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The coupling of low-frequency surface plasmons to the ac Josephson currents in superposed thin di-
electric and superconducting metal films is examined. The I-V characteristics for various superposed film
systems are derived. The theory permits the magnitude of the parameters entering in the expression for
the I-V characteristics, as well as their dependence on various quantities {temperature, mean free path,
etc.), to be determined and compared with existing experiments. We have extended the theory of steplike
structures in the I-V. characteristics of a single Josephson junction to multiple films, and have found that
more than one series of such steplike structures is possible. The theory provides a natural explanation
for a three-film tunneling experiment of Giaever. Finally, the modifications of the dispersion relations
for surface plasma oscillations in multiple-film systems, when admitting the presence of the ac Josephson
eGect, are derived.

I. INTRODUCTION

ELECTROMAGNETIC wave modes in superposed
~ metal and dielectric films of various geometrical

con6gurations have been examined by Economou'
(whose paper will be referred to from now on as I).When
the metals are superconducting and the thicknesses of
the intervening dielectric films are suKciently thin

( 20 A) so that supercurrents can tunnel, Josephson
effects occur. The Josephson currents are coupled with
the multiple-film em modes and various interesting re-
sults can be expected. Several aspects of this phe-
nomenon provide the subject for the investigations of
this paper.

Swihart' was the 6rst to show theoretically the
existence of resonant oscillations of electromagnetic
waves in tunnel junctions. He showed that there can
propagate slowed-down transverse electromagnetic
waves with phase velocity

) 1/2

c=ci
ks;Ld~+2Xr, coth(d~/kl. ))l

in a dielectric cavity between two superconducting
metal films. Here c is the velocity of light, d; is the
thickness, and ~; is the dielectric constant of the dielec-
tric film, while d is the thickness and ) ~ the London
penetration depth of the metal 61ms. Fiske, ' and since
then various other workers, ~ have observed experi-
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mentally the coupling of this junction mode to the ac
Josephson currents. In the preceding paper, such con-
siderations have been extended to multiple 6lms which
may be regarded as forming superposed junction
structures. It was shown in I that in such geometries
more than one such low-frequency electromagnetic mode
is possible, and through these resonant modes the
cavities associated with each junction are coupled to-
gether electromagnetically. This latter point is especially
easy to visualize in the limiting situation when d ((X„,
where a surface plasma-oscillation type of description is
valid. '

The present work discusses in a general way the ex-
citation of resonant electromagnetic waves in such
multiple-film superposed junctions by the alternating
Josephson current. The influence of these resonances on
the I-V characteristics of such systems are worked out
as well as their consequences for some of the more in-
teresting cases. The results for a single Josephson junc-
tion have essentially the same features as obtained
before. 4' However, our approach enables now a quanti-
tative calculation of the parameters of interest as a
function of temperature, bias voltage, and mean free
path. For example, we have some success in accounting
quantitatively for the decrease of the ratio of the voltage
at which a resonance peak occurs to the corresponding
applied magnetic field. ' The loss represented by a Q
factor is given as a function of frequency and can be cal-
culated for any temperature at which an experiment is
performed. The variation of the positions of the current
steps with temperature is discussed, with the result that
the steps tend to shift their positions nonuniformly and
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ccasc to bc cqUally spRccd Rs T~ T,. Thc dcpclldcncc
on thc clcctroQ mean fr'cc pRth ls Rlso glvcn.

For the general mu1tiple-61m systems we have sup-

plied R theoretical picture of what one expects when
surface plasmon modes are excited by supercurrcnts.
We have found, in general, that these electromagnetic
D1odcs CRUsc RD lDtcI'RctloQ of thc barriers of the Alms

system with each other, and thereby alter their operat-
ing characteristics. Moreover, for multiple 61ms,
several low-lying electromagnetic modes can be present,
and consequently the same number of series of steps will

appear in the I-V characteristics. Our results provide RQ

alternative physical explanation of R Glacver's three-
film experiment to detect the radiation of a Josephson
junction by use of a continuous cavity to couple the two
barllcr's tightly with thc 1Qtcntlon of cllmiDRtlDg thc
bad 1IQpcdRQcc mismatch between the junction Rnd

free space. Subsequent experiments'0 throw some sup-

port for this alternative explanation. IQ Sec. III, wc

examine the modi6cations of the dispersion relations of
the low-frequency surface plasma osciH.ations (dis-
cussed in I}for multiple-film systems in which ac super-

cul1cDts CRD Qow. This study ls stimulated by thc rcccnt
experimental observation" of the Josephson plasma

resonance in supcrcoQducting barriers originally pre-
dicted by Josephson. ""A general method. is devised to
treat similar resonances in multiple 61ms, which, when

specialized to the case of a barrier between semi-

lI16nltc SUpcI'conductols, cDRb1.cs Us to rccRptux'c thc
results of Josephson. The method provides a good

description of the modes near k=o and explains why

retardation effects are negligible by use of a criterion

due to FerreB. '4 Special features in the dispersion rela-

tions for these modes occur when the external metal

6lms have thicknesses comparable or smaller than the

penetration depth. Interaction of modes is sUSciently

strong to cause a splitting to occur at the point of
degeneracy. Onc of these modes of oscillation can still

be described by the dispersion relation ios=esss+c'Is'

for k=o up till k toe/c, where cos is the Josephson

plasma f1cqucncy2 Rnd thcrcfol c llcs ln thc rcglon

cv) ck in the 0-~ plane. Although this oscillation has a
radiative character, yet the microwave radiation that
can possibly bc given oR is negligible even if the metal
61ms are thin enough. In general, the present results

wouM be helpful for further studies of such resonances

in multiple-61m systems.
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%hen a dc voltage Vo is maintained. across R,

Josephson tunnel junction, alternating currents exist

between thc t%'o sUpcrcoDdUctoI's scparRtcd by R

barrier. If~ 1Q Rdditlon2 there ls a Unlf ol m static
magnetic 6eld Ho applied parallel to the barrier along

the y axis, the alternating currents are given by

j~ Rcjg'b(40$—ks) (2 &)

where co=2cVs/h and k=2c(2Xs+cl,;)Bs/Ac. The last
relation between k and IIO holds only under the assump-

tion that the thicknesses of the metal 6lms are much

larger than the penetration depth. This relation is ex-

pected to be considerably modi6ed in the opposite limit

when d is sma11 compared with X~. It was pointed out
to us'6 that in this limit, some characteristic length like

would replace the role of ) „in that relation. The
quantitative result requires the solution of the micro-

scopic problem in the presence of thin metallic 61ms.
This work has been carried out by Ivanchcnko'~ and
his 6nal result is, in our notation,

—80 2Xp slnh — 2.2

Such a current density wave propagating along the
jUnctloQ 111 thc 8 dilcctlon CRQ cxcltc electromagnetic
modes in the structure. When the phase velocity of this
wave becomes equal to the electromagnetic-mode phase
vdocity, we may expect a resonance phenomenon to
DlaQlfcst ltsclf ln thc tunnehng chal Rctcristlcs of thc
superposed 6lms. We therefore wish to find solutions of
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barrier by use of a perturbative expansion in powers of d /) 2, with
the zero-order solution taken as the homogeneous external Geld.
To lowest order, we find eo—Ho'=$(d~/&~)~HO.

where IIO is the magnetic 6eld inside the barrier and Ho'

is the field on the outer surfaces of the superconductors.
For d~&)„, the above relation reduces to the one

preceding it. The 6elds Ho and Ho' are in general inter-

dependent with their relation determinable by solving

the magnetostatic problem presented by the conhgura-
tion considered. In the limit d„/X„-+ 0, then the dif-

ference IIO—Ho' can be shown" to be of second order in

iE„/X„and consequently in this thin-film limit the kH-
relation reduces to the form

k=(2c/hc)Hs(2d +d,).
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the Maxwell equations for a geometry of alternating
superposed superconducting metal and insulator films.
As has been justified in I, the superconducting metal is
described by the dielectric function

(2.3)

E,(x) = —(i/k) (dE,/dx),

II„(x)= ((ee,/ck) E„
d'E, (x)/d'x K'E =0—

(2.4a)

inside the metal and

E,= (i/k) (dE,/—dx),
II„=(e,(e/ck) E.—(4)ri/ck) j&, (2.4b)

d'E, /dx' ICi2/E. + (i4—2r(e/c2Ki2)j )j=0

and then X„=c/ (e„, is the actual penetration depth. The
Maxwell equations are supplemented by the boundary
conditions of continuity of the tangential fields at every
boundary. The type of solution we seek corresponds to
wave propagation along a direction parallel to the
boundary surfaces separating the diGerent metals,
which we designate as the s axis. With the x axis normal
to these surfaces, we further assume that there is no y
dependence of any of the fields and that H =H, =E„=0
in all of the media. The solution for any component of
the fields can thus be represented in the form P(x,s, &)

=Ref (x)e'("' 2*)& with Rek) 0 and Imk(0 so that the
wave travels and is attenuated in the positive s-direc-
tion. The Maxwell equations determine the field ampli-
tudes Ii (x) through the ordinary differential equations

rents. In this form it is obvious that we have a problem
in which the electromagnetic modes of the system are
driven by Josephson currents. Instead of going on to
discuss the solution to the problem in this generality, it
is perhaps profitable to consider some specific model
systems.

A. Single Josephson Junction

We take as our first example a model junction con-
sisting of two superconducting metal films of equal
thickness d separated by a dielectric film of thickness
d; through which the supercurrent (2.1) flows. The
quasiparticle tunneling current has no e6ect on the
following considerations except that it contributes to
losses and hence damping of the resonances. The
magnitude of this damping can always be estimated"
and hence we shall neglect quasiparticle currents from
now on. A particular case of this when d„ is assumed to
be infinite has been considered both experimentally and
theoretically for the coupling of the ac Josephson cur-
rents to the junction modes. "."Essentially the same
results as theirs are obtained here by our method but
now all the important parameters can be calculated
explicitly using the model for the dielectric response of
superconducting films as explained in I.Another reason
for a repeated discussion of this by now well-understood
case is to illustrate our general procedure, which will be
applied to more complex structures afterwards.

Figure 6 of I represents the present problem if we
take di=d2=d . Kigensolutions for the fields are either
symmetric or antisymmetric, and hence we can restrict
our attention to the half-space x)0 and write B as

in the dielectric region where a supercurrent of magni-
tude j& Rows. Here

K =k (d 2/c

E,= Eg(eK'~we K'*)/2 (i42r(e/c2Ki2)j, —
—E2(eKm~+ Be-Km*)

g g
—X'se

(2.5)

and

K 2 k2 ~2e /c2

Equations (2.4b) describe mathematically the excita-
tion of the resonant modes by including the contribution
to the fields due to the tunneling currents in the dielec-
tric regions only. Assuming jz has no x dependence, the
electric field E can be expressed in the form

E =E(eK'*+e K'*) i(42r(d/c2K, 2)gg. —

With these modified solutions in the dielectric and the
solutions of (3.8)—(3.11) in I for the metals, we can write
the boundary conditions for the continuity of R, and
H„. The number of such equations is the same as the
number of unknown field amplitudes. Thus we have a
system of linear equations which can be arranged to
have the form that the left side of the equation is
homogeneous in the unknown field amplitudes while the
right side contain terms related to the tunneling cur-

inside the barrier, in the metal film, and outside the
junction, respectively. Then via (2.2), E, and H„can be
expressed in terms of E„and the boundary conditions
to be satisfied by them yield the set

Ki(&m+k&i) E2 KE2(e—Km(&m+2&i) Be Km(&m+—ldi))

(k2 K, )e-2K~(&m+i&i)E

—(k2 K 2)E (eKm+iei)+Be —K (d +hemi))m

KmE2(e'K "' Be 'Km —')=K;E)(eiK"'We 2'K') 2/

(k2 K 2)E2(e)iKm&i+Be iiKm&i)-
= (k' —K")E (e&K'"'&e &K'"')/2

—(i'~/c')(k'/K') J2 i

from which we can solve for Ei. The alternating voltage

I.O. Kulik, Zh. Eksperim. i Teor. Fiz. Pis'ma v Redaktsiyu 2,
j.34 (j.965) /English transl. : Soviet Phys. —JETP Letters 2, 84
(&965)g.
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served. ' ' The steps occur at voltages corresponding to
the frequencies a&= (eir/L) c. Hence the temperature de-
pendence of the steps is determined by a complicated
equation of the form

(a„(T)= (nx./L) c(T,co„(T)). (2.11)

The temperature and frequency dependence of c(~,T)
comes from the corresponding dependence of the
penetration depth X~(co,T). Miller" has calculated
X~(ce,T) assuming an infinite mean free path l. However,
it is reasonable to assume that the results of these cal-
culations can be used in our case (where the mean free
path is short) since what we need is only the tempera-
ture and frequency dependence of the ratio X(T)/X(0)
and it is known" that the temperature dependence of
this ratio is almost unaffected by the presence of a
short mean free path at least in the static limit. Having
thus the frequency and temperature dependence of c,
we can solve Eq. (2.11) graphically for each step. The
resulting behavior for the steps expected theoretically
for a Sn-I-Sn junction like that used by Dmitrenko
et a/. is detailed in Fig. 2 (solid lines). Dmitrenko et al.
studied experimentally the temperature dependence
only of the Grst step; their results are also displayed in
Fig. 2 (circles). The theoretical temperature variation
of steps di8er from one step to another when T/T. )0.6
because of the frequency dependence of c, Eq. (2.11).
This means that the steps start to shift nonuniformly
and consequently cease to occur at equally spaced
voltages.

Another point worthy of comment is the follow-
ing. It has previously been stated' that the tempera-
ture variation of the steps is given by the function
Ll —(T/T, )'j'". We disagree with this statement,
since it is not the static penetration depth which enters
the expression for c, as the derivation of the above ex-
pression requires, but the frequency depende-nt ac
penetration depth. That the temperature variation is
not given by the function [1 (T/T, )4j"4 ca—n be seen
from the fact that X„(ar(T),T) does not tend to infinity
even for a normal metal, i.e., when 7=T„ in contrast
to the above function, which assumes that the penetra-
tion depth tends to infinity as [1—(T/T, )'] "' as
T~ T'

Assuming that T/T, «2 and A&a/kT, «1, it can be
shown by use of the calculations of Miller" that c
decreases, but only slowly when 1 decreases.

In the above analysis we have assumed the current
amplitude j& is uniform over the barrier and the junc-
tion size is small compared to the Josephson penetration
depth ) g," so that the magnetic Geld associated with
the dc current can be neglected. Under these assump-
tions and when the applied magnetic Geld Ho is zero,
the exciting supercurrent is uniform. According to our
picture that structures in the I-V characteristics are due
to the resonance excitation of surface plasmons, this"P. 3.Miller, Phys. Rev. 118,928 {1960)."P. B. Miller, Phys. Rev. 113, 1209 (f959).
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FIG. 2. Relative change in the position of the eth step
versus relative temperature.

would imply, at HO=0, the absence of current jumps.
However, in actual experiments" these structures
persist. The explanation lies in the fact that the junc-
tion oxide layer is nonuniform and the current ampli-
tude j& depends sensitively on the thickness of the
barrier. This makes j& a function of the coordinates on
the surface of the barrier and, when j& is expanded in
the complete set cos(nsz/L) and sin(nnz/L), it becomes
clear that resonant surface plasmon oscillations can be
excited even when Ilo= 0 to produce the equally spaced
current jumps.

B. Superposed Tunnel Junctions

We proceed to the study of more complex superposed-
film systems. Our interest in these systems was initiated
by experiments performed by Giaever" in which two
superposed junctions, one of which exhibits the ac
Josephson effect and the other a conventional type with
a continuous cavity linking them together, are used to
detect the Josephson radiation. A voltage Ui is applied.
across the Josephson junction which serves as a genera-
tor of Gelds of frequency hv=2eV&. The conventional
junction serves as a detector for these Gelds. Current
steps are obtained in the I-V characteristic of the latter
junction at voltages V2=(1/e)(26&nhv) in the same
manner as in the Dayem-Martin effect. '5 It seems
natural to explain the result as a detection of the micro-
wave fields in the Josephson junction by the conven-
tional junction when the two cavities are coupled via a
continuous link connecting them to eliminate the bad
impedance mismatch between the junction and free
space which is unavoidable when a conventional detec-

~' H. Fritzsche (private communication).
'4 I. Giaever, Phys. Rev. Letters 14, 904 (1965).
~t' A. H. Dayem and R. J. Martin, Phys. Rev. Letters 8, 246

{1962).
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tor is used. However, other experiments" with this
type of superposed junctions in which no continuous
cavity linked them together still showed the same effect.
On the other hand, experiments" were also performed
with two junctions not superimposed but fabricated in
such a way that they lie side by side with a continuous
cavity connecting them so as to obtain a tighter elec-
tromagnetic coupling between the two junctions.
Nevertheless, no effect was observed in such experi-
ments. The only way to explain the behavior of the
superposed junctions not connected by a continuous
cavity is to assume that the fields from one junction
penetrate directly into the other through the super-
conducting middle film; such an effect would be absent
for the junctions which were side by side. We oBer here
a more precise picture for the understanding of these

experimental 6ndings by recognizing that these phe-
nomena are just consequences of the excitation of those
wave modes which couple the two barriers together
electromagnetically. It is worthwhile to note that this
new interpretation still implies that Giaever s experi-
ments serve to detect the ac Josephson effect, though
not with the help of a continuous cavity, but rather
through the collective surface plasma oscillations that
couple the two junction barriers.

We shall consider an idealized syInmetrical system of
two superposed junctions as shown in Fig. 8(a) of I.
This choice has the merit of requiring algebra that can
be easily handled, while the results nevertheless permit
discussion of the most general situation. If we further
assume either a symmetric or antisymmetric distribu-
tion of supercurrents of amplitude j& in the two barriers,
the 6elds can be obtained in terms of symmetrical or
antisymmetrical eigensolutions which can be repre-
sented by

From this set of linear equations we can solve for I&3

and E383, and the alternating voltage developed
across either barrier is

g&;(Ei~ g
—&;(Ei.

—g&m&ml2~ g
—~md ml2

L —g~m(Em'~ g
—&mdm'

When restricted to the range of frequency of oscilla-
tions and the geometric sizes that occur in conventional
Josephson tunnel junctions, the R2 and R2 terms in W
can be neglected and vo becomes

i'.d; j&

tiCOEi

with

tanh(d /2X, ))
Fd. =coth(d '/X„)+

coth(d /2X„))

(2.15)

So—(+2&Kmdm/2+Ii 2P d Kmdm/-2)d, (i4)r&/&21', 2)(fj
i'-d; jz k'

Gibed

(2.14)
cico+i' ~ — o. H/' c'

where

02((d)
()+—— 1+ d ' csch'(d '/X„)/X„

2(r2((d)

sech2(d /2X~)
+ (i /2X~

csch2(d /2X„)

Here c+ are the phase velocities of two low-frequency
surface plasma oscillations in this geometry. Further
reduction yields the resonant form

i4xd; j&
(2.16)

d, (d (1 C~ k /22—)(d+2i/Q~
where

(2.17)

The plus sign holds when the excitation current distribu-
tion is symmetric and the minus when antisymmetric.

Following the procedure of Eck et al. ,
'~ we expand eo

in the normal modes cos(n)rs/I) of the junction. (I is
the length of the junction in the s direction) and assume

~1 ln 1

g (dKmw+ J32d Km*)—ln 2
= E2(dK'*+82e K' ) '(i42((d/—c'X'—)j, in 3

(2.12)

—Ii (dKmw~d Km*)— in 4.
Six boundary conditions for the continuity of E, and
H„ lead to the system

E jV&e—, E."(&ml2+d m'+4)

+2(CKm(dm/2+dm+di) —73 C Km(dm/2+dm+di)),
d' 2

(k2 +.2)Pg Ki (dm/2+dm'+di) —(k2 It 2)g
X(dKm(dm/2+dm'+di) J32d Km(dm/2+dm'+di))—

/ 9

@2(dKm(dm/2+di) +2d Km(dm/2+di))

jV2(dKi (dm/. 2+di) 2l d Ki (dm/2+di)')
/ 0

(k2 It 2)p (dKm(dm/2+di)++2d Km(dm/2+di))

@2(dKi(dm/2+di)+24C . Ki(dm/2+di))

—(i4m)/c')(k'/Z')g). , (2.13)
@2(dKi (dm/2) . 732d Ki (dml2))

g (dKm(dm/2) ~d—Km(dm/2))

(k2 ~.2)g2(dKi(dm/2)+2l2d Ki(dm/2))

(i42r(d/c2) (k2/—X'2)j 2—(k2 g 2)g (dKm(dm/2)~d Km(dm/2))
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the junction to be of infinite extent in the y direction. currents j1 sin(a»t —ks+nI) and j2 sin(od2t —ks+n2), re-
Ke 6nd spectively (here we do not require j1=j2), the alternat-

ing voltages v~ and v2 developed across the two barriers
can be obtained as linear combinations of the symmetric
and antisymmetric eigensolutions that correspond to
supercurrent distributions

with

II„cos(okt+8 )+b sin(odt+8„)
X —, (2.18)

([1—(n«+/~L)']'+(1/Q+, -)']l"' 2 jk, Sln(odIt —kS+Gl)

2 j1 sin(okkt —kS+III)-

2 j1 Sln(okkt —kS+aI)

2 j1 sin(Cdkt —kS+III)

j+Dc=
~dS r dt t—j, sin~ i kz+ —v, o')d—i')

L o T

4medi j&'

&i~

8„=tan—'
1—(n«g/okL) '

2kL sin(kL —nor) X-', , n=0
Crs =

(kL)' —(nor)2 X1, n/0

2kL[1—cos(kL —m.)]X-2I, n =0

(kL) ' (nor—)2 X1, n &0

and Q~, „=Q~(n2r/L, od) represents the losses in the
nth mode.

This alternating voltage can in turn give rise to a dc
current. To erst order in Iio/V, the dc component of the
tunneling current is

,j2 sin(od2t kS+I22) 2 j2 sin(ok2t kS+I22)

2 j2 sin(ok2t —kS+k22)- -,'j2 sin(okot —ks+n2)

and for the second

27/ 8dij2

written as a column vector, the top element of which is
the current in the first junction and the bottom ele-
ment the current in the second junction. These solu-
tions have been obtained as in the form of Kq. (2.18)
when expanded in the normal modes of the junctions.
Calculating the dc component of the current density
in the manner used before, we find for the first junction

2xedi j&2
j1"=

EiAG01

Q
XQ Q F (k), (2.20)

r=+ n o[1 =(n«r/odlL) 2]2+(1/Q )2

with

00 +,n

F„(k), (2.19)
n o[1.—(n2=rcgcdL)']'+(1/Q~ „)' Q

XQ Q F (k). (2.21)
+ n O [1 (n«r/OI2L) ] +(1/Qr )

(sin(kL —nor)/2) ' 1 X-,', n= 0
!F„(k)=!

4 (kL—nor)/2 ) (1+n2r/kL)2X1, n/0
This equation exhibits resonant current jumps at two
series of equally spaced voltages

U„,„=n(AC„or/2eL), r =&,
(one series corresponds to the symmetric confIguration,
the other to the antisymmetric one) and the height of
the eth current jump is modulated by the Fraunhofer
term

!
t'sin(kL —nor)/2 '

E (kL nrr)/2—
Hence this type of behavior is analogous to that of a
simple Josephson junction as considered in Ref. 5. The
new feature worth our emphasis is the appearance of
two distinct linear c modes —thus two series of resonant
jumps.

When, in general, the two barriers are biased at dif-
ferent dc voltages V~ and V2 corresponding to super-

In the particular case when ~l.=~2=—or, an extra term
proportional to j&j2 and given by

2x'8d jy j2 Sg n( )r/ Qr, n

Z Z
2;%ok' r-+ n=o [1—(n«r/odL)2]2+(1/Qr „)'

XF„(k)cos(nI n2), (—2.22)

sgn(r) = 1, r =+

has to be added to each of the two expressions [(2.20)
and (2.21)]for the dc component of the current density.
In this case each current j&~' and j2~' will have a
double series of steps defined by

V„=n(bc+or/2eL)
and

V„=n'(kC or/2eL).

Of course, in order to have two distinguishable series
of steps, c+ and c should be suQiciently different but



K. L.

NOAH'

this is equivalent to the requirement that d is not much
larger than ) „.Within the linear approximation of re-
garding i/V((1, the supercurrents of frequency &e2

present in the second junction, although giving rise to
an ac voltage of the same frequency in the 6rst junc-
tion, have no CBect on the dc current of this junction
and vice versa even. if the two frequencies are so related
that one is an integral multiple (other than one) of the
other, for the reason that any such interference CGect is
higher-order in e/V, which is assumed to be small, and
hence negligible. This ls tlRnspRlcnt when we wrltc thc
expression for the supercurrent when the voltage across
the barrier is the sum of the applied dc potential
Vi= An&i/2e and the oscillating potential s cosie2t:

j=j, sinL~»it+(2ev/4~0, ) sin(0, t+nj
t'2ee )=j, Z S„l I

sinC(n~, +~,)t+~j,
(Aidan)

symmetric components as

~pi sin(Mit ks+Qi)

-g Ji Sin((eit —ks+Gi)-

-', ji sin((sit —kz+ni)

—,'ji sin((sit —ks+ni)

ei(s, t) =
2m'Ji ji ~ (nm's)

g cos/
eire & +~=0 4 I

a„cos(cot+8 )+b„sin(&8+8 )
(2.23)

L(1—mc„/col. )'+(1/Q, )']'i'

2&~ij j e) gyral

em(s, t)= P P sgn(r) cos
t'=+ %=0 I.

a cos(&4+8 )+b sin(&A+8„)
(2.24)

L(1—m c,/(el. )'+ (1/Q, ,„)'g'i'

From (2.18), we have for the ac voltages the expressions

where J„is the Bessel function of order n. If nm2 ——~q
for a certain integer n, a dc component is obtained and is
given by

je'= ( 1)"j—&J„(ne/Vi) sine. .

If ri/Vi((1, this is of higher order in ri/Vi relative to the
result when n= I. On the other hand, if the linear ap-
proximation breaks down and e/V cannot be assumed
small, we would expect a non-negligible contribution to
a dc current jump whenever ~&=nro2 or the reverse is
satisled. Speci6cally in this case when one junction,
say, the lower, is biased at the voltage V2= k&e2/2e such
that ~2 corresponds to a resonant frequency of the
system while the upper barrier is biased at V&=nt/'2 for
any nonzero integer n, a siza,ble constant voltage step
is expected in a manner completely ana, logous to the
bchRvlor obsclvcd by ShRpllo. In R slmlIRr situation
but if n=O, i.e., t/ ~=0 and the upper junction is not
externally biased, the resonant Gelds caused by the
supercurrents in the lower junction at a resonant fre-
quency would be expected to cause induced dc voltages
across the upper junction analogous to the observation
of Langenberg et ul. '"

We come back to discuss further Giaevcr's experi-
ment for the detection of the ac josephson eGect in the
light of the results just obtained for two superimposed
barriers. %'c can simulate a generator and a detector
junction superposed on each other as in the actual ex-
perimental situation of Giaever by taking our model
junction of Fig. 8(a) of I and assuming that there is
supercurrent only in the upper barrier, with the lower
one regarded as if it were a conventional junction. Wc
can approach this problem by again decomposing the
zero-order ac supercurrents to symmetric and anti-

'6 S. Shapiro, Phys. Rev. Letters 11, 80 (1963).
~7 D. N. Langenberg, D. J. Scalapino, B. ¹ Taylor, and R. E.

Eck, Phys. Letters 20, 563 (1966).

Note thRt for vy the symmetric and antisymrnetric con-
tributions add, whereas for e2 it is the difference between
these two contributions. If d /X„~~, c+ —+ c, and

Q+,„-+Q, , then ei reduces to the usual result for a
single barrier and e2 becomes zero, as is expected since
this limit the 6elds cannot penetrate through themiddle
metal film. In fact, for dW&X~, c+—c ~ e-'""~,Q+—

Q
~ e ""i"~, and e~/vi ~ e—""' ~. In the opposite case when
d X„,c+ and c are distinct, there is no overlapping of
the (+) and (—) resonances, and consequently iii and
v2 are of the same order of magnitude. It is now clear
that in view of our previous discussions when the
generator ls biased at a resonant step, R resonant elec-
tromagnetic mode of the multiple-film system is excited
and the detector junction will have simultaneously
resonant alternating 6elds across it, thus modifying its
own I-V characteristic in essentially the same way as in
the Dayem-Martin experiment~5 and explained by Tien
and Gordon. '8 This would be a reasonable explanation
for the experiments of Giaever and indicates clearly
that even in the case when no CGort was made to form a
continuous cavity linking them together the experi-
mental results would be unchanged. Under this ex-
planation, however, two distinct series of step structures
would be observable. This seems to be consistent with
the observed I-V characteristic of the generator in that
there arc features which would be very dificult to
explain with one series only. As a final remark, it can be
said that the observations of Giaever verify the excita-
tion of electromagnetic wave modes in the superposed-
films system by ac j'osephson currents.

We have assumed geometrical symmetry in the
previous example to make the algebra manageable. The
conclusions that we derived from there do not depend
on this assumption, however. To show this indirectly
we shall work out another multiple-61m system with no

'8 P. K. Tien and J. P. Gordon, Phys. Rev. 122, 647 (1963).
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sylllllletl'y assumed as sllowll Ill Flg. 7 of I. Tile coll-

6guration can be easily realized in experiment and
deserves a study of its behavior. We follow the pro-
cedure illustrated by the last two examples. Express the
Gelds 8 in terms of the eigenfunctions in the separate
regions and write the Gelds E, and H„ in terms of E .
The boundary conditions satisGed by E, arid II„again
lead to a determination of the unknown Geld amplitudes
in terms of the driving currents j=jl sin(01k —ks+n)
and j'= jl' sin(~'& —ks+n') in the two dielectric regions
caused by the ac Josephson effect when external dc
voltages V=ka&/2e and l '=Ale'/2e are biased across
them. In I it was shown that the electromagnetic modes

of the system in the frequency range of interest in

tunnel junctions consist of two linear modes with phase
velocities given by

%'lth
(1—c 'k'/le')+i/Q

where the second term of each of the two square-
bracketed expression is obtained fram the first by an
interchange t.~&-+ 82. The corresponding expression for
s' can be obtained from (2.27) by the interchange of
d, +-+d, ', j++ j', and ra+-+le'. The Q factor can be
derived also from (2.27) if we replace X„ that occurs
there expllcltly ol implicitly through cj and 82 as ln

(2.25) by X„t1 ie—l(co)/a2(ro)] Th. e resulting expression
for Q is a complicated expression which shall not be
recorded here, but is again of the order of e.&/e 2. Under
the special assumption that d,=d, co=ai', and j=j', '

i.e., a symmetric excitation current distribution, (2.27)
reduces to

ikrd; j

c1,2 —ci/{ 1+~&1,2j (2.25)
&a =&i

d;+) „(1+tanhd /2X )
(d;+d )+[(d; d)'—+4e 2d"'"&d;d j'"

d;d (1—e. '""~"~)

i' d," 'X'(R) e;a&2) X'(R)—,I+i, — (226b)
&'(R) cs / 2'(R)

&'(R) and X'(R) are, respectively, obtained from R(R)
and X(R) by the interchange d,'~ d;, and note that
2'(R)—=&(R). By use of the usual approximations,
(2.26a) and (2.26b) can be rewritten to exhibit their
resonant forms as follows:

i4md; j
e,(uK, (1 e )d,d,

(2d ') /c') (1—c12/c') —4lj,„'cl'/c' —
e &e'

x +1++2
(1/cln —1/c2s)(1 —k'cP/~') Q2

-2dgg/Xy

i4md;j' k' e ~I" 2d h„/c'

ed% KP (1—e I +)d d

(1—cl'/c')
X — — +1~2, (2.2f)

(1/c2' —1/cl') {1—k'cl2/le')

The alternating voltages induced across the two barriers
are then given by

i' d; X(R) ceo') X(R)j k' — ~+j'k', (2.26a)
e;a)K;2 Z{R) c' / Z(R)

with

R(R)=4R' —2K,d, 'R,
X(R)=4e-x-e-K,d, 'R,
Z(R)=4R' 2K;(d;+d )R—+Kid,d (1—e 1Ir e~),

and

as it should. It is clear from these explicit expressions for
e and v' that supercurrents can excite resonant electro-
magnetic modes of the system. Supercurrents inside one
barrier can have a signiGcant inQuence on the other
only if d &X„as it is clear from the appearance of the
factor e ""'1~in the second term of (2.27). Then, in that
case, the expected result of this resonant excitation is
the appearance of two distinct series of current jumps in.

the I-V characteristics of the barriers. Various other
consequences that have been discussed before in connec-
tion with the previous geometry also apply to the
present case.

One can go on to examine more and more complex
geometries of superposed Glms. However, from the
study in I, it seems clear that the essential physics of
such systems has already been embodied by the few

simple cases examined here. As the number of metal-
dielectric interfaces increases, the number of eigenmodes
increases correspondingly. Each of these modes cor-
responds to surface plasma oscillations of the system as a
whole. When these inhomogeneous systems exhibit the
ac Josephson effect, under certain conditions, some of
these modes can be resonantly excited via the action of
the supercurrents. These resonant excitations are ob-
servable in the I-V characteristics of the barriers as the
appearance of several di6'erent series of equally spaced
current jumps. The number of such series is the same as
the number of the low-lying eigenmodes of the system.

III. MODIFICATION OF DISPERSION CURVES
BY THE JOSEPHSON EFFECT

In I, electromagnetic wave modes in superposed
normal or superconducting metal and dielectric G'1ms

are described and their dispersion relations derived
without the inclusion of any ac Josephson effect that
may exist in such inhomogeneous systems when the
metals are superconducting. Section II of the present



K. L. NGAI

FIG. 3. Dispersion relations for the low-frequency modes as
modified by the ac Josephson eBect of the symmetric geometry of
three balms (metal-insulator-metal) between two semi-infinite
insulators, cy,~coo(1+8;/2P „)', k, co,/c.

frequency and e= ct d,/e, (2'A„+d,)J"is the same as the
phase velocity (3.19) derived in I for a barrier between
two semi-infinite metals. In fact, (3.1) was derived for
this model, and the appearance of c, which is the prop-
agation velocity of electromagnetic oscillations in the
absence of supercurrents, is quite natural. The modifica-
tion due to the supercurrents is clear from (3.1), which

says that for or(coo, k is imaginary, so that waves can-
not be propagated, while for ~))coo the propagation
velocity tends to c, its value in the absence of the
Josephson effects. Before we examine these interesting
modiGcations for the multiple Glms we studied in I, we
shall sketch a procedure that will be applicable for the
various configurations.

We assume that q, the difference between the values
of the phase of the superconducting order parameter of
the two sides of the barrier, undergoes small oscilla-
tions Bq of the plane-wave form e'&"' ~' about qo.
From Josephson's equation, we have

2oob p= (2e/k) bv, (3.2)

2 =M o2+ C2$2 (3.1)

where oooP=82red, j2 cosgo/o, k is the JosePhson Plasma

work examines the excitation of these modes by the ac
supercurrents when external dc voltages are applied.
The treatment therein amounts to finding the response
of the surface plasma oscil1ations to the exciting super-
currents in a perturbative manner. This approach is
correct if a linear approximation is valid and when we
are interested in such responses as the I-V character-
isitics. There are situations, however, where this ap-
proach is invalid. One simple example is given by the
case of a Josephson junction with no applied dc voltage
when oscillations of the system either in the form of
propagation of small-amplitude electromagnetic waves
along the barrier or oscillations that resemble ordinary
plasma oscillations commonly termed the Josephson
plasma resonance are sought. Other examples are
general superposed-Glm systems in the absence of
applied dc voltages and oscillations of these types are
examined. The study of such oscillations in multiple
films will constitute Sec. III.We start with a discussion
of the nature of these oscillations in a Josephson
junction.

The existence of a plasma resonance in Josephson
tunnel junctions was predicted theoretically by
Josephson" "and recently observed experimentally by
Dahm eI, ul."The plasma resonant mode corresponds to
a situation when the current and. electric Geld are
normal to the barrier, the magnetic Geld is zero, and
there is a periodic exchange of energy between the elec-
tric field and the electrons (longitudinal oscillations).
In addition to the plasma oscillations, a plane-wave
solution ~e'&"' ~'& which is physically equivalent to
the propagation of electromagnetic waves along the
barrier is also admitted. The dispersion formula is given
by

which relates the oscillating part of the phase to the ac-
companying oscillating voltage Bv across the barrier.
The expression for the supercurrents can be linearized
under the assumption that By is small, and rewritten
in terms of Bv as

j T= ji sinpo+ (2ej &/iI2oo) cospob'v. (3.3)

The second term of the right-hand side is an oscillating
current with time and spatial dependence of the form
e'&"' ~'. As we have seen already in Sec. II, these
supercurrents will cause electromagnetic Gelds in the
multiple-Glm system and from these fields we can cal-
culate the oscillating voltages across the separate
Josephson junctions that are present in the system. For
self-consistency these must be the same as the Be's

that appear in (3.3). We are thus lead to an eigen-
equation which in general is of the matrix type from
which the dispersion relations can be obtained.

i4xd; jz

e,ar (1 c12 /co 2)+2—2/2Q

(3.4)

A. Single Josephson Junction

As an orientation for use of this self-consistency
method, we reexamine the case of a barrier between two
semi-infinite superconductors. The voltage across the
dielectric Glm of thickness d; is Bv=E,d, , where E; is
the component of the electric Geld inside the barrier
and perpendicular to the plane of the junction. With the
method explained in Sec. II, E; can be calculated and
expressed in terms of the tunneling current jp. Ex-
plicitly it is
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where c and Q can be obtained froM Eqs. (2.8) and
(2.10) in the limit d /X„—&~. For self-consistency, we
also have to satisfy

Adopting the self-consistency procedure illustrated
previously, we find the equation

(3.6)jz= (2ej &/ika&) cospo8& (3 5) where

From {3.4) and (3.5) it follows that the dispersion rela-
tion is given in (3.1) with &o~

——2ej~ cospo/AC, where C
is the capacitance per unit area of the junction. At
k=0, &v=cao is the Josephson plasma frequency. The
situation corresponding to such a plasma oscillation has
been described by Josephson. Our present picture
illustrates the fact that the magnetic fields associated
with the junction modes excited by the supercurrents
vanish as k —+ O. In particular, the magnetic Geld H~,
being first-order in k for small k, vanishes at k=0. %e
have seen in I that when k&)k~, the magnetic field and
hence the retardation effects are also negligible. The
physical explanation for why, in the regions of small k
and large k, the retardation effects are negligible can be
given via a criterion due to Ferrell'4 and elucidated in I.
The criterion is to compare the ratio of the distance to
the time over which charges are transferred with
the propagation velocity of electromagnetic waves,
c,=c/e'" and c~=c/e~'~' in the insulator and metal&

respectively. If this ratio is much smaller than both c;
and c, retardation effects are negligible and the elec-
trostatic theory is adequate for describing the phe-
nomenon. For the region of large k, the distance is the
wavelength 1/k and. the time is ~1/co. Retardation
effects are negligible if a&/k«c; and. c (region of surface
plasmon). For the region of small k and ~ close to &oo,

the appropriate distance is d; since now the transfer of
charges is due to the tunnel effect across the barrier. The
criterion for negligible retardation effect is d,~&&c;,, c,
which is obviously satisfied, for typically d; 20A,
co~10" sec ' X ~500A and @~10' cm/sec As we
move towards higher k, a considerable amount of
charge will start to travel parallel to the surface and the
characteristic distance involved in this process is 1/k
as we have discussed before. When k coo/c this process
is no longer negligible compared to tunneling across the
barrier. Hence the characteristic distance changes
gradually from being d; to 1/k as we move from k~0
to k))&oo/c. Now it is clear that we can say that oscilla-
tions near the point, so= coo, k 0 are true plasma oscilla-
tions without retardation effects and of the same nature
as plasma oscillation in the bulk of a metal. Their basic
difference is that in the Josephson plasma oscillation
only the charges that tunnel participate and not the
bulk charge density. This also accounts for ~0 being
several orders of magnitude below co„.

So far we have examined the case of a barrier with
semi-in6nite metals. %hen the metal films are of 6nite
thickness additional surfaces are present and give rise to
additional electromagnetic wave modes as we can see
from I. For convenience we take a symmetric junction
where both metal films have the same thickness d .

j3= o'(I+ I(d;/». ))+~"~,/I, +~"Z, d,/2I „,
I'=(vo c E,(d/2g„+t)/g„+g4+pd/2y„2,

3= tanhd /X~, E= cothd /g,
whose solutions de6ne the dispersion formula. Explicit
solution of the equation for all regions of interest in the
k,-& plane is dificult, This difficulty can be circum-
vented by solving for co' in terms of E;2 to obtain

(3.7)

which will map out the dispersion curves by giving their
intersections with the lines E=const. Graphically the
qualitative behavior of the dispersion curves can be
represented as in Fig. 3.

For small k, branch II can be described by

aP =Mo'+k'c'

and I is close to the line co=kc. Near

k—(so(1+0,/2X„) '12/c

these two modes interact su%ciently strongly to split
them apart into two branches which approach asymp-
totically the lines cv=kc and ~=ke as shown in the
figure. A minimum separation of the two branches
along a direction parallel to the line co=4 has been
estimated to be ~ e ""'~&.The cause for the complica-
tions in the dispersion formula for a junction with
finite thickness d of metal 61ms as compared with that
when d —+ can be explained by comparing Figs. 6
with 3 of I. The additional branch III in Fig. 6 can be
described as associated with oscillation on the outer
surfaces of the metal films when d is large and hence
can be neglected if d —+. On the other hand, if d
is small, this description ceases to be valid and this mode
interacts with the others. In the present discussion
when the supercurrents are put in self-consistently,
the branch &a= ck becomes co'=coo'+c'k', which would
intersect branch III except for the interaction which
lifts the degeneracy and splits them apart. The amount
of splitting is measured by the minimum distance
e—~ l'"& given before, which shows that the splitting is
dependent on the degree of interaction between the
two modes.

It is worth noting from Fig. 3 that the branch
starting from ~=coo at k=0 remains above the co=ok
line throughout the range 0~&k&k, . In this range,
E';= (k~—&o'/c')'~~ is imaginary and the corresponding
modes are not c'on6ned to oscillations in the surface
but have acquired the nature of propagation into the
in6nite medium in which the junction is imbedded. This
possibility arises because the phase velocity of surface
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plasma oscillation exceeds the velocity of light. '4

Nevertheless, an order of magnitude estimation shows
that the intensity of the expected microwave radiation
is negligibly small to be detectable.

We are now ready to consider some multiple-61m
systems that have more than one dielectric barrier,
and as a first example we take the configuration as
illustrated by Fig. 6 of I.Assume the situation when the
phase difference 6@~ or by2 across each of the two
barriers oscillates about equilibrium value po according
to the form e'&"' k'& and a11.ow 8y~ to be either in phase
or 180 out of phase with 8p2. Thus, by this assumption
the supercurreht distribution is either symmetric or
antisymmetric and the solution of the problem can be
easily obtained by invoking the result of Sec. II for the
voltages induced across the barriers due to the excita-
tion of electromagnetic modes by the supercurrents.
The requirement for self-consistency leads us to the
equa tlon

eo2 ~2 1 6 GP

' Z 1 5&+/W— e'k')
(3.8)

which determines the dispersion relation for a simul-
taneous propagation of small-amplitude. electromagnetic
waves along the barriers. A general solution of this
equation is rather dificult but unnecessary. For
physical reasons we expect, for small k, some dispersion
branches still described by the form ~'= p«pP+c~k' for
some c. Indeed, substitution of this into (3.8) will

satisfy the equation lf c=cflies/ej(di+XPy) j = cyq

which are the phase velocities as de6ned in Eq. (2.13).
The situation is then similar to the last case of a junc-
tion with metals of finite thickness. The branch cv'=coo'
+t|'c+' interacts with branch III of Fig. 8 in I and a
splitting occurs which eventually makes the former and
the latter approach the lines p«= ck and &v'= o&p'+ c~'k',
respectively. The same remarks apply to p«'=&op'+c 'k'
and branch IV of Fig. 8 in I. Since there is no demand
for a detailed quantitative solution, we are satis6ed
with the picture given in Fig. 3, with branch II there
now representing Mp= p«p'+ c~'k' for small k.

The preceding results are derived through quite
restrictive and nonrealistic assumptions about (a)
geometric symmetry, (b) the identity of the tunnehng
amplitudes for the two barriers, and (c) the relation
between the phases of the oscillations by~ and bq2.
%e do not expect the physics of the problem to be
modified drastically when the geometric symmetry is
removed, except for a complication in the calculation.
However, if we relax the last two assumptions, we
would obtain instead a matrix equation for the solution
of the dispersion formula. The treatment in this case
corresponds to a decomposition of the current distribu-
tion in the two barriers into symmetrical and anti-
symmetrical components as has been discussed in.

Sec. II. The voltages induced across the barriers by

these components of the current distribution can be
immediately written by using the results of Sec. II and
their sum gives the desired total voltage be~ and be~

across the two barriers. Self-consistency requirements
as explained. then lead to a 2X2 matrix equation

K E EsM d; X(R)
Mo

d Z(Z)

X'(E) e;a)') 8p'

z(R) c'k'I.

(3 9)

p«pp= 8predj co@«/c,k

(op" ——8n.ed j' co&p'/p„fs.

%e rewrite this in the form

Several facts can be deduced from this matrix equation
by inspection. At k= 0 we have

Mg&= Mo GP
—C Es CO ~22= —eo u —C +

Mg2 ——3f2g ——0.

(8w

)&hpp

are obtained for ~=a)o and also for (u=aoo'. These cor-
respond to the Josephson plasma frequency of each of
the barriers itself and oscillations occur as if the rest of
the multiple films have no e6ect on each individual
barrier. This happens because at &=0 the matrix M is

and the dispersion formula is given by equating the
determinant of A to zero. The matrix elements of 3
can be easily derived but shaB not be recorded because
there is no interest for a general solution of this prob-
lem. Also, we are going to deal next with a similar case
where the matrix equation is explicitly derived and
discussed.

As a 6nal example we discuss the two-barrier as-
sembly as in Fig. 7 of I.The by-now-familiar procedure
would yield via Eqs. (2.26a) and (2.26b) and a self-
consistency argument the following matrix equation:

t'8e k'

iBv' c«'XP
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u —eo —coo 2

—ci,a)'((o' —cop")k' —cooce'(uP —/ep') k'

+ (cllcop clocol)k (3.10)

If coo/~o', in the neighborhood of the point co=&o,
k=0 (or ~=pop', k= 0), the last two terms of the above
equation are of higher order and can be neglected. This
means that not only at 0=0 but also for small values of
k the oscillations in the two barriers are independent.
These independent modes are described by

OP=No +c k

co'= pop"+ c"k', (3.12)

d;L2X„+d (1—e-'" /"~)]
p2 g2 (3.13a)

4X„'+2K~(d;+d )+d;d (1—e-'e~/ "o)

c =c (dyed~).

We note that if either d =0 or d —+~,

c=cLd;/(d;+2K )]'/'

(3.13b)

the same as the propagation velocity in a barrier with
semi-infinite metals, as it should.

If ~o——coo', the nondiagonal terms cannot be neglected
in this way and they cause a coupling of the oseilla-
tions in the two barriers. In this case the dispersion

diagonal, which mea, ns that the oscillation in the two
junctions are decoupled. Physically the situation cor-
responds to the appearance of two layers of equal and
opposite charges at the two surfaces of each barrier.
The field created by such a charge distribution is thus
confined to inside the barriers only and decoupling of
the two junctions is clear.

By making the usual approximations for the case
when ~&&co~, k&&k„, we can write the matrix elements as

Mzl=GP(p/ —~o ) c11k ~

~12—C12k

3IIoo=GP(N —~o ) cook

~21—~21~

where

n, (2X,+d )
C11=C CO

—C MO 7

4y„'+2),(d;yd )+d;d (1 e-"—/"~)

2X,d;e-" I'~
/2

& ~o o

4) o+2Z„(d;yd )+d;d (1 e'~—/"~)

q» can be obtained from 611 and c21 from &12 by the
interchanges ohio~ ohio' and d;~ d .Then the dispersion
relation is given by

relations are given as

oo =op +cy, o k (3.14)

where ca,o are given as in (2.25).
We conclude this section by considering the modi6ca-

tions caused by the. Josepson effect in the dispersion
relations of plasma oscillations in the periodic structure
of alternating metal and insulating films examined in I.
Using the same techniques as before and assuming that
the quantity coo is the same for all barriers, we find that
the dispersion relations for the low-frequency modes is
changed from co= c(u)k to

(3.15)p/P =coop+ C'(c.)k'

for small k. Here c(n) is given by

e24g/Ay+1 2 cos(~d)e(4/xo) —1/o

c(n) =c d; d;+2K„
g2)l.pro//X g

(where d= d;+d ) and is the same as (3.52) of I.

IV. CONCLUSION

In this work we have thus given a thorough investiga-
tion of the interaction of the ac Josephson currents with
surface plasmons in multiple-film systems and various
consequences that can be observed experimentally. We
have seen that the supercurrents can excite surface
plasma oscillations whose characteristics have been well
described in I. When specialized to a single Josephson
junction, the theory leads to the occurrence of current
jumps and resonant peaks in the I-V characteristics. It
permits also the relevant parameters such as phase
velocity of the oscillation and the loss at resonance to
be calculated as a function of frequency, temperature,
and mean free path. From the frequency dependence of
the phase velocity, the decrease of the ratio of the
voltage at which a resonance peak occurs to the cor-
responding applied magnetic 6eld has been accounted
for quantitatively.

'

Meanwhile, its temperature depen-
dence gives indication that when the temperature
T&0.6T„ the steps would start to shift nonuniformly
with T and consequently cease to occur at equally
spaced voltages. For superposed junctions, our results
show that the collective nature of the surface plasma
modes causes a coupling between the junctions. This
provides an explanation to a three-61m tunneling experi-
ment of Giaever. Furthermore, this coupling will alter
the operating characteristic of each individual junction
and several series of equally spaced steplike structures
appear in the I-V characteristic of each junction. It
should be noted that in the study of the resonant excita-
tion of surface plasma modes by supercurrents we have
restricted ourselves to the situation when the linear
approximation is justifiable. However, nonlinear effects
which we have thus neglected can be important in
certain circumstances. Nonlinear eftects, if non-
negligible, would give rise to the appearance of har-
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monies and subharmonics, and would distort the line
shape from Lorentzian to cusplike. "The recent experi-
mental observation" of the Josephson plasma reso-
nance has stimulated a good deal of interest in surface
plasma oscillations when modified by the Josephson
currents. We have studied such modified oscillations in
multiple-film systems and their nature. The results of
Sec. III would be useful for further experimental
eBorts in this area.

29 N. R. Werthamer and S. Shapiro, Phys. Rev. 164, 523 (1967).
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A theory of tunneling between a normal metal and a low-carrier-density superconductor at zero tempera-
ture is developed. Because of the small Fermi energy of low-carrier-density superconductors and the energy
dependence of the tunneling matrix elements for these junctions, the conductance-versus-voltage curves
are quite diferent from those for tunneling between a metal and a high-density (metallic) superconductor.
The tunneling displays both the voltage-dependent conductance associated with tunneling between a metal
and a degenerate semiconductor and the peaks in conductance arising from the large quasiparticle density
of states at voltages slightly larger than the superconducting energy gap.

L INTRODUCTION

LKCTRON tunneling in metal-insulator-metal
& (M-I-M) junctions when one metal is in the

superconducting state and the other in the normal
state has been successfully used to determine the
tunneling density of states and the superconducting
energy gap as a function of energy, h(E), in super-
conducting metals. '~ The theory usually used to
interpret these experiments assumes that the Fermi
energy e& is much larger than any voltage applied
across the junction, and that the tunneling probability
is constant for all voltages of interest. %hile these
approximations hold for M-I-M junctions, they are
quite restrictive when applied to metal-insulator-
superconducting degenerate semiconductor (M-I-SS)
junctions. In this paper, we attempt to develop a theory
of tunneling in M-I-SS junctions without making the
above approximations.

At present, the low-carrier-density superconductors
(superconducting semiconductors and semimetals)
known to the author are GeTe, ' SrTi03, and SnTe.
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Tunneling in Al-A1203-SnTe and Al-A1203-GeTe junc-
tions has been observed when both Al and SnTe or Al
and GeTe are in the normal state, 8 and in Al-Al&O3-
GeTe junctions when Al is in the superconducting state
and with GeTe in both the normal and superconducting
states, ' and 0 (E=h) of GeTe has been measured in
this way.

Although tunneling from In into SrTiO3 has been
observed at temperatures below the superconducting
transition temperature of the SrTi03 specimen used
(and also below the In transition temperature), the
superconducting energy gap of SrTi03 was not ob-
served. 'o The dc Josephson efFect has been seen in
tunneling from In points into SrTi03."

Because low-carrier-density superconductors have
Fermi energies of the order of magnitude of, or less
than, the phonon frequencies important for super-
conductivity, it is expected's that h(E) will have a
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