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Noise in the ac Josephson ESect*
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A Langevin treatment of noise in the ac Josephson eGect is given at 6nite temperatures, including the
quasiparticle tunneling currents. Using quasilinear methods, the stability and small oscillations of the
system are investigated. It is found that the system is unstable for phase fluctuations and that these phase
fluctuations lead to a Lorentzian line for the radiation emitted from a Josephson junction. The power
spectrum of voltage Quctuations of the junction and the statistics of the emitted radiation are investigated.

I. INTRODUCTION

'N a previous Letter, ' a Langevin treatment of noise
~ - in the ac Josephson' e8ect was given. ln this paper
we extend the previous treatment to finite temperatures
and include the quasiparticle tunneling currents. As be-
fore, the Langevin equations are investigated using
quasilinear techniques. This method enables us to get
most of the important results in a simple and direct
manner. The Langevin equations have the advantage
that we deal directly with the equations of motion of
variables or operators representing physical quantities.
The more involved Fokker-Planck techniques applied to
this problem will be discussed elsewhere.

Using quasilinear techniques, the stability of the
oscillator for small deviations from steady state is in-
vestigated. The oscillator is found to be stable under all
displacements from steady state except one. This
instability is a phase instability and can be simply
understood as follows. The differential equations de-
scribing the oscillator do not depend explicitly on the
time, so that if we have a solution which begins at to, we
can construct from it other solutions beginning at
different times. It costs no energy to pass from one
solution to another, and Quctuations in phase which
take us from one solution to another are not suppressed.
The phase Quctuations are analogous to the Brownian
motion of a free particle. This instability is very im-
portant for the linewidth of the radiation emitted from a
Josephson junction. The eGect of noise in the system is
to broaden the 8-function spectrum of the oscillator into
a finite Lorentzian line. Classical autonomous oscillators
of this kind have been discussed by Lax.'

The linewidth of the radiation emitted from a
Josephson junction has been studied experimentally by
Parker, Taylor, and Langenberg4 and by Parker, Dahm,
and Denenstein' in connection with their measurements
of e/h. Owing to the fundamental nature of these

*Supported in part by the National Science Foundation.
' M. J. Stephen, Phys. Rev. Letters 21, 1629 (1968), referred to

as I.' B.D. Josephson, Advan. Phys. 14, 419 (1965).
' M. Lax, Phys. Rev. 160, 290 (1967).
' W. H. Parker, B. N. Taylor, and D. N. Langenberg, Phys.

Rev. Letters 18, 287 (1967).
5 W. H. Parker, A. J. Dahm, and A. Denenstein, in Fluctuations

in Superconductors, edited by W. S. Goree and F. Chilton (Stan-
ford Research Institute, Stanford, Calif. , 1968).
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measurements, it is important to understand the origin
of the linewidth of the radiation. In this paper it is
found that the residual linewidth at low temperatures is
due to photon shot noise associated with the dissipation
of electromagnetic energy in the cavity formed by the
two superconductors. At 6nite temperatures, quasi-
particle tunneling currents give rise to voltage Quctua-
tions across the junction which have an important eGect
on the linewidth. The quasiparticle noise has previously
been considered by Scalapino. ' Voltage Quctuations due
to Johnson noise in the external circuit can also con-
tribute to the linewidth but under most experimental
conditions (large external resistance) this eGect is
small. ~

In Sec. 2, we consider the modes of the supercon-
ducting cavity in the absence of tunneling currents. In
Sec. 3 a simple description of the interaction of the
tunneling pairs and the electromagnetic field in the
cavity is developed. In I it was found that, apart from a
small frequency pulling eBect, ' the only relevant vari-
able needed to describe the superconductors was the
phase difference between the two superconductors
forming the junction. This is in agreement with
Josephson's' original description. This enables us to
largely eliminate the properties of the superconductors
from the problem. In Sec. 4 we obtain the Langevin
equations describing the oscillator. The remaining sec-
tions are devoted to an analysis of the Langevin equa-
tions using quasilinear techniques.

The ac Josephson effect has many features in common
with the laser. The Langevin techniques used here are
most closely similar to those used by Lax and by
Haken" in connection with lasers. In certain respects,
the tunneling pairs are analogous to the active atoms
injected into a laser. However, an important difference
arises because all the pairs in a superconductor are
phase-coherent and not independent like the atoms in a
laser. It is for this reason that frequency pulling effects

s D. J. Scalapino, in Proceedings of the Symposium on the
Physics of Superconducting Devices, University of Virginia, 1967
(unpublished).

A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksperim. i Teor.
Fiz. 53, 2159 (1967) tEnglish transl. : Soviet Phys. —JETP 26,
1219 (1968l].

8 M. Scully and P. Lee, Phys. Rev. Letters 22, 23 (1969).' M. Lax, Phys. Rev. 145, 110 (1966).
» H. Haken, Z. Physik 190, 327 (1966).
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are very small. For the small electromagnetic fields
considered in this paper we need only consider the phase
of the pairs and neglect any changes in the amplitudes
of the pair wave functions. The other important differ-
ence with the laser is that the Josephson frequency
2eU/A (where V is the voltage across the junction)
fluctuates as the pairs tunnel. This frequency is analo-
gous to the atomic frequency in the laser problem. It is
this frequency modulation which leads to the relatively
large linewidth (10'—10' cps) of the Josephson radiation.
The origin of the linewidth in the ac Josephson effect
and the laser are essentially the same, i.e., the shot noise
associated with dissipation of radiation in the cavity.

practical purposes we need only retain A, . Therefore, at
long wavelengths compared to l, the modes of the cavity
are predominantly transverse with the electric field E,
perpendicular to the superconductors. The components
of the fields in the superconductors may be neglected,
since they are small —of the sanie order as A .

In order to quantize the electromagnetic field, we
introduce the normal modes given in (2.2) and (2.4). We
quantize the field in the gauge divA=O so that the
scalar potential leading to the voltage across the junc-
tion is classical and calculated from Coulomb's law.
Thus the charge Q on the one superconductor is related
to the voltage by

2. CAVITY MODES

In this section we consider the normal modes of the
cavity formed by the two superconductors and the oxide
layer separating them in the absence of any tunneling
current. These modes have been studied in detail by
Swihart. " tA'e suppose that the junction lies in the xy
plane and has dimensions I. I„10' cm. The thick-
ness of the oxide layer is i~10 ~ cm. To describe the
modes we use a vector potential A (with divA =0)
satisfying

where C is the capacitance of the junction. After a
standard calculation" we obtain the result required here

2vrk, c' '~'

Ag(xmas) =g — V (x,s)(b„lb~~), ~sj &g'l (2.7)
eQ„

where

U„(x,s) = (2/L, L„l)'i2 coshE„s cosk„x.

The normal modes are labeled by the index e, and b„t
and b„are operators creating and destroying quanta in
the mode e and obey Bose commutation relations:

(2.1)

In the oxide layer, J=0, and the appropriate solution of
(2.1) for a standing wave along x is

Lb. ,b..t]=b„„..
The Hamiltonian of the radiation field is now

H„g=+ AQ (b "b +-,').

(2.8)

(2.9)

where

A =A ~~ sinhE~s sinkx e '"',
A, =A, ~ coshE~s coskx e '"',

+ 2 —k2 EQ2/c2 A 1/A 1 It|/k

(2.2) For typical junction dimensions I. =10 ' cm, these
modes are well separated in frequency. In what follows
we will only consider the one mode closest to resonance
with the Josephson frequency.

and e is the dielectric constant of the oxide. In spite of
the fact that the ends of the cavity are open, there is a
poor impedance rnatch with the outside, and to a good
approximation we can take the boundary conditions at
the open ends x=O, I to be II=0. This determines

k =n7r/L„where n is an integer.
In the superconductor from London's equation

J=—(c/4+X')A, where X is the penetration depth and
the appropriate solution of (2.1) is

3. TUNNELING HAMILTONIAN

Hr = Q (TI„Cg."C,.+c.c.), (3.1)

In this section we consider the interaction between the
tunneling electrons and the electromagnetic field in the
junction. Tunneling is most conveniently described by
means of a Hamiltonian" ":

where

A.=A.,e-~2~'I sinkx e-'"'

A =A,e-l'&~'~ coax e-'"' (2.4)

& '= 1/y'+k' —0'/c' A „/A, g E,/k. (2.5)——

where C~,~, etc. , is a creation operator for an electron in
state (k,o). We use the subscripts k and q to denote
electron states in the left- and right-hand metals, re-
spectively. The matrix element Tkq is given by

gQ~/c2 =g2/ (l+2g) . (2.6)

Matching the tangential fields at the superconductor
oxide interface leads to the dispersion relation at long
wavelengths

~kq
2m

8 8 2e2
dx ~y &q—4 u*—41*—~q-

Bs Bs h'g

(3.2)

We note from (2.2) that A,/A, ~kl~10 ', so that for

"J.Swihart, J. Appl. Phys. 32, 471 (1961).

"W. Heitler, The Qggntuw Theory of Radiatiog (Clarendon
Press, Oxford, 1954)."J.Bardeen, Phys. Rev. Letters 6, 57 t,'1961).

' R. E. Prange, Phys. Rev. 131, 1083 (1963).



when @I, and &, ale the states of the electrons and the
integration. is over the area of the junction. A term in the
electromagnetic field has been mcluded. in (3.2). To
determine the states @A, Rnd X, in the presence of the
electromagnetic 6CM ln the jl.mction we use a, scmi-
clRsslcal Rpproxlmatlon:

$g 8

yl =4~") «p
Ac

(3.3)

when 5, is the energy gap and Ro is the normal-state
resistance of the junction. The quasiparticle current is
given by the last term of (3.6) and approximately for
identical superconductors" (with eV&h, )

J (V)=
Ro cosh2 (6,/2k T)

Dg Ag 2 cosh'(hg/2k T)
ln—+ . (3.8)

4kT eV e~'"r+1
X,=x,(0) exp — A,dz

b. . The logarithmic term arises from the large density of
states in the superconductors. Ke have neglected the

where @&(0) and X (0) are the states when there is no lntclRctlon o'f thc 6cld Rnd thc quRslpRI'tlclcs.

6eld in the ]unction. Substituting (3.3) in (3.2), we find The second term of (3.6) arises from pair tunnehng
with the eInission or absorption of a photon. %'e will

y (0) ~(0)~ ~(0)* y (0)
only retain the energy-conserving parts of this term.
This ls cqulvRlcnt, to thc rotatillg-wave RpploxllrlRtloIl
of atomic physics. Then from (2.7)

&exp — A,dz, 3.4
Ac

J'r =ji sin8+2» Q T.(b„e"+b„te ")+J„(—V), (3.9)

A slDlllRl I'csult wRs obtRlncd ln a diGcrent wRy by
Ivanchenko. "

We replace the exponential in (3.4) by

fe ~et

exp — A.d» =1+—A.(x, »=0).
Ac „ Ac

(3 5)

when 0 is the phase di6'crence of the order parameters in
the two superconductors. The amplitude j~ is given in
Ref, 16 and for identical superconductors

ji——(~kg/2Eoe) tanh(rig/2kT), (3.7)

h k, . p i . ' . i. 52, 0
(j.967) LEnglish transl. : Soviet Phys.—JETP 25, 878 (1967)j.

"V.Ambegaokar and A. Saratoga, Phys. Rev. Letters 10, 486
(1963};11, &04 (I963).

» In (3.6}a small correlation between the quasiparticle and pair
currents Is neglected.

3y retaining terms linear in 3, we only consider tun-
neling processes in which a single photon is absorbed or
emitted and neglect multiple-photon processes. The ex-
pansion in (3.5) is adequate under most experimental
conditions when the second term in (3.5) is about —,'0 of
thc first. To gct this estimate wc have used thc stcady-
state value of A, obtained in Sec. 5. If the junction is

very strongly coupled and the density of radiation in
the cavity is large, it wi11 become necessary to consider
further terms in (3.5).

It is convenient to eliminate the properties of the
superconductor as far as possible. Thus from (3.1),
(3.4), and (3.5), following Ambegaokar and Baratoff, i6

the tunneling current up to terms linear in A, is'"

g,=j, sin8+(2»/@~) f~,(*=o, »= o)ji
Xcos8+J„(V), (3.6)

T =ji(m.l/keQ L,L„)"'. (3.1O)

Aj,
H, = — cos8+ik p T„(b„te *~ b„e'ti), (3.1—2)

28 n

where the second term describes the interaction of the
tunneling pair and the electromagnetic 6eld in the
cavity and is the important term in the ac Josephson
cBect.

In this scctlon wc obtRlIl thc LRngcvln cquatlons
describing the junction. As shown by Josephson, 2 the
phase diRerence 8 is related to the voltage V across the
junction by

It was found in I when we considered in a detailed
manner the addition and removal of pairs from the
superconductors that there could be additional small
terms in (4.1). These terms described the loss of phase
memory of the superconductors and were only iIn-
portant for the small frequency pulling effect found in I.
This eRect will be neglected here.

18 A. I. Larkin and Vu. N. Ovchinnikov, Zh. Fksperjm. i Teor.
I'iz. $1, 1535 (1966) LKnglish transl. : Soviet Phys, —JKTP 24,
1035 (&967)j.

Equation (3.6) arises from a coupling energy of the two
super conductors

II.= —(&ji/2~) )co»8—(2»/kc)/A, sin8j. (3.11)

Making the same rotating-wave approximation as in
(3.9), we get
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Finally, we obtain the equations obeyed by the
radiation field operator b and bt. From (2.9) and (3.12)
we And

db/dt = —zLb, H»a+H. 7 z2y—b+-f(t)
= ( iQ —,'y)—b+—Te "+f(t),

(4.5)

FIG. 1. Simple circuit for the ac Josephson eGect. The junction
is denoted by J and the voltage across the junction is U. R, is the
external resistance at temperature T„and Uy is the voltage of the
battery.

To construct the second Langevin equation we
imagine the junction connected into the simple circuit
of Fig. I.By considering the currents entering and leav-
ing the left-hand superconductor we obtain the equa-
tion describing the time variation of the charge Q in
the superconductor

dg/dt= (Vq —V)/R, 2eT(b—e z+bte @)

—J„(V)+F(t). (4.2)

The 6rst term is due to the current entering the super-
conductor from the external circuit. The second and
third terms are the negative of the tunneling current
(3.9). We have omitted the first term of (3.9), which is
rapidly varying when there is a voltage across the
junction. We have only included the one mode of the
electromagnetic field which has a frequency closest to
2eV/h. The noise source P(t) in (4.2) has zero average
value and a correlation function

&R(t )F(t ))=2DQb(t —t ). (43)

There are two sources of noise in the circuit of Fig. 1.
The external resistance E.which is at room temperature
T, will contribute Johnson noise. The quasiparticle
currents in the junction at temperature T will also
contribute noise. This noise has been considered by
Scalapino. No noise is introduced by the coupling be-
tween the pairs and the field in (4.2). These considera-
tions lead to the diffusion constant"

2Do 2k T,/R, +eJ„(——V) coth (eV/2k T) . (4.4)

The first term is due to the Johnson noise in R, and the
second term is due to the quasiparticle currents in the
junction. For eU(kT, which is usually the case, the
quasiparticle noise reduces to Johnson noise in an
effective resistance V/J'„at temperature T. At low
temperatures when eV&&kT, the quasiparticle noise has
the form of shot noise and can be much larger than
Johnson noise. This arises because the total voltage drop
across the junction takes place in the oxide layer, i.e.,
effectively one mean free path.

where Q is the cavity mode frequency and p is the cavity
bandwidth. This is included phenomenologically and
arises from the dissipation of radiation in the cavity.
This could take place in a variety of ways. The second
term in (4.5) comes from the interaction (3.12) with the
pair tunneling current. The properties of the noise
sources f(t) in (4.5) have been given by Laxz and are

(f(t )f'(t ))=v(~+1)b(t —t )

(ft(t,)f(t,))=Ynb(t, —t,),
(4.6)

S. STEADY STATE

To obtain the operating point of the oscillator we
neglect the noise sources in (4.2) and (4.5). We denote
steady-state values by the subscript 0. The dc voltage
across the junction is Ve and from (4.1)

Op= (2eV p/h)t =~pt.

From (4.5) we have b= boe '~" where

b,= T/Lz(n —~,)+-,'p). (5.2)

From the second term of (4.2) the pair tunneling current
1s

A= 2eT'7/P(Q coo)'j—(5.3)

The total dc current in the circuit is Jr= J',+J (Vo),
where J„(V0) is the quasiparticle tunneling current.
The current voltage characteristic in (5.3) is a Lorentzian
with a width determined by the cavity bandwidth p.
Equation (5.3) can also be written

J,VO ——2eVoy
i bo i

', (5.4)

which is an expression of energy conservation. The left-
hand side is the work done by the supercurrent and the
right-hand side is the rate of dissipation of electro-
magnetic energy in the cavity.

where n = (erat ~r—1) ' and is the number of blackbody
photons at frequency 0 in the cavity at temperature T.
In the absence of any tunneling current the cavity will
have an incoherent blackbody distribution. This is
ensured by the properties (4.6) of the noise sources. The
noise sources also preserve the commutation relation.
(2.8) of the b operators.

The remainder of this paper is concerned with the
solution of the Langevin equations (4.1), (4.2), and
(4.5) using quasilinear methods. "

» The model used in I leads to a diGusion constant of the shot-
noise form in place of (4.4); i.e., 2eJ rather than 2kT/R„where J
is the dc current. Equation (4.4) is the correct result and leads to
a much smaller noise component from the external circuit. The
linewidth at T=0'K found in I was too large by a factor of 2 for
this reason.

"Itwas pointed out to me by M. Lax (private communication)
that this procedure treats the noise sources in (4.6) in a sym-
metrical manner. Any errors introduced by this procedure are
generally unimportant because under most experimental condi-
tions A»1 and the order of noise sources is immaterial.
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We de6ne a dynamic resistance E, for the pair cur-
rent by

8J, 8e2+2yh

R, 8V r, h()4)2+-,'y')'
(5 5)

where A=0—coo is the detuning of the oscillator from
the cavity frequency Q. This resistance is positive if the
detuning is positive.

We also define a dynamic resistance of the junction to
quasiparticle currents by

(5.6)

where J„isgiven by (3.8).The total dynamic resistance
of the circuit in Fig. 1 is denoted by R, where

1/R= 1/R, +1/R +1/R, . (5.7)

It is convenient to define the resistance of the circuit to
normal currents by

A(X)=

X——y
0

. 26o.

27

—2'.

0
0 2e/h

0
—ny X—1/R~C.

(6.6)

The eigenvalues are the roots of the determinant of
A(X), which is

XP(X)=0, (6.7)

electromagnetic field are not determined separately but
only their difference is Axed.

To determine the small modes of oscillation, we
neglect the noise sources and assume that all the
variables P, 8&, u, and V& vary like e ~'. The matrix of
coefficients A(X) in (6.3), (6.2), (6.4), and (6.5) taken
in that order is

1/R~ ——1/R.+1/R .

6. SMALL OSCILLATIONS

(5.8) v
+l (!v'+~') 1+ +

yE,C ENC

We now linearize Eqs. (4.1), (4.2), and (4.5) around
the steady operating point found in Sec. 5 by setting

8=8,+8), V= Vo+V4, b=boe ' "e" '& (6.1)

From (4.1)
d8q/dt 2eV)/h =—0. (6.2)

From (4.5), (6.1), and (5.2)

d(u ub)/«—=(~~+km)'(e """"' 1)+(f—lbo)e'""
(ia+ kv) 5 u+4 (4b

—8g)j+(f/—bo) e'"4'

Equating real and imaginary parts to zero gives

de/dt+ ',7(4b 8,) -Au= ——Im—k(f/bo)e'""], (6 3)

du/dt+ 2'yu+6 (4b 8~) =Ref—(f/bo) e'"4'j (6.4).
In (4.2) we assume that the junction behaves like a

capacitance, so that the charge Q is related to the
voltage across the junction by Q=CV. The capacity C
is approximately L,L„/4~l 104 cm. Then substituting
(6.1) in (4.2) and using (5.5), we get

dvg/d&+Vg/R~C+4rEyu+26(8, 4b) j=P/C, —(6.5)

where
4r =h(dP+gy')/4ehR, CV.

The four equations determining the modes of small
oscillation of the system about the steady state are
given by (6.2)—(6.5). These modes are driven by the
noise sources in the system which appear on the right-
hand sides. One special feature of these equations is that
only the combination g—8& appears. Although P and 8&

separately may not be small, the difference )f)—8& can be
small and is an appropriate variable in which to linearize.
The occurrence of this difference is connected with the
fact that the phase difference 8 and the phase g of the

From (6.7) we see that the oscillator has one zero-
frequency mode of oscillation. This is connected with
the fact that it does not cost any energy to change the
phases 8 and P simultaneously by the same amount. The
eigenvector corresponding to the root X=O is

u= Vg=0, &=8g.

The other three eigenvalues are determined by
P(X)=0. In general, this equation must be solved by
numerical methods. Provided the detuning 6 is positive
and hence R. is positive, the roots of (6.8) have positive
real parts, indicating that the system is stable. It is
possible for the last term in (6.8) to vanish when the
detuning 6, and hence E„is negative. The system will
become unstable at this point for amplitude Quctuations.
Physically we would expect the system to jump to some
other mode of oscillation as we approach this point of
instability.

7. LINEWIDTH OF THE RADIATION

In this section we study the phase Quctuations in the
system which lead to the linewidth. We denote the
cofactor of the matrix A(X) in (6.6) by B@(X).Then
from (6.1)-(6.5), after eliminating all the variables ex-
cept )))), we find that the equation satisfied by p is

d
P ——=B» —ImL(f/b, )e'"o'g

dt dt dt

P—B44 —Re/(f/bo)e'"4'$ B~4 ———. (7—.1)
dt dt C
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where Jp is the total dc current through the junction
(Jr= J,+J„) and R is total dynamic resistance
(dJr/d V) '. We have assumed in (7.4) that the temper-
ature of the blackbody distribution in the cavity and the
temperature determining the quasiparticle current,
fluctuations are the same.

At suKciently low temperatures when the quasi-
particle currents in the junction can be neglected, we
obtain the residual linewidth'2

De= (8e'/h')J, R,s coth(eVs/kT) . {7.5)

It is much simpler to consider Ds/R„which from (5.3)
and (5.5) is

FIG. 2. Plot of Do/2, versus E, at low temperatures I see Eqs.
('7.6) and {5.5)g. Each quantity has been normalized to its
minimum value. The magnitude of the detuning 6 is indicated on
each branch.

In FP,) and B(X), X is replaced by d/Ck. For p—urposes
of investigating the narrow linewidth D of the radiation
we can assume in (7.1) that the operation d/Ch is of
order D. D is very. much smaller than the inverse
relaxation times of the system q, {RC) ', so that in F
and 8 in {7.1) we need only retain the terms inde-

pendent of d/dt. This leads to

XReg(f/b, )e'"&'7+(2e/h)RF. (7.2)

This equation was given in I for the special case R=E,.
According to (7.2), the phase P carries out a random
walk. Using the properties (4.3) and (4.6) of the noise
souI'ces we 6nd th.e diffusion constant

4e'
R' 2 J,e(2n+1)—

eVO 2kT,
+sf„(Vs) coth -+--—. (7.3)

2k'

The radiation line is Lorentzian and D is the full width

at half-maximum in rad/sec. The first term in (7.3) is
due to the cavity noise source f in (7.2) and the re-

maining terms coIne from the quasiparticle currents in
the junction and the Johnson noise in the external re-
sistance E,. The e8ects of quasiparticle currents on the
linewidth have been previously considered by Scalapino. '

Under most experimental conditions, eV4(kT and the
external resistance is large, so that the last term in (7.3)
can be neglected. Then"

D = (8e'/h') (k T/Vs) J'rR', (7.4)

~' AH the quantities appearing in. I,
'1'.4) are measured indepen-

(dently of the linewidth in Refs. 4 and 5. A detailed comparison of

eVO
coth

kT

This is independent of the properties of the super-
conductors apd only involves the cavity parameters. If
these are independent of temperature, then {7.6) has a
simple temperature dependence determined by the last
factor. Ds/R, has a minimum value when the detuning

1~,
eVO

(7.7)

(D/Ro) r,= (8e'/h')kT. (7.8)

The temperature dependence of the linewidth is shown
in Fig. 3 for a Sn-0-Sn junction.

The physical origin of the first term in (7.3) involving
the pair tunneling current can be understood and de-
rived simply as follows. When the oscillator is in a
steady state, each time a photon is dissipated in the
cavity a pair must tunnel to replace it, Assuming that
the dissipation is a random process, the pair tunneling
current will also be random. We can then apply the

(T.4) with experiment has been made by Dr. %. H. Parker with
satisfactory agreement.

"The zero-temperature linewidth given in I differs from that
predicted by (7.5) by a factor 2 owing to the incorrect noise
source (Ref. 19).

The dynamic resistance E, is a minimum when
6=q/2&3. A plot of Ds/R, against R, is given in Fig. 2.
For 6))-,'q when R, is large, D&&/R, varies as R,'", and
where 6((-,'y and R, is again large, Ds//R, varies linearly
with E,.

%e now examine the temperature dependence of
D/R At low temperatures when we neglect quasi-
particle currents, this is given by (7.6). As we approach
T, according to (3.7), {3.10), and {5.3), J, and R,'.
behave like (6, tanhh, /2kT)' and become small. The
linewidth is then entirely determined by the quasi-
particle contribution, which becomes large close to T,.
Thus taking the limit as T ~ 2', in (7.4), which amounts
to ieplacillg J by Vs/Rs and R by Rs wllele Ro ls 'tile

normal-state resistance of the junction,
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standard formulas of shot noise to it." The current
fluctuations in the pair current are

(~J (tl)~J (t2)) 2eJ b(t& t8) (7.9)

where J, is the pair current, the factor of 2e comes from
the charge on the pairs, and we have set the bandwidth
of the noise equal to infinity. At finite temperatures
when there is blackbody radiation in the cavity, pairs
may tunnel in both directions with the emission or
absorption of a photon. Adding the fluctuations from
both currents multiplies (7.9) by 2n+1. The voltage
fluctuations arising out of (7.9) are

(DV(tj)EV(t2)) = 2eJ,R 8(2n+1)8(tq —t8), (7.10)
0

0.3
I I

0.5
T/T

C

I

0,7 0.9

where R, is (dJ,/d U) ' and we have included the factor
2n+1. The phase difference 0 of the superconductors
from (4.1) now diA'uses under the influence of the
voltage fluctuations and the diffusion constant is

FiG. 3.Temperature dependence of D/8 for a Sn-0-Sn junction.
We have used the BCS value of Ag, U=20pV Ep=800mQ,
y=10'sec ' &=5, 1=10 ' cm, I Jy=10 'cm2, and 6=-,'y.

where the relaxation time 7. is given by

2e 21.
dt, dt, (~V(t,)~V(t,))

t

= (8e'/b') J8R8'(28+.1)

in agreement with (7.5).

(7.11)

7-2

2 g 2~2

(y '+R,C)'+
(R +R )2 R 2(+2+8~2)2

2E,Cy
1+ . (8.3)6'+4y' yR~'C

8. SPECTRUM OF VOLTAGE FLUCTUATIONS

From (6.1)—(6.5) we can also obtain the spectrum of
voltage fluctuations. Eliminating all the variables except
Vq from these equations, we obtain

= —84i — Im -
bo e'""

dt

d F
-811,(

—Re[(f/b )e' 'j+11
~

——".(8.1)
dt dt C

The power spectrum of V& is given by

(V,( ) V (—))= e '"'(V (t) U (0))dt,

and we find from (8.1) for low frequencies

E2
(V1(cv) U1(—~)) =— 2eJ,, (2n+1)

1+GO 7
eVo

+eJ„(V(1) coth +, (8.2)
2kT E,

"S. 0. Rice, in Selected Papers on Noise and Stochastic Processes,
edited by N. Wax (Dover Publications, inc. , New York, 1954).

2D, = 2e.T,.(V) (2n+1) (8.8)

and is appropriate for shot noise. It should be noted that
the condition 7))(RC) ' is not always met, and then
(8.6) can only be used to describe low-frequency
fluctuations when &or( I.

This reduces to the result given in I when E~——~. In
the limit that p))(RC) ', r reduces simply to RC, the
time constant of the circuit.

In this limit we can adiabatically eliminate the
electromagnetic field from the problem and obtain a
single circuit equation. From (4.1) and (4.5), putting
b=b'e "(') wehave

db'/dt= [~(co 0) ~y7b'+T—+fe—" (8.4)

where co = 2e V(t)/h. For large y we have approximately

b'= (T+fe'&( ~)/Li (fl ~)+ ',p7 (8-.5).
Substituting in (4.2), we flnd the circuit equation

dQ/dt= (V(,—V)/R. —J,(V) —J'„(V)+G(t), (8.6)

where
J.(U) = 2eT'v/L(fl —~)'+ lv'7

and depends on the instantaneous voltage. The noise
source G(t) in (8.6) has the property

(G(t1)G(t2)) = 2(D.+Do)b(tg —t8) 1 (8.7)

where Do is given by (4.4) and the cavity part is given
by
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9. INTENSITY FLUCTUATIONS is the most interesting situation. Then

The Quctuations in the number of photons in the
cavity are determined by the variable

P=f'b —
]f2 (~2(fol'I

The power spectrum of p is given by

2'
(g2 ~2)2+2g2

dg — (2n+1), (9.5)
(g2 —2I2)2+.g2 (g2 —2 —2t2) 2

(P(u)P( —+))= e-'"'(p(t)P(0))dt. (9.2)

We will not give the complete spectrum of p but only
consider the result at low temperatures, when we
neglect the quasiparticle noise. Then

(p'(t)) =
I &o12(»+I)

=—
( b2(2(2nyI), (9.6)

when rt2= (2yR,C) '. The integral in (9.5) can be
evaluated approximately for large and small p, and it is
found that

&P( )P(—))

{/~2 (+2+2 y2) +.(~2 4t ga/Pg)27
[F(2(O) [2

This indicates that the radiation has a second moment
close to that appropriate to coherent radiation. 24 For
pure coherent radiation the second moment would
simply be ~b2~2. The intensity fluctuations calculated

)( (2 + $)+2A ( 2 4 g /$) ) (9 3)
above would probably be dificult to measure because of
the small amount of power available.

At Iow frequencies this reduces to

(P(~)P(—~)&= l&2I'(»+&)/V(&+~'~) (94)

where r is given by (8.3).
The mean-square fluctuations in the photon number

are obtained by integrating (9.3) over all frequencies.
For simplicity we choose the detuning 6= &p, since it
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'4 The second result in (9.6) was incorrectly given in I owing to
the incorrect noise source (Ref. 19).


