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Surface Plasmons in Thin Films
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The dispersion relations for surface plasma oscillations in normal metals are investigated for single- and
multiple-film systems taking retardation sects into account. The simple dielectric function ~(co) = 1—~„'/co'
is found to be adequate for the high-frequency region in which oscillations remain undamped. Two types
of possible modes of oscillation are found. One type corresponds to dispersion relations which behave linearly
for not-so-high frequency, with a phase velocity always smaller than the velocity of light in the dielectric, but
at least ten times larger than the Fermi velocity, while the other type consists of high-frequency modes
(co co~). The role of these oscillations in the problem of transition radiation is reexamined. In the case of a
thin metal film, a new interpretation is proposed for the peak observed in the transition radiation spectrum.
Finally, the work is extended to superconducting metals where, in the frequency range ~&2A (2A is the
superconducting energy gap), we have justified the use of a dielectric function of the same functional form as
given above but with ro„' replaced by an almost frequency-independent quantity cu„,s, where co„,=cjX„.and
'A» is the actual penetration depth. In this frequency range, the oscillations are essentially undamped and
play an important role in the electromagnetic properties of the multiple-film systems, and particularly when
the systems exhibit the ac Josephson effect.

surface plasma oscillations may also provide an addi-
tional mechanism for the creation of an attractive
electron-electron interaction in multiple-film super-
conductors in a way analogous to the phonon-induced
attractive interaction in an ordinary superconductor, "
and, more generally, low-lying surface plasmons may
show, through a residual interaction with electrons,
effects analogous with those caused by the electron-
phonon interaction.

Considerable theoretical and experimental work has
been done in the study of these oscillations for the
geometry of one surface separating a metal and a
dielectric. The properties of these modes" "and their
excitation by incident electrons" "and photons' have
been studied. Ritchie' and I'errell2 have studied the sur-
face plasma oscillations (SPO) in the case of a thin metal
61m using electrostatic theory instead of the complete
set of Maxwell equations. It is known, however, that the
retardation effects introduced through the Maxwell
equations have a profound inQuence on the mode of
single metal-insulator interface. ' The purpose of this
paper is to study the properties of SPO in geometries
of experimental interest by taking into account re-
tardation effects, i.e., by using the complete set of
Maxwell equations. A simple dielectric function of the
form e(to)=1—&o„s/&os is used, where too is the bulk
plasma frequency. The limits of validity of this simple
approximation are discussed. The result for a single
metal-insulator interface is recaptured and new results
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I. INTRODUCTION

A WELL-KNOWN property of an electron gas is
its capacity to undergo collective motions, i.e.,

plasma oscillations. Much theoretical work has been
done on the study of these oscillations, particularly on
dispersion relations. ' Surface effects are usually ne-
glected in most treatments. However, there are cases in
which the surface effects are quite important; the in-
elastic scattering of electrons by thin foils and the
problem of transition radiation are two such examples.

In general, the presence of surfaces introduces new
modes of plasma oscillations in addition to the bulk
one with different properties and particularly with dif-
ferent dispersion relations. These modes can be excited
by incident electrons" or photons4' and can be de-
tected experimentally. "An interesting feature of these
modes is their strong dependence on the properties of
the surfaces in such a way that they can be used as a
tool for investigating surfaces and thin 6lms. ' These
surface oscillations play also an important role in
determining the electrical characteristics of super-
conducting tunneling junctions, especially when the
Josephson effect is present. ' "The low-lying modes of
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&XK&=o,

V Ki ——(4iri/oi)V j,
V X R,= —(ice/c) H,

v E,=O,

VXH = (i&o/c) R+ (4ir/c) j,
v H=o,

(1 2)

(1.3)

(1.4)

'8 D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 I'1958).
19 P. B. Miller, Phys. Rev. 118, 928 (I960).
'0These oscillations are referred as "cavity modes" in the

literature of tunneling junctions.
21 K I, Ngai following p~per Phys Rev 1g2 55' C,

'1969

for more complex geometries are obtained. Some of these
results are in disagreement wi. th previous estimations
made by Ferrell about the importance of retardation
eRects, thus requiring fundamental changes in the
interpretation of the observed peak in the transition
radiation c1nittcd whcii a thin metal foil is bonibarded
by an electron beam.

The case when the metal films are superconducting
requires sperial consideration. In normal metals the
low-lying oscillations (a&(o~&, where o~& is no smaller
than 10"sec ' in the cases of interest to us) are absent
because of the very large attenuation due to bulk and
surface collisions. However, for superconductors and for
frequencies such that fico (2A (2d, is the superconducting
energy gap), we expect real oscillations. It is shown in
this paper via the theory of Mattis and Bardeen" and
the numerical calculations of Miller" that a local dielec-
tric function of the form e, (o~) = 1—~o~,i/co' can still be
used for Ace(26, under certain assumptions satisfied
in the cases of interest. The almost frequency-indepen-
dent parameter ~„„which replaces here the plasma fre-
quency ~„,is temperature-dependent and is related with
the actual penetration depth X„,via the simpl. e equation
Xo,= c/oo„„where c is the velocity of light. Using this
formalism, the results of Swihart' for tunneling ge-
ometries were recaptured (with the difference that in

our formalism the actual penetration depth replaces
the London penetration depth appearing in Swihart's
results) and new results for more complex geometries
of experimental interest were derived. As is well

known, ""the presence of SPO" has important eRects
on the operating characteristics of the Josephson tun-

neling junctions. This subject is considered in the fol-
lowing paper. "

Discussion of plasma oscillations can be based on the
Maxwell. equations together with a constitutive equa-
tion relating the electric current j to the electric 6eld E.
Assuming, as usual, that the magnetic permeability p
is equal to unity and that time enters through a factor
of the form e'"', we want solutions with R nonzero Ki
for the system of equations

kXKi(k, M)=0,

ei(k, o~)k Ri(k, M) =0,

si(k, co) = 1—(4iri/oi)oi(k, co).

is the dielectric function and

ji(k, co) =o i(k, co) Ri(k, o~) .

(1 9)

(1.10)

(1.12)

In order to have nonzcro K~ solutions we must have

oi(k, o~) = 0, (1 13)

the condition which gives the bulk plasma dispersion
relation, and which also dccouples the transverse fields
from the longitudinal. So, in the case of one material
with 0& just a proportionality constant, all the possible
plasma oscillations are of purely ].ongitudinal nature in
the sense that the nonzero K1 field does not create
transverse fields. On the othe hand, if diRerent materials
(with o., just a proportionality constant) are present,
there are two groups of plasma oscillations. One con-
sists of the bulk oscillations and the other of surface
oscillations. The first group is characterized by the fact
that each material sustains independent oscillations
(not plane waves in general) where a surface charge on
the boundary is so distributed as to compensate outside
the material the held created by the space charge inside.
These bulk oscillations have the two characteristics of
the oscillations in a material of infinite extent: They are
longitudinal, and their frequency is determined by the
relation ~i(q, o~) =0, where q is the set of eigenvalues
labeling the solution. The only role that the surfaces
have in these oscillations is to determine the eigensolu-
tions through the boundary conditions. In the ge-
ometries of alternating metal and insulating films, which
are the subject of this paper, one set of bulk. solutions

supplcnlcn tcd bp a 1lnca1" fLlllc tiolial 1 clatloll of the
form

1=oiKi+o(Ki
&

(1.8)

where o-f and o-& are conductivity tensor', integral
opc1.Rtol s 111 gcl'1cf'.1,1, an(i tlic SLlbsci ip'l. s l Rnd t i11(.Iici1,tc
the longit, udinal Rnd the transverse parts respectively.
If it were justifiable to assume V d&E&=0 everywhere,
with K& not identically zero, then the system of equa-
tions for the longitudinal electric field would decouple
from that of the transverse fields, thus implying that
purely transverse solutions can be found. If, on the other
hand, the solution 1s such that (ioi/c) Ki+ (47I/c)oi'Kt= '0

everywhere with K1 not identically zero, then the system
of cquB tlons fol tlic trRnsvcrsc clcctl ic Rnd magTlctlc
fields would decouple from that of the longitudinal
field, permitting so solutions of purely longitudinal
nature. Now, if the system considered is just one
material of infinite extension and if 0& were simply a
proportionality constant, Eqs. (1.2) and (1.3) of the
above set could be rewritten as follows by taking
Fourier transforms'.



can be found quite easily: Each metal 61m sustains
Iiorllial osclllatlons of the foilll E~= Roe'I " (tllc s
axis is chosen normal to the interfaces) with space
charge pv= (I'k/4Ir)Roe"Ii* "') and surface charges at
the two boundaries x=e and x=a+0 equal to p8,
= (Ii /4-)eiic ii))) --d p = =- (F /4-)ei(ka+kd iii))-

where co and k satisfy the relation e)(o),k) = 0; it can be
seen by inspection that the total charge per unit length
of the film is exactly zero and consequently the held
created. by such a charge distribution is exclusively
confined inside the metal film, as it should, in order to
have independent oscillations. The surface oscillations,
to which we shall confine ourselves exclusively in this

paper, are of diRerent nature. First, 8~ is not identically
zero and consequently there is no space charge inside
the metals. Second, the nonzero KE does create trans-
verse 6elds which in turn do modify the KE, since the
condition V a.&K&=0 is no longer satisfied at the sur-
faces separating any two different materials. l V o,E)
o-8(f), whclc f=0 describes tllc surface. ) A pllyslcal
criterion for an estimation of the relative importance
of the retardation eRects introduced via the coupling
with the transverse fields is obtained by comparing the
ratio of' the distance over which electrical charges are
transferred to the time required for such a transport
with the velocities of propagation of electromagnetic
waves, cce,='" ,and c = c

l
e

l

'" in tlie insulator and
metal, respectively. If this ratio is much smaller than
both c; and c, retardation CRects are negligible and the
electrostatic theory is adequate for describing the
phenomenon. The electrostatic theory gives also good
results for over-all quantities, such as dispersion rela-

tions, etc. , in the case where only one of the above in-

equalities is satis6ed, if a relatively small amount of the
total 6eld energy is stored in the material which
violates the corresponding inequality.

In Sec. II, a discussion of the current-6eld relation
for normal metals is given. It is shown that a local rela-
tion with o =oo/(1+iior), where oo is the static con-
ductivity and ~ is the relaxation time, is adequate for
dcscI'lbing thc surface plasma dlspclsloIi iclatlon 1n thc
interesting region where it is essentially real. Using this
form for the conductivity, the dispersion relations for
various geometrical con6gurations are derived in Sec.
III. These results are discussed in conjunction with the
published works that exist in the literature. Finally, in
Sec. IV the work has been extended to the case when

superconducting materials are present and essentially
undamped oscillations are shown to occur at low fre-
quencies. One of the modes we 6nd, the strip-line mode
most interesting for conventional superconductive
tunnel junctions, has already been studied theoretically

by Swihart. '

In general, the current-6eld relation can be found
from the Boltzmann equation which determines the

distribution function as a functional of the field. The
llnca11zcd Soltzmann equation can bc wI'ittcn

(2 1)

where fo(v) is the equilibriuni distribution function, v

is the electron velocity, and fl(v, x)e" ' ~*) is the first-
order correction due to the electric 6eld. The current is
given by the relation

(2.2)

0'o= o)& r/47r (2.5)

The last two equations describe what we call the local
approximation to the current-6eld relation.

As has been discussed by other authors, ""a criterion
for the applicability of the local approximation is that
the quantity i/l 1+IIor

l
should be much smaller than

any other characteristic length of the problem. Here 3

is the mean free path and 1/l 1+iiov
l gives a dynamical

or CRective mean free path and is related to the distance
over which an electron can move without suRering any
collisions. For low frequencies (Ior((1) this distance is i,
but for high frequencies (Ior))1) it is i/Ior~vi/co, the
distance transversed by an electron in one period (v) is
the Fermi velocity). The characteristic lengths of our
present problem of SPO in thin films are (a) the thick-
nesses of the metal films d, (b) the wavelength of the
oscillation )1, and (c) the quantity

c(1+iIor) ') 2

—=A„1
(2Irioo o) ')2(1+i)

which measures the fr equency-dependent classical
penetration depth, where X~= c/Io„ is the London
penetration depth. '4 Thus, the local approximation
holds when

)/X„(&Ior (1+1/co'r') "4,

l/IE«(1+ o)'r') ')'
(2.6)

(2 7)

1/X«(1+ oPr') '" (2.8)

~~ G. K. Reuter and E.H. Sondheimer, Proc. Roy. Soc. {London)
A|.95, 336 {&948).

~3 R. Knglman and K. H. Sondheimer, Proc. Phys. Soc. {Iondon)
$69, 449 (1956).

'4 In the literature the quantity 2vrc/co„, the plasma wavelength,
is also denoted by the symbol X„.

If the terms Bfi/Bx and (ikv, /v, )fi are negligible com-
pared with fl(1+iior)/rv„ the solution of Eq. (2.1) is

f1=I:Ielr/~(1+1~.)jm & fo (23)

which in turn gives that

(2.4)
with



are simultaneously satisfied. For our present interest in
real oscillations of the system, we shall restrict our con-
sideration to frequency ranges where these oscillations
are essentially undamped. Scattering of electrons in
the bulk, described by r or by /, and scattering from
boundary surfaces contribute to the damping. From
physical considerations and the results of previous cal-
culations, "the bulk scattering does not cause appreci-
able attenuation if

cur)&1. (2.9)

which is equivalent to

ol

&or &(/7,

a)/k&ep

a)r &l/), ~.

(2.13a)

(2.13b)

(2.14)

In the Grst case even the Boltzmann equation is not
adequate for investigating the current-Geld relation. A
microscopic quantum theory is necessary, and the
current-Geld relation for the transverse part of the

"H. E. Bennett and J. M. Bennett, in Optica/ Properties and
Electronic Structure of 3Eetals and Alloys, edited by F. Abeles
(North-Holland Publishing Co., Amsterdam, 1966), p. 175.

On the other hand, the contribution to damping from
surface scattering is also negligible if

l/d«(1+ co'r') '~' (2.7)

(a diffuse boundary scattering condition is assumed to
be a good approximation). The conditions (2.9) and
(2.7) for real oscillations can be written as

err))max(i, l/d) . (2.10)

Under (2.10) the local approximation is valid provided

a&r))max(l/X, f/X„) . (2.11)

Therefore, if max(1, 1/d) &max(l/X, E/X~), all real oscilla-
tions can be found via the local approximation. On the
other hand, if max(l/A, l/X~)))max(1, //d), there would
be a range of frequency in which the local approxima-
tion is invalid and yet real oscillations can still be found.
This latter case occurs when

min(X, Xi,)«min(l, d) . (2.12)

However, in many practical investigations of plasma
oscillations in metal Glms, conditions such that 7=10 6

cm, d =10 ' cm, and X„=3)(10 ' crn occur. This implies
that (2.12) is not in general satisfied and the local ap-
proximation is quite adequate for our present study.
For (2.12) to be satisfied, E would have to approach d,
with d& IO ' cm. In other words, the Glms would have
to be pure and perfect, and the experiments conducted
at low temperatures. There is some reason to believe
that Au Glms may perhaps be good enough. "If, under
these special circumstances, (2.12) is satisfied, then
there exist situations in which either

electric Geld is in general diferent from that of the
longitudinal part. '~ In the second case when &sr&i/X„,
we are in the regime of the anomalous skin e8ect"
and the solution of an involved integrodifferential
equation that results from combining the Maxwell
equations with the Boltzmann equation is required;
this might be the case for the Au films cited above.

Since the conditions for these complications can be
realized only with dBBculty in applications of our
present physical interest, the local approximation is
adequate and the following formula for the dielectric
function e (ra) in the metal,

is satisfactory.

07@

~~(~) =1-
Gl 1 z cor

(2.15)

In deriving this formula, the effects of the periodic
crystal potential and the core polarization have been
neglected. It should be stated, however, that for certain
metals, e.g., Al, Mg, Be, K, Xa, etc.,' this is a good
approximation for the frequency range of interest. For
other metals, e.g., Ag, the interband transitions or the
core polarization change considerably the simple for-
mula (2.15). The core polarization replaces the unity
in the right-hand side of (2.15) by eo, which can be con-
sidered as a constant larger than unity, and the inter-
band transitions contribute signiGcantly to both the
imaginary and the real part of e, changing the func-
tional dependence of the Re(e ) on &o and increasing
appreciably the Im(e ). In this case we should expect
changes in the dispersion relations derived by using the
simple formula (2.15), but more significantly the oscilla-
tions should be attenuated sometimes so strongly that
they should not appear at all.

A Gnal remark should be added about the dielectric
function of the insulating materials. In what follows it
has been assumed that e; is a real constant which for
simplicity has been taken equal to unity in most cases.
This assumption is satisfactory for a lot of dielectric
layers on metal surfaces. "However, it may very well

happen in actual cases that the dielectric medium is
strongly absorptive at frequencies below cv„. If that is
the case, then the dielectric constant e; acquires a~
imaginary part which is strongly dependent on fre-
quency and which adds to the attenuation of the
oscillations. When Im(e;) approaches or exceeds Re(e;),
then the damping can be so large that one can no longer
speak of a collective oscillation. Thus, the results
derived in this paper hold in the case where ~„is smaller
than the absorption edge in the insulator or if Im(~, ) is
very small. Since we have restricted ourselves to cases
of essentially real oscillations, the imaginary parts of
the dielectric functions have no appreciable inQuence
on the dispersion relations; they only determine the

"A.R. Melnyk and M. J. Harrison, Phys. Rev. Letters 21, 85
(1968).

'7 K. A. Stern and R. A. Ferrell, Phys. Rev. 120, 130 (1960).



SU RFACE PLASMONS IN THIN I4 ILMS 543

attenuation of these oscillations. Hence in what follows
the Im(4 ) and Im(4;) are neglected. Also, for the sake
of simplicity the contribution of the core polarization to

is neglected and it is assumed that ~;= 1 in almost all
cases. These restrictions are not by any means necessary;
they are introduced in order to simplify the subsequent
calculations in Sec. III.

J
X

insulator
IIIIIIIIIIIIIIIIIIII/lp'~llffPIIIIIIIIIIIIIIII

Metal

III. LO CAL THEORY FOR
MULTIPLE-FILM SYSTEM

We wish to Gnd solutions which satisfy Maxwell
equations with a local current-Geld relation as follows:

v D=0,
v 8=0

v t& E= —(1/c) aH/at,

vXH= (1/c)aD/a~,

D= 4(u&) E,

(3.1)

(3 2)

(3.3)

(3.4)

(3 5)

for a geometry of alternating superposed Bat metal and
insulator Glms, where

4(a&) = 1—42„2/O)2 (3.6) kp =k

for the metal Glms and is constant for the dielectrics.
Maxwell equations are supplemented by the boundary
conditions of continuity of the tangential Gelds at every
boundary. The type of solution we seek corresponds to
wave propagation along a direction parallel to the
boundary surfaces separating the different materials,
which we designate as the s axis. ' With the x axis
normal to these surfaces, we further assume that there
is no y dependence of any of the Gelds and that H, =H,
=E„=0 in all of the media. This last assumption means
that we restrict ourselves to the so-called "electric (or
TM) waves" and we neglect the other group of possible
solutions, the "magnetic (or TE) waves, "which are of
no interest to us, since they are purely transverse waves
(in the sense that v K=0). The solution for any com-
ponent of the Gelds can thus be represented in the form

$(x,s, t) = ReF(x)e'"' 2*& (3.7)

where

Z,(x)= (i/k) (dZ, /dx), —

H„(x)= (404;,„/ck) Z„
d2E,/dx2 E;,„2Z,=0, —

(3.8)

(3.9)

(3.10)

Z;, =(k'—&o22, , /c2)'i2, ReE;, )0. (3.11)

The permeability of each medium is assumed to be that
of vacuum. It may be noted here that a general solution

with Rek&0 and Imk&0, so that the wave travels and
is attenuated in the positive s direction. The Maxwell
equations (3.1)—(3.6) determine the Geld amplitudes
F(x) inside each material through ordinary difFerential
equations as follows '.

Fie. 1. Geometry and the dispersion relation for SPO of an
insulator-metal interface (e;= 1, e = 1—co„'/co') . The analytical
expression for the curve shown schematically here is (3.15).

to (3.10) is a linear combination of the two independent
solutions e~s ~ and e—~' ~. Several multiple-film
systems will now be discussed separately.

Z.=Arez:-*, x&0
= Amaze +'*, x)0. (3.12)

The corresponding 8, and B„can be calculated via
Eqs. (3.8) and (3.9); the continuity of these 6elds across
the boundary gives the dispersion relation implicitly as

(«)me44iR=——
(Z/2);„,„i,40,

(3.13)

Prom this equation we get the dispersion relation

2+M2/4 C2 2k 2/4''+k 244 2/2. 442 422/g 2

, (3.14)
4/4. 2%4+1/2.2 1—2N 2/&24'2

where k„=~„/c=1/X2. If the dielectric constant for
the insulator e; is unity, this solution can be recast in

the form

(g = (g L1+1/2q2+ (1+1/4q4) i2+'", (3.15)

A. Single Metal-Dielectric Interface

We assume that the x=0 plane separates a semi-
infinite metal (x(0) from a semi-in6nite dielectric
(x)0) (Fig. 1). The solution for Z, that remains finite
at inGnity is
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where g= k/k„. The dispersion formula (3.15) has
previously been obtained by Sommerfeld" and by
Stern" and has recently been verified experimentally. '
For ct)&1, co tends to co~/v2, the surface plasma fre-
quency resulting from electrostatic theory for the ge-
ometry considered. For q((1, co approaches ck, the dis-
persion relation of a wave propagating in vacuum. It is
obvious that retardation effects are important for q(1
and that they do not play any role for q))1. To under-
stand that we have to use the criteria stated in the
Introduction, namely, that when both

co/k((c, and co/k((c

are satisfied, retardation effects are negligible. Using
the assumptions e;= 1 and e = 1—co~'/co', we can
divide the co-k plane into regions in which none, one, or
both of the above inequalities are satisfied (Fig. 2) as
follows:

regions I, I':
region II:

region III:
region IV:

co/k) c
co/k(c
co/k) c
co/k &c

and co/k) c
and co/k) c
and co/k &c
and co/k &c

—1/2 ~

)

!
—1/2.

!
—1/2 ~

—1/2

In regions I and I' the retardation effects are always
important. In region II and far from the curve co=ck
the retardation effects can be unimportant for over-all
quantities, such as phase velocity, etc. , if the percentage
of the field energy stored in the metal films is small,
which means that the metal films should be thin.
Similarly, in region III and far from the curves
co =ck! e !

'" the retardation effects can beunimportant
for over-all quantities if the field energy stored in the
insulators is small. Finally, well inside region IV the
retardation effects are always unimportant. This general
discussion not only explains the behavior of the disper-
sion relation under consideration but can also be used for

k=co sin%, (3.16)

where 0 is measured from the x axis (normal to the
surface boundary). If we examine the expression for
the transition radiation per unit solid angle per unit
frequency range, dW/dQdco

I see, e.g., Garibian, "
formula (21)] in conjunction with (3.16), it is not dif-
ficult to show that dW/dMco blows up whenever
(3.15) is satisfied. More explicitly, the factor e cos8
+(» —sin'|i)"' tha. t occurs in the denominator of the
expression dW/dMco is proportional to 2c.'—1. Since
E—1 vanishes only for co(ck (see Fig. 1) while a real 0
corresponds to the region co) ck, the quantity dl V/dQdco

never blows up for physical values of 0.

estimation of the contribution of the retardation effects
in all the modes, which are examined next.

It should be recalled at this point that what has been
said holds for ~ larger than a certain threshold fre-
quency co, so that the assumption s =1—cos'/co' is a
reasonable one. However, the fact that the dispersion
relation tends to ~=ck for small k is insensitive to the
detailed form of e and even to its reality. This is a
general property of all the modes with dispersion curves
near the ~=ok curve. The fact that they lie near the
cu = ck curve depends only on the assumption that

!))1, the condition for a planelike propagation of
the "principal wave" in the theory of waveguides. "In
any case, since for co —& ck all the fields tend to zero for
the TM waves, the portions of the dispersion relations
near the ~= ck curve are of no interest to us.

It is worthwhile to note here that the same dis-
persion relation (3.15) can be obtained from the theory
of transition radiation. "Transition radiation is caused
by the change in the electromagnetic fields surrounding
a charged particle as it is in transit from one medium to
another with a different dielectric constant. If a photon
is emitted, conservation of the momentum component
parallel to the surface requires that

kp
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EFFECTS

IMPORTANT
IN METALS
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EFFECTS

IMPORTANT
IN iNSULATORS

k

(1—8)/(1+8) = We—x'"'. (3.17)

Although this cannot be solved explicitly for co as a
function of k, it allows for approximate solutions when
the co-k plane is divided into different regions. The
result is best given graphically via Fig. 3.

Branches I and II are adequately described by the
longitudinal electrostatic theory' when k))k~, as can he

B. Insulating Film between Two Semi-Infinite Metals

Following the same procedure as in the last case, the
dispersion relation appropriate to this geometry is
given implicitly by

Fzc. 2. Division of the co-k plane according to the importance
of the retardation effects (RE) under the assumptions 6'=1,

=1—co„'/~'. RE are always important inside regions I, I', and
near their boundaries. RE are negligible in region IV. Inside
region II (III) retardation effects can be unimportant for over-all
quantities only when the metal (insulating) films are very thin.

g J. A. Stratton, E/ectrorrIagnetic Theory (McGraw-Hill Book
Co. , New York, 1941), pp. 527-528.

"G. M. Garibian, Zh. Eksperim. i Teor. Fiz. 33, 1403 (1958)
LEnglish transl. : Soviet Phys. —JKTP 6, 1079 (1958)g.
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Now, neglecting tlie ret;~vdatior& eA'ects is equivalent
mathematically to put c= ~. If we follow the change
in Fig. 3 as c—&~, we can convince ourselves that the
dispersion relation reduces to the well-known expres-
sions (3.18).' " Branches I and III correspond to the
antisymrnetric solution and branch II to the sym-
metric one. Comparison of Figs. 2 and 3 shows that the
retardation effects are important for branches I and III
and for k&k„, while branch II can be derived from
electrostatic theory down to very small k if d;k„«I.
This last statement can be verified from Eq. (3.21). If
d; approaches zero, branches I and III disappear while
II still exists with a dispersion relation which tends to
the bulk one, in agreement with what should be ex-
pected from physical considerations.

FIG. 3. Geometry and the dispersion relations for SPO of an
insulating film between two semi-infinite metals (e;=1, ~ =1
—or„ /co'). The analytical expressions for k»k„or k&(k„, k1
=co„/c, for the curves shown schematically here are (3.18)—(3.21).
or„' is given by (3,22). For normal metals only the higher part
(~)~t, where M~=10"—10'4 sec ') of curve I exists. For super-
conducting metals, besides the higher part, the lower part (Ace (2~)
of curve I is present, but with or~ replaced by ar„,.

seen by inspection of Fig. 2, and are given by

(u= (a)„/v2)(1+e '"')'~',

if e;= 1. The low-frequency k(k„part of I has the form

co=ckLd;/(d;+2li~)]'". (3.19)

This expression for the junction rf mode has been
derived in connection with the I-V characteristic of
Josephson tunnel junction. ' "It is appropriate to recall
here once again that for normal metals and for co&co~

all the SPO (except those for which 44=ek) disappear
because of the strong attenuation.

If kg,«1, as is usually the case, branch III is given

by

k'=(v'/c'+2/date ' —(2/d '4„')
)&(1+k 'd'4„')"' (3.20)

and it is below but close to the curve cv'=co„'+c'k'.
However, both co= ck and co'= ~„'+c'k' are trivial solu-
tions for our problem with E,=E,=H„=O. In order to
prove this statement we have to use Eqs. (3.8)—(3.10),
the boundary conditions, and the condition that the
fields should be zero at infinity. Consequently, branch
III corresponds to field solutions which are small and
hence of no physical significance. Under the same as-
sumption kg«1, the k( k„portion of II is described by

4(1—a)'/40, ') 1 —44'/s), '
k'= ——,'dgk ' (3.21)

444/~„4

C. Metal Film in Vacuum

The equation from which the dispersion relations are
determined is

(3.23a)

Solutions to this equation are shown in Fig. 4. Approxi-
mate solutions can be obtained for separate regions. In
particular, for k(k„

k'~co'/c'+~'/e'cv 'Ltanh(-'k d~)]' (3.23b)

„X
Insulator

M4 $4[ !//I 1"~//////(~!!ilillIII!IIIII,

Insulator

I

kp

FIG. 4. Geometry and the dispersion relations for SPO of a
metal film between two semi-infinite insulators (e =1—co„'/co',
e; =1).The analytical expressions for k»k„or k&&k„ for the curves
shown schematically here are (3.23b) and (3.18).
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for branch II (symmetric oscillation), and where tanh
is replaced by coth for branch I (antisymmetric oscilla-
tion). For k»k„both I and II approach &u„/v2 in the
manner described by (3.18).

If the metal film thickness d is such that k„d (&1,
these branches are quite separate, whereas when
kP »1, they are nearly degenerate because oscilla-
tions in the two surfaces now become decoupled.

It is worthwhile to note that these results are in dis-
agreement with the estimations made by Ferre112 that
the high branch should remain almost unaGected by the
presence of retardation effects. The opposite behavior is
exhibited by the previous results. Instead of starting
from ~„at k= 0, it starts from zero and increases as k
increases but remains below the cv=ck line. The fact
that the retardation sects have a considerable in-
Quence on both modes for k&k~ is in agreement with
what was said previously, since both Ferrell's curves
lie inside region I of Fig. 2. Another independent check
of Eq. (3.23a) can be made by reference to the litera-
ture of transition radiation. "" As is explained in
Ref. 16, the SPO dispersion relations correspond to
poles in the expressions for the transition radiation if
we make the substitution sin8= ck/s&. It can be seen'~"
quite easily that the expression for the transition radia-
tion in the present geometry contains in the denomina-
tor a term proportional to (1+R)'e x""~ (1—R—)'ex~""
which vanishes on the dispersion curves given by
(3.23a). It should be noted that Ferrell's arguments
about the adequacy of the electrostatic theory for the
high-lying mode and for k=o are correct but are not
applicable to the SPO, since what he describes is the
bulk solution (cf. the discussion of this point in the
Introduction), which is indeed unaffected by retarda-
tion effects.

The dispersion relations given by (3.23a) can be
checked experimentally by either electron-loss experi-
ments or radiation measurement. The former' can
measure the high-k part of the curves, while the latter
can go to considerably lower k by following a technique
similar to that applied by Teng and Stern. "

It was mentioned before that the dispersion relations
of the SPO correspond to poles in the expressions for
the transition radiation if we take into account the rela-
tion sin8=ck/&o. It should be added, however, that
whenever the dispersion curves lie in the region co/k(c,
the poles correspond to complex values of 8. In other
words, for real values of 8 we are far away from the
poles. Consequently, they do not make any appreciable
contribution to the transition radiation in accordance
with the physically obvious fact that nonradiative
(&v/k(c) SPO cannot contribute to the emitted radia-
tion. T'he relation of SPO with the problem of transition
radiation has an interesting history. When the electro-
magnetic radiation arising from the passage of fast

3~ V. E. Pafomov, Zh. Eksperim. i Teor. Fiz. 33, 1074 (1958)
/English transl. :Soviet Phys. —JETP 6, 829 (1958)g.

V. E.Silin and E.P. Fetisov, Phys. Rev. Letters 7, 374 {1961).

electrons through thin Glms was investigated"'4 and a
peak in the spectral distribution was found, it was
assumed" "that the observed radiation was emitted by
SPO according to Ferrell's theory. ' Silin and Fetisov"
insisted that the observed radiation was nothing else
than the transition radiation predicted by Ginzburg and
Frank" as early as 1946. Indeed, they showed that the
experimental results can be explained quite well using
the formula for the transition radiation emitted by a
thin Glm." Stern" argued that Ferrell's theory and
transition radiation theory are two different ways of
considering the same phenomenon. Ferrell's method, he
admitted, "only calculates the peak, " but "shows the
physical mechanism causing it, namely, the contribu-
tion of radiative SPO."

Since, however, our analysis shows that there are no
radiative SPO in the present geometry, Stern's explana-
tion" of the physical mechanism causing the peak
cannot be correct. This can be seen also from the fact
that as sin8 decreases, the peak becomes more pro-
nounced in spite of the fact that we are moving away
from the poles corresponding to the SPO. Recall also
that Ferrell's result of cv„ for the SPO frequency is in-
correct Lcf. Eq. (3.23b)], so that the observed coin-
cidence of the peak frequency of the transition radiation
and ~„is not evidence for radiative SPO.

The denominator of the expression for the transition
radiation near the peak (for which e = 0) has the form

(
d

—', tan8
~

+e„'.
X~/sin8

The above formula suggests the following physical
interpretation of the peak in question: At ~ =0 the
displacement current cancels out the convective cur-
rent, so that no magnetic Geld is set up and no wave
propagation inside the metal is possible. The incoming
Geld is totally rejected, and consequently a maximum
appears in the transition radia, tion. In order to obtain
a sharp maximum the quantity fd /(X„/sin8)]-,' tan8
should be much smaller than unity, which physically
means that the penetration depth of the field 1/E„
=X„/sin8 should be much larger than the thickness of
the metal Glm. Thus, according to this picture, the peak
in the transition radiation is due to a switch from condi-
tions of total reQection at ~=~~, the bglk plasma fre-
quency, to conditions of large transmission at the
neighboring points. In order to support this explanation
we consider the related problem of calculating the
reQection coeKcient for a plane electromagnetic wave

3~ H. Boersch and G. Sauerbrey, in Optical I'roperties umt Elec-
trorfic Structure of 3Eetals umE Alloys, edited by F. Abeles (North-
Holland Publishing Co., Amsterdam, 1966), p. 386.

'g W. Steinmann, Phys. Rev. Letters 5, 470 (1960)."R. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev.
Letters 5, 472 (1960).

"V. L. Ginzburg and I. M. Frank, J. Expt. Theoret. Phys.
(USSR) 16, 15 (1946)."E.A. Stern, Phys. Rev. Letters 8, 7 {1962).
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incident on a metal foil of dielectric function e and
thickness d . The result is'~

rlz(ezfm 1) 2

e'& —rgg'

where ~r~'is thereRectioncoeKcient,

f = (red„/c)(sinzg —e„)"',

cosg —z(sinzg —egg)

r12
e" cosg+z(stn'8 —eg~)

and 8 is the angle of incidence. From the above expres-
sions it can be seen that ~r~' has a maximum at e =O
and that near the maximum (~ e ~«sinzg) we can write

( d
zz«ng

I
r'«ng [+e-'

kX„/sing (X„/sin8 )
in complete agreement with what was expected from
.the proposed physical picture.

Since the denominators in the expressions for the
transition radiation and the reflection coeKcient are
exactly the same, the SPO should appear as poles of the
reflection coefBcient as well. However, in the present
geometry and for real values of 0 we are far away from
the poles, as explained before, and no contribution is
expected from them. It should be noted that in the
geometries to be considered later, radiative SPO occur.
In this case ~r~' —+~ as io~ f(sing), where'= f(ck/cu)
is the dispersion relation. The physical explanation of
~r~z~~ has to do with the fact that the incoming
wave excites SPO of infinite amplitude, since the reso-
nance condition is satisfied and no attenuation is in-
cluded. The violation of energy conservation in the
present case (~r ~'& 1) is caused by the omission of all
kinds of losses, both of radiative and nonradiative
nature. In the geometry shown, e.g., in Fig. 6, radia-
tive SPO exist. Also, an abrupt change from ~r~'=1for

=0 to large values of transmission at the neighboring
points is always possible if the metal films are thin
compared with the penetration depth. Thus, in this
geometry two peaks will occur, one at or= f(sin8) due
to radiative SPO and another at or=co„of the same
nature as that appearing in the case of one film. Before
we conclude this discussion, it is worthwhile to recall
that nonradiative SPO can play a role in radiation
measurements if there exists an effective mechanism
for their transformation into three-dimensional waves,
e.g., scattering by irregularities of the surface, nonlinear
effects7 etc."-,

'~ ""
"L. D. Landau and E. M. Lifshitz, Electrodynamics of Cow

tingols Mediu (Pergamon Press, Inc. , Oxford, 1960), pp. 278-279.
'8 P. E. Fedders, Phys. Rev. 165, 580 (1968)."J.Sosenberg, Phys. Letters 2647 74 (1967).

'1/2
io=ck

d;+X„+X,coth(d /X„)J
(3.25)

for k«k„, which is just the formula first given by
Swihart. ' Swihart confined himself to the low-frequency
linear region of branch I only. Branch II is just (3.15)
again and corresponds to oscillations on the external
interface. Branch III starts from co=co~ at k=0 and it

)nsuIator liX

~lil"'-"IIII!Illlllllllllllllill/III

M0$, I
/////, l/////////////////////////////

kp

FrG. 5. Swihart's geometry and the dispersion relations of the
corresponding SPO (0;=1, 0~=1—co2''/~'). The analytical ex-
pressions for k»k„or k((k„ for the curves shown schematically
here are (3.25) and (3.26). Curve II is the same as in Fig. 1. For
normal metals only the higher part (co&au&, where co&=1012-10'4
sec ') of curve I exists. For superconducting metals, besides the
higher part, the lower part (Acr &24) of curve I is present, but with
co„replaced by ~„,.

D. Swihart's Geometry

This geometrical configuration has been considered by
Swihart' in connection with the problem of the prop-
agation of an electromagnetic wave in a superconduct-
ing transmission line with such a configuration. The
SPO dispersion relations are now given by either

(3.24a)
or

[(1—~)/(1+~) j'
zxie~+e —zxmem —e zxiei z~&—mme (3 24b)

Note that (3.24a) is identical to (3.13), which deter-
mines the dispersion formula for a single metal-dielec-
tric interface. Hence the oscillation in the external
metal-insulator surface is decoupled from the oscilla-
tion in the internal surfaces. The complete dispersion
curves are given in Fig. 5.

Analytical expressions for these branches can be
given. Thus, for branch I, we have
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decreases according to the form
In su I a t or

}1 X

k' = (d'/c' k—'y (1/d, d )[((d ' —(d')/(0') (3.26)

We have drawn branch III in Fig. 5 with the assump-
tion that d,d k~ ((1,which is justified in most practical
applications. Then the point where the intersection of
branch III with the line co=ck occurs is given by
[k=k„(1—d,d k„'), (d=(dI(1 d,d k—„')). As is always
the case whenever we have k2»k„2+(02/c2, retardation
effects are negligible and an electrostatic theory is
already sufficient. Branch IV behaves for small k as
(d2=(0„2+c2k2 for any 6nite d and corresponds to just
the trivial solution when all fields are zero. In general,
k„2d,d ((I is satisfied and branch IV follows this null
curve. On the other hand, if k„'d;d &)1 were to hold,
branch IV would follow this null curve up to 1—(d„2/(d2

(k„'d,d ) ' and then start bending slightly away from
it, giving rise to very weak high-frequency oscillations.

QJ /2

Insulator

'Fllillll!Ziti~!. II!iIll!ill!!!Illa'

'l,'".
/IIIIIIIIIIIIIIIIIIIIIIIIIIIII/

E. Two Metal Films of Diferent Thicknesses

branch I:
(0= ck',. d.;/[d, +X„(cothk„d1+cothk„d2))) }(2, (3.29)

which has been given before by Swihart;

branches I I, TTT:

CO

0'=—1+ (t: 0(0;', (},+},,)—0}+'); (0..00)
C co&

branch IV:
~2 dl+d2 ~ 2 ~2

k' =——k„'+
C2 d,did2 co2

(3.31)

For k))k„, all these four branches can then be well de-
scribed by the electrostatic theory as is by now clear.
As a check, formulas (3.27)-(3.31) do reduce to the cor-
responding results for the previous cases A—D if some
of the lengths d1, d2, and d; go to infinity such that the
present geometry goes to the previous cases. If the
thickness of the metal films is sufficiently small so
that d /X„«1, then. coth(k„d1) and coth(k„d2) can be

For the configuration depicted in Fig. 6 the dis-
persion relation is implicitly given by the equation

L(1—~)/(1+~))' —~2L(1—&)/(1+~))'
+d 2IImd} 2IImd2 —

O (3 27)
where

—d
—21rmdl+d 2IImd2+d —2ICid1(1 d 2Irmd1)2=

)( (1—d
—2Icmd2) (3 2g)

and explicitly represented in Fig. 6.
Branch V has essentially the same behavior as

branch IV in Fig. 8 and shall not be discussed any
further. For k((k„, analytical expressions can be found
for:

kp

FIG. 6. Geometry and the dispersion relations for SPO of three
Alms {metal-insulator-metal) between two semi-infinite insulators
(E' ' = 1 62, = 1 —co„'/co') . The analytical expressions for k&)k„or
k(&k„ for the curves shown schematically here are (3.29)—(3.31).
For normal metals only the higher part (~ &co&, where art =10"-10'4
sec ') of curve I exists. For superconducting metals, besides the
higher part, the lower part (~&2A) of curve I is present, but with
co„replaced by co„,.

replaced by X~/d& and X~/d2, and from (3.29) the phase
velocity of branch I becomes equal to

(0„[d,d,d2/(d 1+d,)5}(2 (3.32)

We have assumed in deriving (3.32) that d;d)d2/(d1+d2)
«X~2 and recall that c/X„=(d„. It is important to note
here that (3.32) can alternatively be obtained directly
via electrostatic theory. This is natural according to
what has been said before, since the curve lies well
inside region II and the metal films, owing to their
thinness, store a small portion of the total field energy.
So, purely Coulomb interactions in the present geometry
can lead to collective excitations with a linear dispersion
relation of the form co ~ k in analogy with zero sound, the
high-frequency ((dr))1) collective excitation normally
appearing only when short-range interactions are
present. What makes this analogy possible is the fact
that the long-range tail of the Coulomb forces associated
with charges on any one surface is eliminated on the
average by opposite charges on the other surfaces. Al-
ready in the problem of one metal (or dielectric) frlm,
charges on one surface eliminate partially the tail of
Coulomb forces due to equal (or opposite) charges on
the other surface. This partial elimination causes a
great relaxation in the frequency of oscillation, so that
+~k'~' for small k.' ' But at least four surfaces are
needed in order to have a complete elimination of the
Coulomb tails and a linear dispersion relation char-
acteristic of short-range interaction forces,
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For the problem of transition radiation some quite
new and important features emerge that are present
in cases D and E. Branches III of Fig. 5 and IV of
Fig. 6 have a portion with phase velocity larger than
the velocity of light. Consequently, the corresponding
modes are not surface waves anymore but acquire a
radiative nature and can be detected directly. The
reRection coefficients for plane waves incident on the
considered geometrical configurations blow up for real
values of 8, satisfying the relation cd= f(sine). Here
cd= f(ck/id) gives the dispersion rela, tion for branches
III of Fig. 5 or IV of Fig. 6. Values of tr~ 21arger than 1

are due to the fact that the SPO are assumed to remain
undamped in our formalism in spite of the energy losses
due to collisions inside the ma. terials and to radiation of
electromagnetic energy. In order to have energy con-
servation, some external source should maintain the
SPO undamped, supplying the missing energy. Other-
wise the attenuation of SPO should be taken into
account, in which case ~r~2 is always smaller than 1.
These radiative SPO can be excited, of course, by in-

coming electrons, thus adding an extra term to the ob-
served radiation. As is well known, ""the fields in the
radiation zone are given by expressions of the form

Jp 22(k)dk and are calculated by the method of steepest
descent, where the saddle point. is k=(cd/c) sin&. The
SPO appear as poles of the function i/2(k). If their phase
velocity is smaller than c, they do not make any con-
tribution, since the location of the pole is outside the
region defined by the original and the transformed
path. "But if cd(k)/k )~e, the pole is located inside this
region and very close to the saddle point. Consequently
we should expect an extra term coming from the
residue at the pole, in the same way as Cerenkov radia-
tion adds an extra term, under certain conditions, in the
problem considered by Garibian" and by Pafomov. "

The next two geometrical configurations to be con-
sidered are motivated by the various experiments per-
formed on coupled superconducting junctions, notably
by Giaever. " Furthermore, the presence of new
branches in the last two cases, D and K, which cor-
respond to radiative SPO, promotes interest in studying
multiple films. In particular, ca,se G below may be
important in the problem of transition radiation. It
should be noted, however, that no mode appears in these
more complex geometries with qualitatively different
features from those discussed above.

F. Two Dielectric Films

Two dielectric barriers separated by a metal film and
bounded on the other sides by semi-infinite metals is
the geometrv to be considered here (Fig. 7). The dis-

pel sloIl iclatloils ai c dctclIlllncd by

[(1—r2')/(1+8)]' —A2'[(1—8)/(1+X) j'
~e 2Icidle 2Ãid2 —O ('3 '33—)—

Meto1

Insulator
MetoI

Insulotor
Metql

(, X

/////, l/////////////////////////////////I///h/
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with

i —e 2Ridl+—e 2Kid2+e —2ICmdm(] e
—2I—Cidl)

rt' (1 e
—2Kid2) (3 34)

Graphically they are shown in Fig. 7.
For k((k„branches I and II are given by

c
—e[(d +d +~1/2)/(/E +d +4/ ~~1/2) jl/2k (3 35)

where

y=d12+d '+2(2e "&dm —1)did2. (3.36)

In the special case when d&=d2=d; they correspond
to symmetric and antisymmetric solutions and (3.35)
reduces to the form

0) =C
d .(I~e—2i,dm) 1/2

k.
d, (1me-"~)+2X„

(3.37)

In the limit when k„d ))1, y~ (d1—d2)', and (3.35)
becomes

Cd=C[d, 2/(d1, +2K,)]'/2k, (3.38)

as we expect„since when the thickness of the central
metal film becomes very large, the two oscillations are
decoupled, Branch III starts at

FrG. 7. Geometry and the dispersion relations for SPO of three
films (insulator-metal-insulator) between two semi-infinite metals
(c;= 1, e,= 1 —co~2/or'). The analytical expressions for k))k„
or k((k„ for the curves shown schematically here are (3.35)—(3.40).
co„' is given by (3.39a). For normal metals only the higher parts
(co&cot, , where Or~=10"—10'4 sec ') of curves I and II exist. For
superconducting metals, besides the higher parts, the lower parts
(Puv &2A), of curves I and II are present, but with or„replaced by
COys ~

~' I, Giaever, Phys. Rev. Letters 14, 904 (1965). Cd„'= id„[1—2(/E1+d2)'k„'g, (3.39a)
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when 0=0 and goes like

4(1—k~2/CO ') 1—ki2/kI '
k'=- —,'(di+d2) 2kp2 ~, (3.39b)

(di+d2)' (2'/(i p'

for k&k„. This oscillation is exactly the same as the
case 3 of a dielectric film of thickness di+d2 between
two semi-in6nite metals, ignoring the presence of the
middle metal 61m. For small k branch IV is described by

k'=~'/~' —k p'+C(&i+ A)/d If,IID(~p2 ~')/~'. (3.40)

When ig&&iEI, this equation reduces to (3.26) of case D.
This implies that branch IV corresponds to an osciHa-
tion which couples the two junctions, and, when one of
the thicknesses of the dielectric films becomes large, the
coupling is broken and the oscillation is confined to one
of them. This physical description is correct if kP (1,
but if kg~)1, as we go along branch IV in the direc-
tion of increasing k, this ceases to be valid when e d
& I, for then the oscillations in the two junctions be-
come independent and can be separately described by
the formulas of case D. Again for k))k„branches I-IV
approach iop/V2 in accordance with the electrostatic
theory. Also, branch V is given by a formula similar to
(3.20) of case B.

l5
RxIO

Closely related to the last case is the configuration
shown in Fig. 8. The dispersion relation is given by

X2+B2X2—BiXWB2——0, . (3.41)

24
SxlO

l4
4x lO

l4
3xlO

l4
2xlO,

l0 10

(b)

(cm ) IO'

FIG. 8. (a) Geometry and the dispersion relations for SPO of
Ave 61ms (metal-insulator-metal-insulator-metal) between two
semi-innnite insulators (~;=1, ~ = I—co„'joF). The analytical ex-
pressions for k)&k2, or k«k2, for the curves shown schematically
here are (3.43)—(3.47). For normal metals only the higher parts
(co&cot, where c0~=1012-10'4 sec ') of curves I and II exist. For
superconducting metals, besides the higher parts, the lower parts
(~&26) of curves I and II are present, but with co~ replaced by
co„,. (b) The high-frequency parts of these dispersion relations cal-
culated numerically for )„=1000'., d;=201, d =200k, and
d '= 200 A..Branches V and IV are almost degenerate.

/

cikp

ifi+~y/BI, II/
(3.43)

g —g
—&n242rk~ ~2&s4—Eris(~ns+2&e ') g-&n Aa—2E's A'2=

Bi—e 2irmdm'+g 2iii&i e 2IIm&m' 2IIi&—i— (3.42)

g —
~&ms (4m+24m')

x= (1—R)/(1+2).
This equation as well as all the previous equations that
determine the dispersion relation reduce to their
analogs in the electrostatic theory when retardation
effects are ignored (by letting i:~~), since then
X~ (2„+1)/(k„—1). The dispersion relations result-
ing from (3.41) are calculated numerically and are
shown in Fig. 8(b). When k&(kp, analytical expressions
can be written for.'

branches I, II:

S kpdm"(S-kpr4g S 2kpdm—' e —kpdm")+2~-kp4»"+. e 2kp-dm' e-kp4a 1-
~I—

2(1 e-2kpdm!')

S-kp&m" (e-kp4e" e 2k p4»' e kpAm) +-2e kp&m" e 2-k p&m' S-kp-&m+1-
&Sl=

2(1 e-2kp~")

(3.44a)

(3.44b)



and d m=dm+2dm p

branches III, IV:
k'= ((o%'){1+(o'/(o„'[tanh(-', kP„")]+'}; (3.4S)

branches V, VI:
k'=~'/c' —k '+(1/d-'d~)[(~' ~—')/~'], (346)
k'= (e'/c' k,'+ (—d "/d, d„d„')[((o,' (o')/(o'—]. (3.47)

The branches given by (3.43) with (3.44b), (3.47), and
(3.45) (upper case) correspond to symmetric solutions,
while (3.43) with (3.44a), (3.46), and (3.4S) (lower case)
correspond to antisymmetric solutions [see Fig. 8(b)].

Ke conclude this section by a discussion of a periodic
structure of alternating metal and insulating 6lms of
thickness d and d;, respectively. Periodicity implies
that the eigensolutions obey the Floquet-Bloch
theorem; namely,

y.(x+d) =c*'"y.(x),

with d =d, +d,„being the period. The secular equation is

(1/8)' —A„(1/R)+1= 0, (3.48)
where

kp

Fxo. 9. Dispersion relations (shaded areas) for SPO in the
periodic geometry of alternating metal and insulating Alms
(~;=I, ~~=1—co„'/cu'). The analytical expressions for k&&k„or
k«k2, for the regions shown schematically here are (3.50)-(3.55).
For normal metals only the higher parts (eo&~~, where au~= 10'2-
10" sec ') of the low-lying curves exist. For superconducting
metals, besides the higher parts, the lower parts (Aca&2a) of the
low-lying curves are present, but with co„replaced by eu„,.

2(csrr;s;+1)(crrr s +1) gcxs+rr;s; .
cosod Solutions are found in the shaded regions For .k(kr

A~= . (3.49) curves III and IV can be taken as straight lines with
(c' '"'—1)(c' " —1) phase velocities

For k))k„ the solutions tend to the corresponding solu-
tions for the electrostatic problem and eventually ap-
proach (o„/K2 when k ppo .When either d; or d be-
comes infinite, we retrieve the dispersion relations of the
one-61m geometry. The dispersion relations are pic-
torially represented in Fig. 9.

c;„=c{d;/[d;+2)(~coth(-',kP„)]}'" (3.50)

c .„=c{d,/[d;+2K„ tanh(-,'k~d )]}"s, (3.51)

respectively; any intermediate solution has phase
velocity

exp(2k, d )+1—2 cos(ad) exp(k, d
))

"'
c=c dr dr+By

exp(2k, d )—1
(3.52)

The upper region within which solutions lie is bounded where a~is obtained from (3.49) by putting E,=E =k.
byI, aportion ofIIa, andIIb. Ifk„d;d„«1, curveI is Again as k~~ the eigenfrequencies tend to (o„/K2.
given by

k' = ((o„'—(os) (4/d, d„(os—1/c'), (3.53) IV. SUPERCONDUCTING METAL FILMS

while IIa is given by

(3.54)

Solutions near I are given by

k'= ((o~'—(o)[2(1—cosud)/d;d (0s—1/c']. (3.55)

Other details of various solutions can be obtained by
numerical computation only. For k»k„, the electro-
static theory is sufhcient and the secular equation is

(3.56)

In the previous sections surface plasmons in thin
normal-metal 61ms have been considered. As has been
explained in the Introduction, owing to the 6nite mean
free path or to the surface scattering, the damping of
these modes becomes quite large when cv is lower than a
given value, which in actual cases is usually no smaller
than 10" sec '. Consequently, for normal metals the
lower parts of the dispersion relations derived in Sec. III
are absent. %hen we consider superconductors instead
of normal metals, the higher part of the curves remains
unmodified, since for lr(o))25 {2h is the energy gap) the
superconductor behaves as a normal metal. In the lower
part corresponding to hco&26 some modi6cations ap-
pear, which are not so signi6cant for the dispersion rela-
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tloll, 1.(:., keep(k), but, al'e quite 11Ilpol tall t. fol' the daTllp-

ing, i.e., Imcp(k). This is due to the fact that for Izpp(26
and low temperatures the number of quasiparticle ex-
citations which contribute to the bulk and surface
scattering is very small.

What we want. in order to find the niodifications
arising from the presence of superconducting material
instead of normal metal is the knowledge of the fre-
quency-dependent conductivity o(cp) [or the dielectric
operator p(cp) =—1—(4zri/cd) o(cp)] fo. r the superconducting
films. It is reasonable to assume that, due to the poly-
crystalline and impure nature of most thin films, the
case of short mean free path /(&fp ($p= Sar/pret is the
coherence length, and or is the Ferrru velocity) is
realized. Mattis and Bardeen" have formulated the
problem of the surface impedance for superconductors
with arbitrary values of the mean free path. Mattis
and Bardeen gave the current-field relation as

e'1tI (0)or
j(r, l) =Z

27/ hC

thin films, so that Eq. (4.4) is satisfied. thiller ' has
shown that even when (4.4) is not satisfied the results
of a local approximation do not differ appreciably from
the results of a nonlocal theory, It seems, therefore, that.
we are justiherl in using tl&e loc;il approximation unde/

which L'q. (4.1) can. bc written

j(~)= Loi(~) -zoz(~)]E(~), (4.5)

e'1V(0)op RRe zc "d"r''
j(r cp) =A(r, cp)I(cp, O, T)

2K hc g4
(4.6)

Comparing this with the corresponding equation for
the normal metal'8 that holds in the limit cu ~ 0

e'1V( 0) rpRRe ""d'r'—
j (r,cp) = izrk—cpA(r, cp)

27/ cIgC E4
(4 7)

we obta, in

where the scalar functions oi(cp) and ap(cp) can be ob-
tained from Eq. (4-.1). Since l(((p, X~„we put R=0 in

I(co,R,T) and reduce Eq. (4.1) to

R$R A„(r')]I(cp,R,T)e "d'r'
(4.1)

Op
)—27/ hM

o i(cp) —zoz(cp) I(cp, O, T)
(4 g)

where R=r—r', I(cp,R,T) is a complicated function
whose range with respect to R is $p, and the vector
potential is given by A (r') = (1/icp) E (r'). An enormous
simplification in the calculation of the dispersion rela-
tion for SPO is obtained when the current-field relation
is local, i.e. , o(cp) is just a number in ordinary space.
Then, as can be seen from Eqs. (3.1) and (3.5), the field
satisfies the simple relation

v K=0 (4 2)

except at the surfaces and when co becomes equal to the
bulk plasma. frequency. We shall be concerned with
much lower frequencies. In this case we are completely
justified to use Mattis and Bardeen's formulation since
they have assumed in their calculations that V A= 0,
which is now a natural consequence of Eq. (4.2). For a
local relation to hold, the range of the kernel in the
integral relation between current and field should be
much smaller than both the characteristic length over
which the field changes (penetration depth X„,) and the
thickness of the metal film. We see from Eq. (4.1) that
the range of this kernel is determined by either rp or the
mean free path /, whichever is smaller. So the condition
for the applicability of the local theory is

where 0-p is the static normal-state conductivity given by

ITp= lc/pp47I vr. (4.9)

4~i
p, (cp)=1— a(cp) =1—

6)

4zroz(cp) cp o i(cp)
1+i — . (4.10)

M o, (cd)

By use of values tabulated by Miller we can see (either
from Fig. 10 or Table I) that the quantity oz(cp) cp is
almost independent of frequency except for Ace close to
2A. Defining co„,by

co~, = 47roz(cp) ' cp, tzcd( 26, (4»)

Formula (4.8) can also be obtained under the assump-
tion that )p))X„„an assumption which is usually re-
ferred in the literature' ' as the extreme anomalous
limit. In this case the complex conductivity ratio is
defined simply as the ratio of the currents in the super-
conducting and normal states. The evaluation of
I( Oc,pT) for TAO requires numerical integrations which
have been performed by Miller"; the results are tabu-
lated as functions of A(T)/AT and Acp/l&T Using the.
complex conductivity defined above, we can calculate
the corresponding dielectric function as

min(l, fp)«min(X„„d ). we obtain

In actual experimental situations l()p holds and the
condition becomes

l«min(X~„d ). (4 4)

Typical values for the quantity min(X„„d ) are 500—
2000 A, while it is not unreaslistic to assume l = 100 A in

(" ~'/ ()(c1p+zoi/oz) ~ (4.12)

which has exactly the same form as in a normal metal
with the role of co~ played by an effective co„, which is
of the order of magnitude 5)&10" sec ' and is a func-
tion of temperature as well. The imaginary part o.(/oz
is small (Fig. 11 or Ta,ble I) for low temperatures or cp
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TABLE I. The quantities 0&an/00 and n&/2~s as functions of frequency and temperature for Pb and Sn.

Pb Sn

AN

a(T)
Pb and Sn

(f012
&o

Pb

sec ')

Sn

103
20'2

Pb and Sn Pb Sn

AM

~(T)
Pb and Sn

—{10"sec ')
0'o

Pb Sn

103—
20'2

Pb and Sn

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

6.00
6.00
6.00
6.00
5.85
5.76
5.70
5.20
4.75

2.74
2.74
2.74
2.74
2.65
2.60
2.56
2.30
2.12

0
0
0
0
0
0
0
0
0

0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40

0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36

0.057
0.086
0.114
0.200
0.286
0.430
0.570
0.860
1.14
2.00

5.90 2.73
5.90 2.73
5.90 2.73
5.90 2.73
5.90 2.73
5.90 2.73
5.83 2.70
5.67 2.63
5.40 2.51
3.80 1.75

1.37
1.68
1.91
2.30
2.43
2.50
2.43
2.30
2.24
3.02

0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56

0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51

0.059
0.086
0.119
0.208
0.297
0.445
0.595
0.890
1.19
2.08

5.25
5.25
5.25
5.25
5.25
5.22
5.22
5.15
4.94
3.24

2.46
2.46
2.46
2.46
2.46
2.44
2.44
2.41
2.31
1.53

6.00
7.60
8.90

11.4
17.7
18.9
14.0
14.3
14.3
53

0.685 0.630
0.685 . 0.630
0.685 0.630
0.685 0.630
0.685 0.630
0.685 0.630
0.685 0.630
0.685 0.630
0.685 0.630
0.685 0.630

0.064
0.094
0.128
0.223
0.319
0.480
0.640
0.960
1.28
2.28

4.42 2.10
4.42 2.10
4.42 2.10
4.51 2.14
4.52 2.15
4.57 2.18
4.60 2.19
4.50 2.14
4.33 2.06
2.66 1.27

12.5
16.2
19.2
25.3
29.4
33.6
34.8
36.2
37.1

153

0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770
0.820 0.770

0.960 0.950
0.960 0.950
0.960 0.950
0.960 0.950
0.960 0.950
0.960 0.950
0.960 0.950
0.960 0.950

0.075
0.112
0.150
0.263
0.375
0.562
0.750
1.12
1.50
2.63

0.150
0.226
0.300
0.526
0.751
1.13
1.50
2.26

2.99
3.08
3.12
3.18
3.25
3.33
3.37
3.37
3.21
f.77

0.704
0.734
0.760
0.822
0.874
0.939
0.968
0.816

1.45
f 49
1.52
1.55
1.58
1.62
1.64
1.64
1.52
0.858

0.360
0.375
0.388
0.420
0.447
0.480
0.495
0.417

26
34
40
55
65'

76
82
90
96

500

108
144
174
244
260
352
402
603

0.920 0.880
0.920 0.880
0.920 0.880
0.920 0.880
0.920 0.880
0.920 0.880
0.920 0.880
0.920 0.880
0.920 0.880

0.990 0.985
0.990 0.985
0.990 0.985
0.990 0.985
0.990 0.985
0.990 0.985
0.990 0.985

0.100
0.153
0.204
0.356
0.510
0.764
1.00
1.53
2.04

0.250
0.380
0.510
0.890
1.27
1.91
2.51

1.73 0.85
1.69 0.83
1.72 0.85
1.80 0.89
1.86 0.92
2.02 1.0
2.01 0.99
2.01 0.99
1.75 0.86

0.262 0.135
0.280 0.144
0.303 0.156
0.322 0.166
0.350 0.180
0.360 0.185
0.322 0.166

49.2
68.0
83.0

119
138
158
180
208
255

243
324
395
600
670
880

1340

26xlo-e Pb---- $n

not so close to 2A and in a erst approximation can be
neglected. This means that all the results obtained in
Sec. III are valid for superconductors for Aco&26 if we

replace ro„by ol„, and X„=c/r0„(London penetration

depth) by X„,=c/ol„, (actual penetration depth). The
losses other than those due to radiation can be calculated
from the quantity o t/o. s. Mattis and Bardeen have used

the BCS weak-coupling theory for their calculations.

2,2xlO—6

'~ I.axllf—
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6
~ 14xG =
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hcu / h, (T)

FIG. 11.The quantity 0&/20.2

as a function of frequency for
Pb and Sn at various tempera-
tures: (I) T/T, =0 (Pb and
Sn); (II) T/T, =0.40 (Pb)
or T/T, =0.36 (Sn); (III)
T/T, =0.56 (Pb) or T/T,
=0.51 (Sn); (IV) T/T, =0.92
(Pb) or T/T, =0.88 (Sn).
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Frc. 10. Effective bulk plasmon frequency N„., as a function of
frequency and temperature for superconducting Pb and Sn. The
calculations are based on the Mattis-Bardeen theory (Ref. 18).
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p2 2 A p 2pp' "pg'(cv)/pp
dory,

0 p T' CO X' p COj

(4.13)

They observed that for A~& 2h, the difference between
their o 2/0, and the Mattis-Bardeen result is due mainly
(99%) to a change in A, and negligibly (1%) to a
change in the second term of (4.13). From this in-
formation we can deduce that in this frequency range,
the constancy of the product a2(&o) co is retained at
T=o for lead in the strong-coupling theory and the
local approximation (4.12) is valid with cv„P and op/op
now given via the results of Nam or of Shaw and
Swihart, which differ from those of Mattis and Bardeen
by about 30%.

%hat this discussion indicates is that the figures
given in Table I may be revised if the calculations were
based on a morc realistic theory, which consequently
wiH change slightly the parameters entering into our
expressions; the results we have reached, however, will
remain essentially unchanged.

4~ J. R. Schrie8er, D. J. Scalapino, and J. W. Vhlkins, Phys.
Rev. 148, 263 (1966).

42 J.M. Rowell, P. VV. Anderson, and D. E.Thomas, Phys. Rev.
Letters 10, 334 (1963).

4'L. H. Palmer and M. Tinkham, Phys. Rev. 165, 588 (1968).
44 S. B. Nam (unpuMished) (work referred to in Ref. 45}.
4~%. Shaw and J. C. Swihart, Phys. Rev. Letters 20, I000

(&968).

However, the strong-coupling theory" is definitely more
appropriate for some superconducting materials, espe-
cially lead as brought out by tunneling experiments, in
which the phonon spectrum was imaged in the I-V
characteristics of the junction. " Further, the experi-
mental observation" of an anomalously steep electro-
magnetic absorption edge in superconducting lead
and the anomalously large transmission through thin
films at the gap frequency require also the strong-
coupling theory for their explanation. Theoretical cal-
culations by the strong-couphng theory of the complex
electrical conductivity at T=0 of superconducting
lead have been performed by Nam'4 and more recently
by Shaw and Swihart. 4' The calculations are in good
agreement with experiment4' and with each other. In
Ref. 45 the authors have numerically integrated the
expression for 0~(~)/ poin terms of the complex energy-
gap function h(pp) at T=O which is obtained by solving
the 3CS complex gap equation from the strong-coupling
theory. They expressed 0~(co)/pp as o.q(&u)/op=A, 8(co)
+ax'(co)/p. p and found 02 from the Kramers-Kronig
1clat1on

V. GONCLUSIOH

In summary, we can say that the various modes of
SPO in multiple-61m systems can be classified into two
main groups. One group contains those modes whose
dispersion curves start from zero frequency at k=o,
increase as k increases, but remain below the line
cv=ck. The other group starts at k=o from co=co„or a
value slightly less than m~ and remains close to the line
co= cv„. For very large k, all the dispersion curves of both
groups converge asymptotically to the classical surface
plasmon frequency pp„/v2. In addition to these two

groups, some uninteresting modes may appear with dis-
persion curves that lie just below the curve co'=co„'
+c'k', which corresponds to the trivial solution of zero
fields.

For normal metals this description is valid only for
high enough frequencies so that oscillation damping is
negligible. On the other hand, for superconducting
metals, the picture is valid not only for the high-fre-
quency region but also for low frequencies such that
kco&26.

We have seen that the SPO are not responsible for
the observed peak in the spectral resolution of the
transition radiation emitted from a thin foil, as has
been generally accepted in the literature. A new

physical pictulc was OBcrcd foI' thc 1IltcI'pI'ctation of
this peak. At the same time it has been shown that in
multiple-61m structures radiative SPO exist, which
should have observable c6ects in the radiation prop-
erties of these structures. In particular, there seems to
b'e a possibility of obtaining intense radiation as the
number of the films increases.

The modifications of the dispersion relations due to
non-negligible retardation effects as we have discussed
may be observed experimentally in energy loss experi-
ments or in radiation measurements. Finally, the im-
portant role that the low-frequency modes can play in
determining the electromagnetic properties of multiple
superconducting 61m structures with the presence of the
ac Josephson effect is examined in detail by Ngai in
the following paper.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Profes-
sor Morrel H. Cohen for suggesting this problem and
for stimulating discussions throughout the work, and to
K. L. Ngai for detailed assistance and valuable dis-
cussions on the subject of this paper. This research was
supported in part by the National Aeronautics and
Space Administration and benefited from general sup-
port of Materials Science at the University of Chicago
by the Advanced Research Projects Agency.


