

E~],,a&= [&17,;k&
—[&17;;~1,

El'7' =» & {&( &+[~V( o &+I'7&o}

[&~7'~+= &'8&;{U(~'t&+ [~U(&0&&+ l'7&0'},

[~7g~1= &bI &{&,s(G1t&,1&
—8,&«,t'&, t&},

[j]'&&,&= A&%i{ &n&'0«0&, 'C;1) »A—;(C'1'Cot &},

[D]' ~&= (2~){»~(c't"C«&—~ &(C»'~1&}

(37)

In Eq. (36) matrix multiplication is defined such that if
A=BC, , then

E&7'~~& =Z E&7'~-Ã7-» (38)

and the unit matrix has components

(39)

%e are concerned here with the calculation of the local
reduced suceptibility functions. " The local reduced
transverse susceptibihty matrix, &r(a&), is an E&(E
matrix whose elements are derived from S(~) by means
of the relation

Ex(~)7' = —2~[5'(~)7";. (40)

Our purpose in this section is to express these func-
tions in terms of the single-particle Green s functions
introduced in Sec. II. %C accomplish this task by a
generalization of the procedure used by Mills and
I,ederer" in their treatment of the impure paramagnetic
system.

Let S&1&{co)be the solution of Eq. (36) in the absence
of the matrices J and j, then we find that

8( ) =S' '( )+S' '( )(P+~P)S( ), (4I)

where the matrixes F and d,ri have elements

E~]ij»= —21rI »Bjkhik,

L~F]v»= 2sa~S, &b,v, bo;f&o—;
Using Eqs. (41) and (42) yields the result

E~(~)7'&»=P'"'(~)7';.&-2~&2 E~'"(~)7';-.

Equation (35) is easily solved and gives the result that

Ex(~)7 J= N'(~)7'&+ (AU)'{E&(~)7,0[&(~)70,}l
{I—aVEX(~)7„}, {47)

where
E&( )7* ={V—~R"'( )7-'x'"( )}

The matrix g& &(co) is the transverse susceptibility
matrix for a system of noninteracting electrons mov-
ing in the CRective one-particle spin-dependent poten-
tial W. The susceptibility function E'(a&), includes
the host exchange terms contained in J. The poles of
[1—&x1"(cu)7 ' (see Appendix) correspond to spin
waves perturbed by the impurity part of JV and also
by the CRect of the entire impurity perturbation on the
ground state of the system. The structure of X(&o) is
similar to that obtained for the susceptibility of an
cxchaDge-enhanced paramagnetic system.

From Eq. (47) we find the local reduced transverse
susceptibility of the impurity site to be

B(~)7«=X(~)7»l{I—~~[&(M)7«}, (4~)

which has the same form as impurity exchange en-
hancement in a paramagnetic system. '

Next we express &t&'&(co) in terms of the single-
particle Green's functions of Sec. II.Ke And that

g «)7,;.~«;'«)c {0)&EG «)7,'
+«"(0)c;(~)&EG *(~)7', (50)

where the symbol ~ indicates that the function on the
right-hand side of Eq. (50) satis6es the same matrix
equation as the function on the left-hand side in the
generalized RPA .The Fourier transform functions are
given by

j.
da{PV»(O)7„[811(fl+ )7;&

2~

+E&«(fl)7'E&«(fl —~)71'} (5I)

1
Im[s&'&(~)7; „=- do{tv t t(n)7, pv11(a+~)7 a

2

so 'tllat wltll Eq. (40) oIle obta1118

R(~) =2"'(~)+~R"'(~)R(~)+~U~R"'(~)R(~) (44)

In Eq. (44),
ImS&'&(cd') =RCS&'& (rd),

co Cd —6P

m —E&»(fl)1'E~»(fl —~)7&'}. (52)

{43) It is easily verified that the real and imaginary parts
of 51'&(&o) satisfy the Kromers-Kronig relation

Eg~'&(~)7 = —2~[8«&(~)7 (45) slllce

[~2 "&(~)7' = ER'"(~)7'0&0 (46)
E&- (~)7' = ,EA'- (~')7"

Ao
07—N

(54)

'5 For a discussion of the unperturbed ferromagnetic and the ~ Q ~ ~

reduced'susceptibility functions see T. Izuyama, D. J. Kim, and with thc convention that possesses an In6DItesrmal
R. Kubo, J. Phys. Soc. Japan 18, 1025 {1963). negative imaginary part.
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B. Localized Magnons

The transverse spin excitations of the impurity
system correspond to the poles of the transverse sus-
ceptibility matrix g(cv). In general, there are three
types of such excitations. First, are the Stoner excita-
tions'5 involving the transfer of an electron from a
Moch state with momentum k in one spin band to a
Koch state with momentum k+q in the other spin
band. These states are separated from the ground state
by an energy approximately equal to the band™splitting
energy 6 for g= 0. Secondly, there exist bulk-type spin-
wave states with energy ~, 0- g' for small q. At large q the
spin waves intersect the Stoner excitation band and
become highly damped due to decay into Stoner excita-
tions. "' Last, but of central importance here, are the
localized impurity excitations or localized magnon ex-
citati. ons. These exc1tat1ons correspor d. to r onpropagat-
ing spin modes in which the amplitude of exritation is
maximum at (or near) the impurity site and decreases
rapidly, with increasing distance from the impurity
SltC I 5

For a large system in which the Bloch momentum k
is considered to be a continuous variable only the poles
associated with the impurity localized magnons remain
in the transverse susceptibility functions. The bulk spin
waves and the Stoner exritations are characterized by
densities of states and give imaginary contributions to
the transverse susceptibility functions. The lifetime of
the localized magnons are limited by decay into both
bulk magnon states as well as Stoner exritations. The
poles of g(co) associated with the localized magnons are
according to Eq. (49), determined by the condition

1=AUg'((or)]00, (55)

where ~r, is the energy for which Eq. (55) is satisfied. If
such a pole exists it indicates that the impurity system
possesses a new spin excitation eigenstate. The new state
is a localized magnon state in which the amplitude of
spin excitation is maximum at the impurity site and
decreases rapidly with increasing distance from the
impurity site. If ~I.=O, then Eq. (55) gives

1=AUDI —Uk"'(0)) '2"'(0)]oo (56)

It follows from Eq. (52) that Im{g&')(0)) vanishes and.
from Eq. (51) we see that

Rex&') (0)=R„-

so that the condition $Eq. (17)] for the existence of
ODSC in the ground state is identical to the condition
for the existence of a zero-frequency localized magnon.
This result also shows what was stated in Sec. II,
namely, that if the LSCC is satis6ed, then a ground
state without ODSC is unstable to the formation of
locallzcd Inagnons. Thc loca11zcd magnon states ncccs™
sarily possess ODSC and the zero-frequency state is

degenerate with the ground state. Consequently, it
it appears that in region Ia (see Sec. II C) the proper
ground state will possess ODSC. Low-energy local
magnons are expected when the ground state is nearly
unstable to the formation of the ODSC.

CS.(~)];; = CSt(t)];;. -LS~(~)],,', (58)
where

LS.(t)];g)—— i8(&)([C;.tC;—„C)ttC)t CgtCw] —). (59

The local longitudinal susceptibility functions Pg, (e)];;
are de6ned by"

B.(~)]'~=-' Z Lk.(~)]'~, (60)

Vx.( )];;=—2 ..LS.( )]*'

In Eq. (61), S,(&u) is the Fourier transform of S.(t)
and g, is +1 (—1) for spin t ($). In the RPA, we obtain
the supermatrix equation

Sg(a))) (X+K'g) (Jt+jt) St((o)

a( )) (A+i i) 8+))'~) ~i( ))
1 (Dt

+—
I . (62)

2~&A
where the matrices are defined by

pw.];;„=s;,s;,{U((I;,) (I;;))—
+(V+~U(~, -))(S.—S„))

fJ.]eM= U(C'. Cg.)4i(&g)—b')),

Lj,];;)i= d U(C; C;;)b),)(8,t50; 8,) 8;0), —
r~.];;.=(..i2-)«C;. C.)~;.-«..C;.)~;).

(63)

If the function S o)(~) satisfies Eq. (62) in the absence
of the matrices 2, and. j„then

S.(a) =5,&') (&o)+S.&') ((o)A,S;&')(a), (64)

(note 0 in the equation) where the matrix A, is de6ned
by

C. Local Reduced Longitudinal SusceytibiHty

We now turn our attention to the problem of cal-
culating the longitudinal susceptibility. Ke proceed in
a manner similar to that used for the transverse sus-
ceptibility. Expressions for the elements of the local
reduced longitudinal susceptibility matrix are derived in
terms of the single-particle Green's functions. It is
established that the condition for a zero-frequency pole
in the longitudinal susceptibility is identical with the
LMSC derived. in Sec. II.

We consider the two-particle Green's-function matrix
S,(r),

'6 D. C. Mattis, Phys. Rcv. 132, 252I (I963). LA,]g),)= 2s by8;pb)), g)l,(U+ d U8;0) . (65)
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Equation (64) leads to the result that

[S.()7,,„=[8. ()7,,„,+2 U. P[S. ()7,...

where B '(co) is obtained from A ' [see Eq. (29)] by
replacing R, by g, c'&(co) and also replacing U by —U.
Therefore, it follows that the perturbed poles of x.(co)
are determined by Eq. (30) if the same replacement of
symbols is made. In order to show that the condition
for a zero-frequency pole in the longitudinal suscepti-
bility is identical to the I MSC it is now only necessary
to show that

x."&(~)I.=o= ~' (70)

X[S.-(co)]„„oc+2trhUtj.[S,&'& (co)7;;00

X[S,(co)]00&i ~ (66)

Using Eq. (61) we find the matrix equation for the
reduced longitudinal susceptibility matrix,

x.(~)=x.'"(~)+Ux. "&(~)x.-(~)
+~U~x")(~)x.-(~), (67)

where
[x")(~)7;,= —2~v.[S"&(~)7"&,

[~x.")( )]„=[x."&( )7,.~.,

We note that Eq. (67) is similar in forin to Eq. (23)
relating to the local moment criterion. We solve Eq.
(67) for x.(co) and obtain

xt(~) I—DUB '
Rc(~) ~2c "&(~)

satisfies the same matrix equation as does the function

t&.[s.c'& (/) 7;;pi. (72)

Thus, we And in this approximation

1
Re{t&.[s,c'&(00)7,;gt}=— dQ{[P..(Q)],c

2~

XP&..(Q+~)7,0+[&..(Q)],a[a..(Q—~)7„}, (73)

6f

Im{ t&.[S,c')(co)7;,oc}=— dQ{[1V..(Q)],c
2

X[X..(Q+co)7;,—[cV..(Q)7;0[% .(Q—co)]c;}. (74)

The real and imaginary parts of Sci&(co) are also related
by the Kramers-Kronig relation. For co=0, the imagi-
nary part of $,&)&(co) vanishes and it is easily verified
that

x.(~) l.=o= ~..
This establishes the result that an ~=0 pole in the
longitudinal susceptibility is associated with the forma-
tion of a local magnetic moment in the impure ferro-
magnetic system.

We now develop further the expression for the local
reduced longitudinal susceptibility given in Eq. (69).
The elements of the supermatrix B '(cd) are

We proceed as in the treatment of the transverse sus-
ceptibility. It is easily verified (in the generalized RPA)
that the function

(c,.t(&)c.(0))[G-(t)7
+ (c,.t(0)c,.(t))[G..*(t)7,, (71)

Btt ' At ' c' (I—U'gt")xc "&)-'
M

Bcc ' Sic c'&(I—U'xt c'&xi c'&)-i

C'xt"'(C 0'xi"'xt"') —
')

(I-U'xc"'xt'") ' (76)

detZ= (1—0 U[Atc ixcc))700)(1—&Ught 'xt c'&]oo)

—(~U)'gent 'xt'"]ooycc-'S"'700 (g0)X,t t (co) X,c t (co)
(~) = DUB(co) '—

»(~) ~»(~) Finally, using Eq. (69), we obtain

(For simplicity we shall omit the argument cd in some where
of the complicated expressions. ) If we define

then we find

C)& co

X , (77) [x.(~)7' =[~- '( )7'oLx."'( )7o+[x."&( )],J
hxc &i& (co) 0 X(1—b„)+[I...='( )],.P,.-c &( )]„, (g1)

where

C&- '(~)]*i=~') ~U~or{[B- 'x." &,70&[;;-' ;x" &700

[-- 'x.-&"7'o(1+Ã.- 'x &"7oo)}{detZ} ' (78)

[~---'( )7„=-&U~.;{[&.;-'x;c"7,.[B. x.c'&7-
—[B-R." 7* (1&+f[&-- '&.-"']oo)}{de~}', (79)

(xt "&(~) xt "&(~)
=8 '()

&ib"'c ) x~"'c ))
The functions x &')(0)) are the components of the local
reduced longitudinal susceptibility matrix which satisfies
Eq. (62) in the absence of the impurity-exchange pertur-
bation matrix j . The components at the impurity site
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L&t(~)3oo L&tl-'PooV-«-'3oo

BI(~)7oo f&II-'joogll-'joo

Qb"']oo
X . * (83)

LS"'goo

B. LOCRhZ8d. LOIlgit681Q81 EXC1tRtlOQS

According to Eq. (80), the reduced longitudinal sus-

ceptibility will have a pole at orJ. if

detL(olz) =0.

It has been shown that an co~ =0 pole corresponds to the
folmatloQ of R loeRl magnetic moment IQ thc gI'ouQd

state. If poles exist for coL,/0 they may be associated
with longltudlnRl oI' polRr spin cxcltatlons lnvolvlng
fluctuations in the spin population at and near the im-

purity site. Low-energy excitation of this type would
indicate that the ground was nearly unstable to the
formation of a 1oeal moment.

In general, it is expected that the localized spin cx-
citations (transverse or longitudinal) will be damped by
decay into bulk spin wave and/or Stoner excitations in
which ease the excitation energy m~ will be complex.
Since the lifetime of the excita, tion is inversely propor-
tional to the imaginary part of ~g the concept of the
localized mode is meaningful only if the imaginary part
is small compared to the rea1 part. In such a case, we

may define the excitation energy of the virtual state by
the condition

Re{detX(a)}=0,

foI' thc longltudlnRl cxeltRtloDs RQd foI' thc locRl

magnons by
Re{1—aUg (ol)loo} =o. (86}

E EOCR1lZ8d, K18CtfOQlC StRt88

Localized electronic states may be forIned with or
without a local moment or ODSC. In previous sections,
we have expressed the local reduced susceptibility
functions in terms of the single-particle Green's func-
tions. LSCC Eqs. (50) and (71).j The single-particle
Green's functions contain information about the elec-

tronic structure of the impurity system. The formation
of localized electronic impurity states is indicated by
the appearance of new poles in the one-particle Green's
functions. Usually these poles do not occur for real

energy so that the localized electronic states are virtual
states which decay into the band states.

If the impurity ground state has vanishing ODSC
then from Eq. (6) we have that

G (a))+(2n-)-'PoI —o—P g
' (87)

7g. ordt;r to illustrate t;bq fee,tures of the 1ocRHzed elec-

tI'onle state wc RpproxllTlatc thc slnglc-partlclc potcQ-
tial P, by retaining in P, only the change in the im-

purity population, {no,), and replace all other popula-
tion factors in P. by their unperturbed values N.. This
approximation is not generally self-consistent and is not
necessarily a good approximation. %C employ it here in
order to reveal the gross structure of the electronic im-

purity state. With this. RpproxlIDRtloD foI' P wc 6nd
that

LG-(~)l';= Ei.(~)j;+~.{Lg.(~)l'oLg. (~)loI/
(1—~.t:g.(~)joo)}, (88)

Ig.(~)j' =(2~&) 'Z Lo'" "' ""/(~—o"—o0')j (89)

g „ps'«(RS-Rg)

g R;R;

(90)

In Eq. (90), oo, is the band energy plus a contribution
due to the Coulomb repulsion and k is the propagation
vcetol which Iles ln the 61st BrIHouin zoDc. Thc eftec-
tive single-particle potential v is given by

I.= 2~L(U+AU)(moo} —UN;+ Vj. (91)

Localized electronic states will exist. when

2.(~)loo= 1/~. *

Rnd as before wc may have vlltual oI' I'csoQRQec states
when the real part of Eq. (92) is satisfied. The width of a
virtual state is proportional to the imaginary part of

Lg, (co)goo, that is to the single-particle density of states
PV (o&)joo evaluated at the energy of the resonance.
Since the potential s is spin-dependent, localized states
occur at different energies for different spins in the
ferromagnet. Thus, we expect a local moment will also
exist. It CRQ Rlso oecuI' that oQc spin stRtc ls localized
while the other is not. We also note that localization
does not necessarily require the presence of V, the
impurity core scattering potential.

The occurrence of a localized or virtual electronic
stRtc wIH lead to RIl lxnpullty Gx'ccl1 s fuDctloQ with RQ

energy dependence quite different from that of the un-

perturbed system. From Eqs. (51), (52), (73), and (74)
we see that this also leads to significant modi6eations
of the local reduced susceptibility functions. The effect
of the localized electronic states will be largest on the
local susceptibility at the impurity site, Lg(oo) joo or
pg, (M)joo„and lt ls just tllcsc qualltl'tlcs which clltcl'

into thc IOCRllzcd spin"excltatlon IcsonRQcc cquatlons
LEqs. (85) and (86)g. One is led, therefore, to the con-

jecture that the localized spin excitations are Hkely to
be associated with the presence of localized electronic
states.
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IV. SUMMARY AND CONCLUSION

In the preceding sections we have exposed some of
the structure of the theory of impurity e8ects in the
one-band model of the ferromagnetic metal. The con-
nection between the formation of ODSC or localized
magnetic moments in the ground state and localized
spin excitations is established. Expression for the local
reduced transverse and longitudinal susceptibility
functions are given in terms of the single-particle
Green's functions. The theory is developed in the
Wannier representation because the impurity perturba-
tion is expected to be short range due to screening effects
by the metallic host electrons. This assumption is, of
course, implicit in the short-range Coulomb-interaction
model Hamiltonian we use. Experimental'~ " and
theoretical'~" results on magnetic transition-metal
impurities in ferromagnetic Ni indicate that localized
magnetic moments are usually formed. In the case of
Co, Fe, and Mn in Ni the excess moment is believed to
be concentrated almost entirely at the impurity site
and while the excess moment associated with Cr or V is
more extended it is still localized within a few nearest
neighbors.

It remains now to apply the theory developed in this
paper to particular situations. It is important to
establish whether or not region Ia (local spin canting)
exists for realistic values of the perturbation parame-
ters."Preliminary studies indicate that the results are
strongly dependent upon the type of energy band em-
ployed as vrell as the degree of self-consistency achieved.

When a highly localized magnetic moment is formed
the localized spin tends to be decoupled from the bulk
spin waves. The spin excitation energy then depends
principally upon the spin splitting of the localized elec-
tronic levels and a situation similar to that envisioned
by Iaccarino et al. 4 results in which the behavior of the
impurity spin may be approximately described by a
molecular 6eld model. In this case, an Anderson-type
extra-orbital Hamiltonian'4 may also serve as an
appropriate model.

APPENDIX: UNPERTURBED FERROMAGNET

In this section we apply the formalism developed in
the previous sections to the unperturbed ferromagnetic
system in order to display some of the features which
were mentioned in the text.

'7 J. Crangle and G. C. Hallam, Proc. Roy. Soc. (London) 119,
A272 (1963).

» G. G. Low and M. F. Collins, J. Appl. Phys. 34, 1195 (1963).
"M. F. Collins and G. G. Low, Proc. Phys. Soc. (London) 86,

535 (1965).
20 J. Kanamori, J.Appl. Phys. 36, 929 (1965).
~'F. Gautier and P. Lenglart, Phys. Rev. 139, A705 (1965).
~~ H. Hayakawa, Progr. Theoret. Phys. (Kyoto) 37, 213 (1967).
2'Variational calculations are being carried out by L. M.

Falicov and J. Ruvalds in an attempt to answer this question
LL. M; Faiicov and J. Ruvalds (private communication)).

"P.W. Anderson, Phys. Rev. 124, 41 (1961).

1. Local Reduced Transverse Susceytibility

The single-particle Green's function for the un-
perturbed ferromagnetic metal, g, (o&), is given by Kq.
(88). The matrix elements of g &'&(o&) may be calculated
from Kqs. (51) and (52). We have

~ik (Rs—Rg')

where I' indicates the principal value and

I 1Vs (o&)j; =—Q 8(o&—ek.)e'k &""—a»
k

(A2)

We use a subscript 0 to indicate that these quantities
refer to the unperturbed system. The real and imaginary
parts of ps&'&(o&) combine into a single expression

where

1
Bo"'(~)7 =—Z c"'"' "&I'.(~),

E e

fkt fk+s&I', (o&) =—Q—
skies&

—ekt —O&+ZO

(A3)

(A4)

In the Bloch representation

and the transverse susceptibility Lfor the unperturbed
ferromagnet this is equal to X(o&)1 xs(o&) is

Bo(~)jss = &ss (I's/(I- ~1's)).

The local transverse susceptibility is obtained by trans-
forming to the Wannier representation with the result
that

(AS)

2. Local Reduced Longitudinal Susceytibility

We use Eqs. (73) and (74) to calculate xo, &'&(o&) for
the unperturbed ferromagnet with the result that

1
s (l&(o&)j, , Q cig (Ri Rq&I' (o&)— (A9)

The sum over k and q are over the first Brillouin zone
with the usual convention that k+q is modulus a
reciprocal lattice vector. In Eq. (A4) the Fermi factors
f&, are unity for ek less than the Fermi energy ey and
vanish otherwise and 0+ is a positive infinitesimal. The
matrix &to&»(o&) is diagonal in the Bloch representation;

1
I:x "'(~)j =—Z c ""*L&t"'(~)1 c" "'

g R;R;
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with
fly fk+»rr

Fg.(oo) =—P
1V & op+»~ —op~ —io+z0

(A10)

Next we construct the matrix 8 '(&o) defined by Eq.
(76) and hand

I& .. '( )7„=&„/[I—O' F,.( )F .-( )7 (A11)

[&o-- '(~)7»»
= S«.OF».(~)/[I —U F».(~)F».-(~)7. (A12)

For the case of the unperturbed ferromagnet the
longitudinal susceptibility is given by

xo*(o~)= 4[xor "'(oo)+goi "'(oo)7, (AI&)

since go, "&(a&) is equal to xo, (&o). Equation (82) may be
employed to obtain

[xo.(~)7»» =[xo-"'(~)7„

where Vg is the volume of the Brillouin zone. In this
limit, the discrete poles of x(co) associated with the
Stoner excitations are replaced by a density of states.
The function F»(&o) is then a complex function. The
spin-wave energy is determined by the equation

1—U Re[F»(io») 7. (A19)

The imaginary part of F»(oo) determines the spin-wave
relaxation time for decay into Stoner excitations. It is
easily verified that the imaginary part of F»(io) vanishes
for small q so that in the RPA long-wavelength spin
waves are undamped. The character of the long-
wavelength spin wave may be established by expanding
F»(oi). If the spin-wave energy is small compared to the
Coulomb integral U then

f 1 '0

Re[F»(~)7 = — Z
~

dk(f~i j~+»i)—
Viih ~=o k A

X (o„+»—o„—o~)", (A20)

I',.(oo)(1+UF»o(oo))= 5»» . (A14)
1—O' F».(io) F»o(o~)

where 6 is the band splitting energy

6= U(ni —ni) . (A21)

The reduced longitudinal susceptibility in this repre-
sentation is therefore given by i „=(Ao/2m*)ko (A22)

Consider the case of a parabolic energy band with

[xo (~)l»»

F»i (oo)+F»i (oo)+2 UF»i (oo) F»i ((o)

1—O'F»i (~o)F»i (oo)

where m* is the effective electron mass for the band.
From Eqs. (A19) and (A20) we find to order q' that

(A15) 1—U Re[F»(oo)7= I/A{(h'/2', )q' —&o)+0(g4), (A23)

where the effective spin wave mass is given by"
In the Wannier representation, the elements of the
local reduced longitudinal susceptibility are determined

by

[xo (~)7"=—Z s*""' "Bo (oi)7»» (A16)
E e

3. Unperturbed Spin Waves

The spin-wave spectrum of the unperturbed ferro-
magnet is determined by the poles of the transverse
susceptibility. The spectrum is found from the equation

UF (oo,)= 1. (A17)

Equation (A17) also determines the spectrum for the
Stoner excitations. In the limit of a large system the
sum over the ir in Eq. (A4) is replaced by the integral

p= 1—6/of, (A25)

and have assumed that 6&of. In the case that A&~ ef,
no*/m, = o. Thus, in the long-wavelength limit for the
parabolic band the spin-wave energy is given by

&o» = (fi'/2ni, )q'. (A26)

The imaginary part of F»(oo) may also be calculated
but will not be given here. VVe mention here only that
there is a critical value for q, above which decay into
Stoner excitations can occur.
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