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Fic. 8. Normalized ratios of the theoretical relaxation times
calculated by Brownell and Hygh to our experimental values. On
the X axis, the fnst number in parentheses refers to the B held
direction and the second to the E,& Geld direction. The binary axis
is 1, bisectrix axis 2, and trigonal axis 3. The ratio at (2,3) was
taken to be 1.

provide the required percentage of scattering centers
and yet preserve electron-hole equality. But the Frenkel
defect concentration is sensitive to the prior history of
the sample, and we would expect different samples to
give different results, especially those prepared in differ-
ent ways or cycled from room temperature to 4.2'K a
different number of times. The good internal agreement
in the present experiment and the agreement between
our results and McLachlan's results imply that the

cause of the relaxation-time values is probably not
Frenkel defects.

The present experimental technique is very con-

venient in comparison with the size-effect and galvano-
magnetic" methods of determining the relaxation times.
In the size-effect method, the resistance is measured in

samples at different thicknesses, allowing a determi-
nation of d/Vzr (where Vz is the Fermi velocity).
However, the frequent thermal cycling and the possible
strains and dislocations introduced in reducing the size

of an already very thin sample make the method subject
to error. In the present method, e

—"' ' is determined in

a single sample with one sweep of the magnetic field. In
comparison with galvanomagnetic methods, no assump-
tion is made about the Fermi-surface model and no
leads are attached to the sample in the present work;
thus, it should give a more direct determination of the
relaxation times.
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I

A microscopic calculation of the Raman scattering process in almost transparent semiconductors is pre-
sented. The calculation takes into account band structure, phonons, and the collective motions of the con-
duction electrons. It is based on many-body perturbation theory and is "valid" within the framework of
the random-phase approximation. Our results show resonance scattering from the coupled collective modes
of the conduction-electron longitudinal-optic-mode system. The detailed efFect of the band structure mani-
fests itself in determining the intensity of the resonance lines.

I. INTRODUCTION

'HK ever increasing availability of intense mono-
chromatic sources in the infrared has Inade

possible Raman scattering from narrow-band-gap
semiconductors. More specifically, successful light
scattering experiments have been performed in weakly
doped GaAs, ' InAs, and InSb. ' An analysis of the data

' A. Mooradian and G. B. Wright, Phys. Rev. Letters 16, 999
(1966).' R. E. Slusher, C. K. N. Patel, and P. A. Fleury, Phys. Rev.
Letters 18, 530 (1967); C. K. N. Patel and R. E. Slusher, Phys.
Rev. (to be published).

in these three experiments has been based on rather
simple theoretical treatment of the light scattering
problem. '4 The theory is essentially formulated in terms
of a single-band model of a semiconductor. The band
structure is assumed to be completely characterized by
an effective-mass tensor and sometimes by an additional
enhancement factor which in an approximate way

' P. M. Platzman, Phys. Rev. 139, A379 (1965); A. L.
McWhorter, in I'hysics of Quantum Electronics, edited by P. L.
Kelley, B. Lax, and P. K. Tannenwald (McGraw-Hill Book Co.,
New York, 1966), p. 111.

4 Y. C. Lee and N. Tzoar, Phys. Rev. 140, A396 (1965).
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takes into account the closeness of the initial laser
frequency to the direct band gap in the solid, ' Phonons
are grafted on to the analysis by "adding" their con-
tribution to the dielectric constant to the electron's
contribution. 4 ~

Recently, a number of authors have attempted to
improve on the earlier formulations of the problem.
Wolff, ~ neglecting phonons and using an effective one-
band Hamiltonian, has done a microscopic calculation of
light scattering which correctly takes into account the
generally complicated energy-versus-momentum rela-
tionship of the carriers in the conduction band but omits
all phonon and explicit interband effects. McWhorter
and Argyres and Mooradian and McWhorter' have
calculated the cross section for light scattering from a
real solid with both band structure and phonons. Their
calculation is only partially microscopic. This paper
will present a microscopic calculation of the Raman
scattering process, in almost transparent semiconduc-
tors, which takes into account band-structure phonons
and the collective motions of the conduction electrons.
It is based on many-body perturbation theory and is
"valid" within the framework of the random-phase
approximation (RPA).

The inelastic or Raman scattering of light from a
medium containing mobile carriers (plasmas) provides
useful information about the spectrum and nature of the
elementary excitations in the medium. In the scattering
process, a well-colliminated beam of monochromatic
radiation is incident on an almost transparent solid.
Subsequently, a small amount of the radiation is
scattered into 4x sr. The light which comes off in some
fixed direction is then analyzed in a spectrometer. The
spectral distribution of the scattered radiation, along
with an associated angular distribution, provides the
basic information which is contained in this type of
experiment.

The scattering (diagramed in Fig. 1) is completely
characterized by the quantities q = k&—k2, the
"momentum" transferred to the system, and co= co&

—cv2,

the "energy" transferred to the system. Here k2 (ki)
and &v2 (cubi) are the 6nal (initial) wave vector and fre-
quency of the scattered (incident) radiation. It is useful
to classify the scattering according to the magnitude of
21 (6xed scattering angle e) and then for this fixed 21 to
analyze the spectrum, i.e., the dependence of scattered
light intensity on co. The momentum (wave vector)
transferred to the system, crudely speaking, describes
the graininess with which we look at the system
spatially. The beam which is undergoing scattering is in
effect a microscope with a spatial resolving power
which (as for conventional microscopes) is ultimately

' P. A. Wolff, Phys. Rev. Letters 16, 225 (1966).' B.B. Varga, Phys. Rev. 137, A1896 (1965).' P. A. Wolff, Phys. Rev. 171, 436"(1968).
A. L. McWhorter and P. N. Argyres (to be published).

9 A. Mooradian and A. L. McWhorter, Phys. Rev. Letters 19,
850 (1967); E. Burstein, A. Pinczuk, and S. Iwasa, Phys. Rev.
157, 611 (1967).

q=k -ki
At At At

CU = Cali » (9

FIG. 1. Diagrammatic representation of the incoherent scatter-
ing process. The dashed region represents the plasma, and the
two wiggly lines represent the incoming and outgoing photon,
respectively.

limited by the wavelength of the incident light. The
maximum resolution (smallest distance) occurs for
back-scattering. With present laser beams we are able
to probe the system to distances of the order of 10'-104
A, i.e., much larger than typical lattice constants in
solids. In insulating or intrinsic semiconducting crystals,
this implies that we can only learn something about the

phonos spectrum very near q=0. For the plasma in

the conduction band of the solid the characteristics
lengths X, (the Fermi-Thomas screening length for a
degenerate gas) are not very small. Typically they are in
the neighborhood of 10' A. This means that although

q), &1 for the solid-state plasma, it is not very much
smaller than 1, and we may hope to see effects due to the
finite value of q), .

If we could achieve the condition qX&)1, i.e., high
resolution, we would get direct information about the
electron velocity distribution in the solid. ' ' Here the
scattering takes place from a single electron, i.e., from
many electrons incoherently, and the Doppler-shifted
frequency of the scattered light is a direct measure of the
electron's velocity. When qX.(1 (poor resolution), we
are in fact scattering coherently from a large number of
carriers and the spectrum primarily reflects the collec-
tive motions of the electron gas. We are able, as we
shall see, to couple to all collective modes which have
a charge density associated with them or are themselves
coupled indirectly to charge-density fluctuations. In a
simple one-component degenerate plasma for a 6xed
scattering angle, the scattered line is shifted down in
frequency from the main line by the plasma frequency,

3i.e.,
~2 —~ 2+ 3g2P 2

When there are Raman-active phonons in the solid,
the situation is more complicated. ' The longitudinal
phonons will couple to the plasmons and the scattered
spectrum will show several (hopefully sharp) lines,
which rejects the coupling between plasmons and
phonons.

The calculations in this paper are restricted to the
so-called first-order Raman effect where a single ele-
mentary excitation, i.e., phonon, plasmon, or a linear
combination, is excited in the scattering process. The

' P. M. Platzman and N. Tzoar, Phys. Rev. 139, A410 (1965).
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semiconductors investigated experimentally all have
two atoms per unit cell so that there are three acoustic-
and three optic-mode branches in the empty lattice
(no doping). Both types of phonons contribute to the
first-order Raman effect, but the optic mode, owing to
its higher frequency, is easier to resolve and measure,
so it has received much more attention than the acoustic
mode. "In the lattice with carriers in it, it is the longi-
tudinal optic mode which mixes with the plasmon and
leads to several interesting effects."We will only
consider the coupling of the conduction electrons to
optic phonons. A consideration of the effect of acoustic
phonons on the Raman scattering, conventionally called
Srillouin scattering, in the presence of free carriers will

be important in an analysis of experiments where the
so-called "ion-acoustic" modes are present. '

In Sec. II the Hamiltonian for the problem is given
and the general expression for cross section is written.
In Sec. III, the Raman cross section is expanded as a
set of diagrams and the class of diagrams to be summed
is discussed. More precisely, we show how the effective-
mass approximation arises, how the enhancement factor
when the frequency of the light is near the band gap
comes in, and how the zeros of the wave number and
.frequency-dependent dielectric constant will determine
the positions of the resonances. Section IV will discuss
the zeros of dielectric constant with emphasis on finite

q and lifetime effects.

II. FORM OF THE INTERACTION

Raman scattering of photons from a doped semi-
conductor proceeds via the coupling of the electro-
magnetic field to the electrons in both valence and con-
duction bands. In the undoped case, the photons change
the vibrational state of the system, i.e., we are left
with a single-phonon excitation. The electronic state of
the system is left unchanged, since the first electronic
excited state is too far removed in energy above the
ground state to be excited by the photon. In the doped
semiconductor the electronic states form a continuum
above the ground state, and the crystal can be left
with its electronic state as well as its vibrational state
altered.

In order to compute the Raman cross section we
must know how. the light couples to the electrons, in
both the valence and conduction bands of the solids.
Since the coupling of the light to the solid is assumed to
be very weak, we are only interested in knowing the
quantitative nature of this coupling to second order in
the electromagnetic field. To this order there are funda-
mentally two distinct types of interaction which we
must consider. The two types correspond to the —A'
and y A terms obtained in an expansion of the single-

"R.Loudon, Proc. Roy. Soc. (London) 275, 2j.8 (1963).

electron kinetic-energy operator (schematically)

e)' e 2

p—A
i
~p' —tp A+A p]+ -A

c ) c C

(2)

where A is the vector potential of a transverse electro-
magnetic wave. For the system of n electrons in the
solid, the P A type of term may be written"

I 2m)'"
Lang'"'*~+opt' +'*~]P"eg. (3)

JVc Q) A,)

c,p+ k

V, p+k

c, p

, p+k
PV PV

c, p+k

c, p

(c)

FIG. 2. (a) and (b) represent the annihilation of a photon with
pair creation and annihilation, respectively. Here the pai«e-
scribe the excitation of an electron from the valence band into the
conduction band. (c) and (d) describe the same process for an
intraband (conduction) transition.

"We use units in which A = c= 1 and we consider a unit volume
of material so that all factors of V, the volume of the system, are
absent."P.M. Platzman and N. Tzoar, Phys. Rev. 136, A1. j. (1964).

The al„. (a~t) is the usual annihilation (creation) operator
for the photons with polarization vector eI, . The
quantity P, (x,) is the momentum (position) operator
of the jth electron. The sum over j is over all electrons
both valence and conduction. The operator H~ has four
"different" kinds of matrix elements connecting the
ground state of the system to excited states. The four
distinct types of matrix elements are shown schemati-
cally in Fig. 2. In Fig. 2(a) a photon of momentum
kk& (wiggly line) is annihilated and an electron-hole
(solid lines) pair is created having relative momentum
Ak~. The electron is excited from a filled valence band n

to an empty-conduction-band state c. In I'ig. 2(b) a
pair which is present annihilates and absorbs a photon.
Figures 2(c) and 2(d) show the same process, but in this
case we have created an electron-hole pair in the par-
tially filled conduction band, i.e., we have used the
intra- rather then the interband matrix element of I' A.
This type of process does not exist for the insulating
case. One can show" that the intraband matrix elements
of P A are small relative to the interband pieces in the
ratio r—=k~/k E, where k~ is a reciprocal-lattice vector. We
neglect them. The diagrams in Fig. 2 have their
Hermitian counterparts. The only change is that a
photon is created rather than destroyed.
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The A' coupling term may be simply written as

g2

H2 P———Q Puke'" i+ate, 'e *" *']'ek e
m

Fra. 4. Schematic description for
electron scattering via interaction with
a phonon (dotted line).

~ ~ ~ ~ ~ ~ V
n, k. , n, k

, k

-2~- &/2-2z- I12

yLa t& iq x—+i& &+iq xi] '— — . . (4)

I
k 2

k- k 2k

(b)

FIG. 3. Schematic description of the matrix element for Raman
scattering using the A' term of the Hamiltonian. Here the incom-

ing photon kl. is scattered into the outgoing photon k2 via a pair
(electron-hole) excitation.

'4 For a discussion of this point see any standard book on band
structure, for example, J. Callaway, Energy Band Theory
(Academic Press Inc. , New York, 1964)."We neglect any explicit coupling to impurities, In su%ciently
pure materials, this coupling is unimportant. It will be included,
when necessary, by using a phenomenological relaxation time.

II2 has the matrix elements shown diagrammatically in

Fig. 3. In this case two photons are involved (A').
The initial photon is destroyed, the final one created,
and a pair is created all at a single vertex. The pair
may have a hole, as for the matrix elements of H&,

either in the valence band LFig. 3(a)] or in the partially
filled conduction band LFig. 3(b)]. However, unlike

the linear matrix elements, the situation is reversed.
Only the intr@bund matrix element of A' is important,
i.e., we keep only Fig. 3(b), where the A' term creates
an electron-hole pair in the partially filled conduction
band. "The ratio of the matrix elements in Fig. 3(a)
to those in Fig. 3(b) is roughly of order r as in Fig. 2.
The matrix element of A' which is large in the doped
crystal is absent in the pure crystal.

There is an additioinal mechansm by which the light
couples directly to the phonons. This coupling is gen-

erally overlooked but it is important for understanding,
from a microscopic point of view, the frequency de-

pendence of the scattering cross section. This mechanism

exists because of the fact that the electrons will adia-

batically follow /Born-Oppenheimer approximation

(BOA)] the motion of the ions. Its revelance to the
Raman process and a discussion of its origin are con-

tained in the Appendix.
The light primarily interacts with the medium by

producing electron-hole pairs. These excited electrons

couple to modes of the crystal, to the phonons, and to
one another by means of Coulomb and phonon inter-
action effects, and they also couple to impurities which

are present. "This calculation will assume that both the
Coulomb and phonon couplings are weak. We will keep
terms in a perturbation expansion of the cross section
which are of leading order in the Coulomb 'interaction

among the conduction electrons. We will only keep the
first-order terms in the electron-phonon coupling and we
neglect entirely any Coulomb interaction among the
valence electrons. This set of approximations is "equiva-
lent" to the usual RPA. Although it does neglect any
"explicit" electron-electron or electron-phonon effects,
it does systematically take into account the self-
consistent field due to the coupled electron-phonon
density Quctuations.

The assumption of a weak Coulomb interaction be-
tween conduction electrons is a reasonably good one.
The expansion parameter in this case is the parameter
r„which is roughly the average potential over the
average kinetic energy of the conduction electrons. In
a typical narrow-band semiconductor like GaAs, with
a carrier concentration of 10", r,—0.3. The neglect of
any Coulomb interaction effects among the valence
electrons has no u priori justi6cation. In some sense it
is equivalent to the small r, approximation for the
electrons in the conduction band of the crystal.

The important physical point to make is that we are
not interested in the dynamics of the electrons in the
valence band. They are in a dynamical sense frozen out
of the problem. They do, however, play an important
role in the calculation. It is the valence electrons which
"produce" the eRective Hartree-Fock (pseudo-) poten-
tial which leads to the band structure. It is the valence
electrons which modify the effective interaction between
two static charges in the conduction band, i.e., the
Coulomb law of force is e'/e„r; e„being in the neighbor-
hood of 10 for most narrow-band-gap materials. In
addition, the valence electrons provide us with an
important indirect mechanism for the coupling of the
light to the phonons and to the conduction electrons.
We make "no" attempt to treat the entire problem
within a many-body perturbation picture but merely
treat the conduction electron from' this point of view.
The many-body aspects of the valence band are buried
in ~„, the measured phonon frequencies, and interband
matrix elements (which are never computed) of the
momentum operator.

Having discussed how the light interacts with the
electrons, we must next consider the coupling of the
electrons to the phonons in the medium. There are two
distinct types of optic-phonon-mode electron coupling
in semiconductors such as GaAs. The first, the so-called
Frolich coupling, is fundamentally an interaction of the
electrons with the charge of the optic-mode vibrations-
of a polar lattice. This kind of interaction is displayed
pictorially in Fig. 4. The dotted line is a phonon.
The interaction vertex V„,t, ,i, describes the scattering
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of an electron (hole) from a state speci6ed by the band
index n and crystal momentum k to another specihed
by n' and ir'—= ir+q.

ie 1 1)'~'
V„~ „.„&=————

~

(2~a&o)'~ &,p,
g e„& epl

+a,P ~) n= n'

= qpp, &/m(Ep E), —n~n'

Here coo is the optical-mode phonon frequency at q=0,
and E„,z is a one-electron energy. The index 0, is equiva-
lent to n and lr. The quantity pp

& is the matrix element
of P in the direction q, i.e.,

The interband matrix elements n&n' of the Frohlich
coupling are much smaller than the intraband pieces
in the ratio r. For a number of important intraband
processes the matrix elements almost cancel and we
shall see that we must include the contribution from the
interband pieces as well.

The second important type of electron-phonon cou-
pling is the so-called deformation-potential coupling. "
This coupling, like the Frohlich coupling, leads to a
scattering of electrons or holes. The graphic represen-
tation of the scattering process is given in Fig. 4. The
corresponding matrix element is"

where ",p' is the deformation potential, M is the mean
ion mass, S is the total number of atoms in the sample,
and the superscript i specifies the polarization vector
($e,') of the phonons.

In a typical narrow-band-gap semiconductor, p'—5
eV and 5~0—0.01 eV. Using these parameters, it is
possible to show that

~

VD/(V~); t,„b, eI=r, i.e., the
deformation potential is small compared to the intra-
band Frohlich piece but comparable in magnitude with
the interband part of the Frohlich coupling.

III. CALCULATION OF THE CROSS SECTION

A. No Phonons

Although the Raman cross section can be directly
evaluated for the complete system of phonons and con-
duction electrons, it is useful to consider some limiting
cases separately. We will begin by neglecting all
phonon effects, i.e., we put the conduction and valence
electrons into a rigid lattice. This approximation,
although not valid when the "phonon" and "plasmon"
frequencies are close together, will give us a clear picture
of the origin of the effective one-band Hamiltonian, its
validity, and its limitations. This effective one-band
Hamiltonian has been used by several authors' to com-
pute the light scattering cross sections from semi-
conducting crystals. Wolff' has "derived" the effective

FIG. 5. Raman scattering to zeroth order in the
Coulomb interaction among the electrons.

one-band Hamiltonian in the absence of any cooperative
or plasmalike effects.

To zeroth order in the Coulomb interaction, we must
evaluate the five diagrams shown in Fig. 5. Diagram I
is the contribution from B2. Diagram III is simply the
crossed version of diagram II, and its contribution is
obtained from its uncrossed counterpart by letting
ki~k2, ~~~ —co2, and e~~e2. This operation is
called "crossing" and will be designated by the symbol
X. In diagrams IV and V, the electron and hole final
states have been interchanged. Apart from a numerical
factor, the matrix element for the sum of the five
lowest-order diagrams in Fig. 5 may be written

where

and

M'= e„'e 2A„„(s),

mA, .(s)=—8„,+r„,(s,(v ~,~2,k~, 1e,),

I'„„=—
m nQc

(c, s —pl+. ln, s k~)(n, s ——k&l+„Ic,s)
X

ce 6n~—k Ggy

The quantity ~~, & is the one-electron energy in the band
n with crystal momentum k. All the energies are meas-
ured from the bottom of the conduction band. The sum
over n is over all band indices with n&c.

If E, is the gap energy in the undoped crystal, the
leading term in a low-frequency (tier~, 2/E, ~ 0), long-
wavelength (k&,2/k&~ 0) expansion of A p is simply
related to the conduction-electron energy-momentum
relation. In this limit, heretofore called the "zero limit, "

A.p
——(8'e'/8 p„8p,)„
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For a simple parabolic band A p
=—p p, the inverse

effective-mass tensor, and

M'=ei ga e2

FIG. /. Diagrammatic represen-
tation of the screened Coulomb
interaction; here p~-+ yq/~(g, co).

Qpppp m wweeeee +

is the matrix element which one uses in a simple effec-
tive-mass approximation, to one-particle Thompson
scattering in a crystal. "This approximation, Eq. (12),
clearly neglects all cooperative effects.

Setting k& and k2 equal to zero is a good approxima-
tion. The wave vector of the light is, in most experi-
mental cases, small compared to k~. Setting co~ and ~2
equal to zero is not a very good approximation, since
the frequency of the light can be in the neighborhood
of the energy gap. It is clear from Eq. (10) that near the
gap the matrix element is roughly enhanced by a factor
E,/(E, +2&& A&a&, &)

—and the cross section by the square
of this factor.

In order to include cooperative effects in a calcula-
tion of the scattering cross section, we must go to higher
order in the Coulomb interaction between particles in
the conduction band. We will do the leading-order term
(6rst-order) and then show how the required sum of
terms, i.e., the effective screening of the interaction,
is simply included. To the first order in the Coulomb
interaction between conduction electrons, we must
evaluate 10 different diagrams shown in Fig. 6. Four
diagrams are just the crossed version of their prede-
cessors, so that we only need to evaluate six diagrams.
These are conveniently evaluated in pairs. Diagrams I
and II are the first-order correction terms arising from
the A' piece. The sum of these two terms is given by

M&'~) where

(13)

S

where

ra ——e'/mc'

and f+= 1 f . S—ince—

d p

e„,' e„' —a) i—b (2x.)'

The function f„ is the Fermi function and Q, is the
RPA polarizability of the electron gas. The quantity
q, =4se'/q'e„ is the Fourier transform of the Coulomb
interaction in the crystal. It is simply the matrix ele-
ment associated with the horizontal dashed line in
Fig. 6.

If there were no interband effects, i.e., a "free"-
electron gas, then diagrams I and II in Fig. 6 would be
the only contribution' to M"'. In this case, we would
combine M &" with the S,„piece in Eq. (9).Adding these
two pieces up, summing over final states which conserve
energy, and averaging over an initial ensemble at a
temperature P=1/kT, we get for the differential cross
section

1 1
Q fg fayq b(6g+q tg —6)) =

x 1—e—~"
we find that

ImQ, (qa&), (16)

FIG. 6. That portion of the Raman scattering matrix element
which is 6rst-order in the Coulomb interaction among the
electrons.

(
do ) 1 ro'(eg. e2)'

!
dN dQ) ~~ 7f 1—8

&&ImQ. (q,co)
I
1+q,Q, (q,co) I

'. (17)

The screening, or cooperative, effects are easily
inserted into Eq. (17). We merely replace p, by
y,/e(q, a&)."The quantity e(q, &v) =1—+,Q,(q,&v) is the
wave number and frequency-dependent dielectric con-
stant for the electron gas. This replacement is equiva-
lent to changing the "bare" Coulomb line in Fig. 6 into
a dressed Coulomb line, pictorially represented by the
infinite set of diagrams shown in Fig. 7. The bubbles in
this string of diagrams all represent an excited electron-
hole pair in the conduction band. Replacing the bare
interaction by a screened interaction is equivalent to
the RPA. ' It is the only "many-body" effect to be

"For a discussion of this point, see, for example, D. Pines and
P. Nozieres, Quantum Liquid's (W. A. Benjamin, Inc. , New York,
j.966), Chap. IV.
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mcluded in this calculation. Inserting e(q, a&) into Eq.
(17), we find

der 1 rp'(ei eg)' Img, (q, a&)

da& dQ &~ (ir) 1—e P"
I e(q~co) I'

a well-known result. ' ' '
I.et us go back and pick up the remaining diagrams

in Fig. 6. Diagrams III—VI give'

M"'-v'-
q q Q I'„„(p,~,k„k,)

this approximation the two terms M'+M&'& are

M &0&+M &'& = (e„'e„2/m*)

&& f ~..+v,[g.(q,~)~"+(m*/m) &"j) (26)

We may now, as we did in Eq. (18), put in the collective
effects by simply replacing

v&,[g.(q, (o) f& „„+(m*/m) 8„„]—&.,[Q.(q,-)+(-*/-)h.,j
(27)

E(q,GJ)

—C —4) —Z6

e„'e„'- pqt[g, (q,(a) f'&„„+(m*/m) S„„j
m* 1—~.g.(q,~)

where
61=Eg+ Ep i& + fy Ct&1,

62= Eg+fp&q .+Ep g (d2.
(20)

6„„+(m*/m) C„„
e„ey (28)

1—v.g (q,~)
Diagrams VII—X yield

The total matrix element for light scattering in this

(p.)(p.) approximation (parabolic bands, no phonons) is given
+~a 2 f. «'fn —-+X, (19) by

u mkg62

(p.)(p.)Mvii —x p P f +f — +X +«8„„, (21
mAiAg

where 8„,is a small quantity and is given by

6p—g 6y 6p—ggi 6p—kg y

h =Zf+ +x
y Aj6263m

(22)
with

Equation (28) has several simple but interesting
features in the limit q~ 0. Let qVr/co approach zero.
In this limit, &,Q, (q, co) & —c0„'/co'. There is, as one
would expect, a resonance in the matrix element, and
therefore in the cross section, at ~=co„. It is well
known'" that within the framework of the one-band
model the area under the plasma line, at zero tempera-
ture, i.e., the total cross section per unit solid angle per.

particle, is given by' "
63= Zg+ Ey +Ey k2 C02. — (23)

The exact form of 8„„ is unimportant. Its order of
magnitude is given by

,q'p' (p.)(p.)
pv 7

» m'd, 4 m
(24)

Mi'& ~p, g mA„„(p) —M —Z5u—e u

+8„„. (25)

In the "zero limit, " A„„ is the second derivative of
energy with respect to momentum [see Eq. (11)j,
For a simple parabolic band, it is a constant, (1/m*) 8„„,
which may be taken out of the summation over p. In

"In order to keep the notation simplified we specialize to the
case of a two-band model. Electrons have a positive energy e„'
and holes a positive energy e„".The direct band gap is Eq.

with 3 a denominator of the form given in Eq. (20). The
quantity (4&re2/qe„) 6„„=—C„„is to a good approximation
a constant independent of ki, k~, cubi, and co2 depending
only on the band structure of the solid. In a cubic
Cl ystal baal, y:—A~y.

Combining Eq. (19) with Eq. (21), we find that the
total contribution to first order in the Coulomb inter-
action is

(29)

with q„=(g-,')(id„/Vr). In the multiple-band model,
the cross section given by Eq. (29) is multiplied by a
factor of (1+C)', where C C„.

In the neighborhood of the central line where
cu/q Vr ~ 0 and «g, (q, co) ~ (q„/q)'&&1, it is evident
from Eq. (28) that the cross section in the central line
is suppressed relative to the plasmon contribution by a
factor (q/q„)'. In this "parabolic case" it is the cancel-
lation between the p,g.(q,co) in the numerator with the
same quantity in the denominator of Eq. (28) which
leads to the suppression. The light scattering cross
section, in the long-wavelength limit from a system
with parabolic bands, is only weakly dependent on the
single-particle properties of the plasma. The total cross
section under this weak central line is multiplied, as is
Eq. (9), by a numerical band-structure-dependent
factor (1+C)' which is outside the one-band model.

Wolff' has pointed out that if we relax the parabolic
band approximation, i.e. , if we allow A„„(p) to be a

"For co/go~&1 the Img, (q,co) in the RPA at zero temperature
is entirely due to collisions with the lattice and with phonons. The
area under the line, assuming that collisions are finite, is inde-
pendent of the collisions.
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function of p in the zero-frequency zero-wave-vector
limit for the light, then the behavior of the scattering
cross section in the neighborhood of the "central" line
is drastically changed. ~ There is no longer a cancellation
of the polarizability in the numerator of Eq. (21) with
the denominator polarizability and the single-particle-
like aspects of the scattering are enhanced. For small

q in the neighborhood of the central line in the non-
parabolic case we may neglect C. The cross section in
this case becomes

FiG. 8. Feynman diagram representing the most
important process in the Raman scattering of light
from an insulator. The dashed line is a phonon and
the shaded vertex may be either a Frolich or de-
formation-potential coupling.

d
I8p8 Qf f+g ( +q 6. M)

d&v dQ mc'3

(30)

state (dashed line) is a phonon. The vertex is either a
V~ [Eq. (7)] or a Vr' [Eq. (5)]. The matrix element
with a deformation-potential coupling at the vertex is
proportional to Loudon's R„„':

Ey q 6p M —z6
(31)

with
m (2MB g)

-&N"
I P„Ie)&mIP„I e'&=„"„'

(33)

Equations (30) and (31) are identical to WolG's results
[see Eqs. (19), (22), (23), and (26) of Ref. 7) which were
arrived at using an effective one-band Hamiltonian
with a nonparabolic energy-momentum relation of the
form E(P) =P'/2m"+(P'/m"')P. . This is equivalent
to an A„,(P) of the form

m*A»(P) = 8»[1—(P'/m*) Egj 2(P,P„/vs*—)Eo. (32)

The discussion here may be considered a justification
for the use of the effective one-band Hamiltonian in the
"zero" limit. Strictly speaking, it is only valid in the
single-particle regime where C may be neglected. In the
cooperative regime, the absolute intensity is not given
correctly by the effective one-band Hamiltonian.

n' empty
n full
n" full

+seven terms . (34)

The first term in the sum of eight terms, in Eq. (34),
corresponds to a definite time ordering of the various
external lines in Fig. 8. This time ordering is shown in
Fig. 6, diagram III. The only essential difference
between Eq. (34) and the appropriate piece of Eq. (19)
is that we now have a deformation potential at the
vertex instead of a Coulomb interaction.

Similarly, the contribution to the matrix element for
Frohlich coupling is

B. No Conduction Electrons
where

Mr'= (e 'epqV /m')p (35)

Loudon" has discussed the problem of the Raman
scattering of light from an empty lattice. In this sec-
tion we will repeat, within the framework of the present
theoretical formulation, the bare bones of this calcu-
lation. This brief review will enable us to make con-
tact with Loudon's well-known results and it will

provide us with a springboard for extracting the scat-
tering cross section for the coupled electron-phonon
system. It also allows us to make an essential point
relating to the frequency dependence of the Raman
cross section. This point has been treated incorrectly
or ignored entirely in the literature.

The complete content of the empty lattice calculation,
as done by Loudon, is contained in the Feynman
diagram shown in Fig. 8. In this diagram no attention
is paid to time order or to the difference between crossed
and uncrossed photon pieces. Topologically the Feyn-
man diagram is equivalent to the sum of the last eight
diagrams shown in Fig. 6. Its contribution is different
only insofar as the shaded vertex differs and-'the final

ze
Uq =———— (2mcoo) '~'

g &oo &0

(36)

and the quantity P„„&is identical with that defined by
Loudon [Eq. (39) of Ref. 11j, i.e.,

+seven terms . (37)

It is important to note that all of the matrix elements of

y in Eq. (37) are interband. The diagrams which corre-
spond to the specific time order shown in Fig. 6 (dia-
grams VII-X), which do have intraband matrix ele-
ments of the Frohlich coupling, cancel in pairs with one
another as shown in Fig. 9. This cancellation is exact
when one neglects the k dependence (k~, k~) of the elec-
tronic energies in the intermediate states. The cancel-
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FIG. 9. Pair of time-ordered dia-
grams which cancel in the long-wave-
length limit. The phonon vertex is
pure intraband Frolich coupling.

(a) (b)

lation implies that it is only the interband matrix
elements of the Frohlich coupling which contribute to
the scattering in the undoped crystal. These interband
matrix elements are to be identified with the electro-
optic coeKcient. "

At this juncture it is appropriate to examine the fre-
quency dependence of R„,' and P„l.We are particularly
interested in the implications of the sum rule proved in
the Appendix. The sum rule is nothing but a simple
generalization of the well-known f sum rule. It states
that the Raman scattering from insulating crystals to
arbitrary order in the phonon coupling will go like
(h&o/E&, z)'. Here 8& is a typical bandwidth energy,
characteristically of the order of a few eV in most
materials.

This sum rule is "true" regardless of the number of
phonons excited, the strength of the electron-phonon
coupling, or the band structure of the solid. All that is
required is that the final state of the crystal differ in
energy from the initial state by an amount small com-
pared to typical electron energies in the crystal, and that
the wave function of the valence electrons be localized
over distances small compared to the wavelength of the
light t i.e., (Aqc/Zg)&(17. These conditions are both very
well satisfied.

The sum rule comes about because of the cancellation
of the A' and P A pieces in the general expression for
the Raman scattering amplitude Lsee Eqs. (A1) and.
(AS)j. The proof does not depend on an explicit per-
turbation and calculation of the two terms. Equations
(34) and (37) for R„„' and I'„„q are "approximate"
expressions for the P A piece. Both expressions, aside
from a simple coupling-constant factor, have the same
structure. It is in fact clear from Eqs. (34) and
(37) that as coi, ~

—+ 0, R„.' and I',.' both approach a
constant and do not go like co~'. It is the contribution
due to the direct coupling of the A' piece to the phonons
which will cancel the constant piece and lead to an +P
dependence of the cross section. We have neglected
entirely the A' term.

The sum rule presented in the Appendix suggests
that the correct procedure for evaluating all matrix
elements involved in the scattering is to use a set of
electronic basis functions which move with the ions,
i.e., the wave function in the distorted crystal. We have
incorrectly neglected the A' term -because we have
taken as our basis electronic wave functions tied to fixed

C. Coupled Electron-Phonon System

Utilizing the results of Secs. III A and III 8, it is
possible to write (in terms of the quantities R„„' and
P„„&) the matrix element for the Raman scattering of
light from the coupled electron-phonon system. We
must consider separately the matrix elements for proces-
ses leading to an electron-hole —pair 6nal state, Figs.
5 and 6, and those leading to a one-phonon 6nal state,
Fig. 8. The two distinct final states do not interfere
with one another. In the discussion which follows we
consider only the longitudinal-optic-mode phonon. This
is the only mode which couples to the conduction
electrons.

The electron-hole final state is computed using Figs.
5 and 6. Figure 5 gives a contribution which is unchanged
relative to its value in the rigid lattice, Eq (8). Figu.re 6
is essentially identical except for two rather minor
changes. In addition to the bare Coulomb line (dashed
line) characterized by q, we may have a phonon line
characterized by the "bare" phonon propagator

D(V,~) = 2~0/L(~ —&n)' —~o'j. (38)

The vertex, instead of being purely Coulomb in charac-
ter, may now have a phonon vertex as well, i.e., a

lattice points, and assumed that the final and initial
states differ only in the nuclear coordinate (phonon)
portion of the wave function. If we had used a basis
set tied to the ionic coordinates, then the A' term would
contribute since the 6nal and initial electronic states
would pararnetrically involve the nuclear coordinates.
Unfortunately, the electronic wave functions in the
distorted crystal are not easily obtainable. The matrix
elements of P in R„.' and I'„,& should also be evaluated
in the distorted lattice. However, it is clear from the
structure of Eq. (34) or Eq. (37) that taking the matrix
elements in the undistorted lattice for the P A piece is
indeed a good approximation. The point is simply tha, t
the distortion of the lattice takes place on a very large
scale: q/k~(&1. The interband matrix elements of P A
are short-range in character and the slight distortion
of the lattice is unimportant. For the A2 piece the entire
matrix element is long-range in character, i.e. ,

g e'&'*', so the distortion is crucial. In practice,
this dilemma is not very important, since one never
really computes R„," and I'„;but simply uses Eqs. (34)
and (37) as estimates of the size of MD+M~. This is
still a valid procedure if we remember that the coi,2~ 0
limit of MD+M~ must be cancelled by a correctly
computed A' piece. The first nonvanishing piece in
an expansion of Mn+M~ goes like (o» 22/L'0')
&((Mn+M~). Thus, a reasonable "estimate" of the
magnitude of the matrix element for Raman scattering
in an empty crystal is obtained from Eqs. (33) and (35).
At low frequencies, one takes the limit ~i ~ ~ 0 and
multiplies by a factor (&o~,2/Ea)'. At frequencies near the
gsp, we use Eqs. (33) and (35) directly.



deformation potential or a Frohlich-like coupling to the
phonon or Coulomb line.

In the parabolic band approximation in a cubic
crystal, the total matrix element (leading to a one-pair
final state) to lowest order in the Coulomb and elec-
tron-phonon couplings is given by

6"+ 4.Lp p+ I
Vp I

'D(q ~)]
m~ m*

$p 'ki( 1
&I Q.(q,~)+(m'/m) h]+

m (2MXcop,

gPpt, ~

X~..'v,D(q, )+ I:~,+I v, l D(q,-)l, (39)

where V, is given in Eq. (36). The quantities 8„„'and
P„„~are almost the same as their counterparts R„,' and
P„.& defined in Eqs. (34) and (37) for the empty lattice.
Both quantities are only weakly dependent on the
presence of conduction electrons. The conduction elec-
trons exclude (they occupy) a small set of states around
the band minimum. The occupation of these states
must be taken into account in the intermediate-state
sums in, for example, Kq. (34). When the incident laser
frequency is not very near the band gap, then it is
clear that

P„„'=R„,'[1+0(pp/Ee)].

%hen ~~,2 is near the direct band gap, the effective shift
in the position of the singularity in R„„' (energy de-
nominator) must be taken into account. London" has
shown that near the direct band gap E.„„'is singular as
(K,—pii, p) 'I'. The presence of conduction electrons
shifts this singularity to the point E,+2p~ ppi, 2. —

In order to include the collective effects as in Sec.
III A we merely divide the last three terms in Kq.
(39) by

(q, )=1—Lp.+ I V.I'D(q )]Q.(q, ) (40)

The division by ez amounts to replacing the bare
Coulomb plus bare phonon propagators in Fig. 6 by the
heavy braided line (see Fig. 10). This geometric sum of
bubbles is directly analogous to the set of diagrams sum-
med in the pure Coulomb case (see Fig. 7). Taking the
matrix element squared, summing over 6nal states
which conserve energy, and averaging over an initial
ensemble at a temperature P= 1/AT as in Kq. (15), we
get that portion of the scattering cross section for the
coupled electron-phonon system which comes from an
electron-hole —pair final state. In order to simplify the
len&th of the algebraic expression somewhat, we con-
sider the so-called perpendicular parallel scattering
where the incident light is polarized along the x axis,
the scattered light along the y axis, and the phonon
along the s axis, where x, y, and s are the fourfold

+ ~ ~ ~ ~ ~ ~

C1~ ttC cIt inc

~ ~ ~ ~ o~

I"n. 10. Diagrammatic representation of the effective e-e inter-
action screened by the conduction electrons.

The contribution to the scattering from the inclusion
of a phonon 6nal state is easily incorporated into our
RPA type of approximation. The diagrams contribut-
ing to the matrix element are the same as those in Fig. 6,
only the 6nal state is changed. To zeroth order in the
Coulomb interaction in the parabolic band approxi-
mation

ng
MEP =e„'eP 8„, -V,Q.(q,co)

m*

+
" '(

' )'"z„.'+' ""'v, . (42)

To include collective effects we divide Eq. (42) by the
total dielectric constant, Eq. (40). The contribution to
the cross section due to the phonon final state for the
perpendicular parallel scattering is then

dp(J, II)

Iti ( 1 ) '" qI',„' ' ImD(q, &o)z.„+ "v, '
. (43)

m&2M&pip, / m'
I pr(q pi) I'

Mooradian and McWhorter' have arrived at a
formula essentially identical to Eq. (41) for the total
(J,ll) cross section. Within strict RPA, ImD(q, pp) is a
b function at the bare phonon frequency. For these
values of q and p&, the dielectric constant pr(q, pi) is
proportional to a 8 function squared, so that Eq. (43)
is zero. 4 Thus, within the RPA, Eq. (41) gives the total
(J,ll) cross section.

In a real crystal there is a 6nite imaginary part to the
propagator D (q,co). The phonon lifetime arises from two
distinct sources. The 6rst and most obvious source is
the coupling of the phonon to impurities, lattices
defects, anharmonic terms, etc. , in the empty lattice.
The second mechanism for phonon lifetime is due to the

crystal axes. In this case

d(r(J, II) 1 1
~0

Au dQ EH x 1—e-&"

k, ( 1
x —

I I
z.„v,D(q,~)

m 2MEppp, )
P ImQ, (q,pr)

+q&"'I e.+ I V.I'D(q~)]; (41)
I er(q, ~)l'
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coupling of the phonon to the small number of conduc-
tion electrons present. In lightly doped crystals, the
first mechanism will be the dominant one. Since the
conduction electrons are treated within the RPA, the
lifetime of the phonons due to the second mechanism is
already included in Eq. (41), i.e., in ImQ. , and it would

be inconsistent to include these effects a second time
in ImD of Eq. (43). However, the lifetime effects
attributable to the process not connected with the con-
duction electrons should, in a real case, be included in
our equations.

We might conjecture that it is possible to include
such finite lifetime effects by introducing a small

phenomenological imaginary part to the phonon fre-

quency, i.e., 7 pp This is the procedure which gives
the width and shape of the phonon line in the empty
lattice. " It is also the procedure which properly gives
the width and shape of the plasmon line and central
ion line in the coupled electron-ion problem. "For the
electron-phonon system there is a question as to whether
it is consistent to use Eqs. (41) and (43) with a finite
Ima. The difhculty comes from the fact that there is a
possible double counting of mixed electron-phonon final

states involved in such a procedure. This point is
currently under investigation.

Assuming that we can neglect the contribution
from Eq. (43), then we must make one further simpli-

fication in Eq. (41) before it reduces to Eq. (1) of
Ref. 9. The simplification merely involves setting

Ev,+IV, I'D(q, )]Q.(q, )=»ndv, Q.(q, )= —.'/ '.
These approximations are valid only very near a reso-

nance when the resonance is sharp enough and when we

can neglect the dispersion of the plasmon, i.e., the
deviation of yQ, from 1—co~'/aP.

The results of this section, although algebraically

quite complicated, are conceptually quite simple. The
resonances in the total cross section will occur at the
zeros of er(q, &v). The strength and polarization de-

pendence of the resonances will depend on a detailed
calculation of the quantities C, R„„', and I'„„'. The
functional form of these objects will depend to a good
approximation on the band structure of the solid and
not on the presence of a small number of excess carriers.
We can think of the experiments as giving us a means for
determining the effective E„,', I'„,&, and perhaps the
constant C.

IV. ZEROS OF THE DIELECTRIC CONSTANT

From our final expression for the cross section LEqs.
(41) and (43)), it is clear that the zeros of cr(q, co) de-

termine the position of the resonances in the scattering
cross section. Writing er(q, cv) explicitly by inserting

'9 A. Ron, J. Dawson, and C. Oberman, Phys. Rev. 132, 497
(1963); D. F. Dubois and V. Gilinsky, ibid. 133, A1317 (1964).

~
V,

~

' from Eq. (36) into Eq. (40), we find

4~F2 ~2 (g ]2

~r(q, ~)=1—,Q.(q~),
q26 (g2 (gl2

Multiplying through by the quantity (a&'—~P)/
(oP—&oP), we see that the roots er(q, a&) =0 are deter-
mined by'

co —co 47K8
0= — — Q, (q,co) .

0) —
CO g 6

In the absence of conduction electrons, Q.(q,a&) =0, the
solution of Eq. (45) is &u=o&i, the longitudinal-optic-
mode frequency. For very high carrier concentration,
l.e.)

(47re'/q' „)Q,(q, (a) (46)

the root of Eq. (45) is id= ~&, the transverse-optic-mode
frequency.

In the neighborhood of the collective resonances,
qV/M(1, so that, dropping all collisionlike terms,

q'e 3q'(V')
ReQ. (q,a&) = 1+ +

co'm* co'
(47)

S 07 CO

ImQ (q,~) = (2~)'" exp
q(V) 2q'(V')

(48)

Physically, the imaginary part of Q,(q,ra) in this
"collisionless" case comes from the familiar Landau
damping phenomenon, i.e., from electrons traveling at
or very close to the phase velocity of the wave.

In the degenerate case, ImQ, (q,~) would be equal to
zero in the "collisionless" case, since there are no
electrons around at the phase velocity ~/q. In a real
material with impurities defects, etc., there is, in general,
a finite imaginary part of Q.(q, co) which produces a
broadening of any resonances and contributes to
ImQ, (q,co) for all co/q. In some crude qualitative sense,
these dissipative processes may be taken into account
by letting &a

—& &a+i/r, in the polarizability equation
(14), where r is scattering time. This scattering time is
approximately equal to the time one gets from fitting
the dc mobility data, i.e., p= er/m*. It is assumed —to be

Here (V')=kT/m* for a nondegenerate plasma at a
temperature T and (V')= Si Vr' for a degenerate Fermi
gas. The finite q effects in the expansion of the ReQ.(q,ar)

will make themselves felt in the dispersion of the coupled
plasmon-phonon line. This dispersion, which under
typical experimental situations is of the order of a few
percent, will manifest itself as an apparent shift of the
Raman-scattered line as a function of temperature or
angle of scattering,

The ImQ, (q,~) can also be obtained in the limit
qV/a&«1. In the nondegenerate case, neglecting any
effects due to impurities,
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frequency-independent. Tell and Martin, '0 working in

GaAs, have observed a temperature dependence of the
coupled plasmon-phonon linewidth which is in rough
agreement with Eq. (48). The dispersion predicted by
Eq, (4/) was too slllall to be obsel vecl iil tl'lat expel irrlellt.

APPENDIX

In this Appendix we show that the Raman cross
section, in insulating crystals, will to a very good degree
of approximation go like (d'or 2/Eri) when

I
col, 9/J'B

I
((1.

The "proof" depends on rather general considerations.
It is valid within the framework of the BOA as long as
the excited state, which the system is left in after the
scattering is low in energy relative to typical electronic
energies in the crystal.

It is well known" that the electronic polarizability,
or, equivalently, the matrix element for the elastic
scattering, of light, goes like (cur, 2/Err)' at low fre-
quencies. The Raman scattering differs from the elastic
scattering in that the final and initial states of the
system differ from one another. We will show that the
small amount of inelasticity involved in the Raman
process, i.e., the excitation of a phonon, is irrelevant.
It is only the electronic energies which are relevant to a
discussion of the frequency dependence of the Raman
scattering cross section.

The matrix element to second order in the electro-
magnetic field for the scattering of light is given by

&fl~.~*l»«I~.~ I~&~= "' &fl~'I ».+2
K—%+~i

where the vector x=—(xr, ,xia) specifies the electronic
coordinates and R—= (Ri, ,R~) the nuclear co-
ordinates. The index n specifies the nth electronic con-
figuration and m the vibra, tional state of the system.
In the Ranian process n does not change, i.e., it i.emains
in the n=0 state. The vibrational state will, of course,
cbaiige.

Let us look at the A' piece of Eq. (A1) and rewrite
it. The procedure we a,dopt is the exact analog of what
one does in the single isolated atom case where one
takes nuclear recoil into account. We find

=—5„„(p (x,R)H (R) I P e' '**I po(x, R)Ho (R))

=—S„„(~,(~,R)H„(R) I

xP e''i'&*' "''e+'&'"'I (po(x, R)Ho"(R)). (A3)

The e''i' ~" ~&) factor may be set equal to 1, since in the
integration over the electrons' coordinates the spread in

the electrons' wave function away from any given ion

site is much smaller than the wavelength of the light.
A simple uncertainty-principle argument —to wit, that
the gap energy B„i.e., the "binding energy,

" of the
electron roughly determines the spread of the electrons'

wave function in real spac- implies that neglecting

q in the exponent is good to terms of order q(hc/8, ).
The p; e''i'a' may not be set equal to 1 in the integral
over the nuclear coordinates; thus,

where

&fl ~.~ I »«I ~ ~*I~&

+i +l —&2
(A1) 4.&fI~'Ii&=4.&H-(R) I 2 c""'IHo(R&&.

The total matrix element, Eq. (A1), in this approxi-
mation is

I' A =P I' 'e'k'**'
IJ ~=""'(H (R)I 2 c""'IHo(R)&

P g 0 —Q P ~c r, kk xi'—

P= P q„(x,R)H„"(R), (A2)

"B.Tell and R. Martin, Phys. Rev. (to be published).
"W. Heitler, Quantum Theory of RaChatiom (Clarendon Press,

Oxford, 1954), p. 34.

When i fand c=or, k ~ 0, the sum of the last two P A

terms in Eq. (1) cancel exactly with the first term. This
is the content of the so-called f sum rule. "In an insu-

lating crystal, the wave function in the BOA may be
written

(0II „In-&(nl f'„Io)
x —p

m ~ +n —+0—ei

+5„„. (AS)
+~—+0+~2

In Eq. (AS), we have neglected any dependence of the
intermediate-state energies on the phonon energies. The
theorem, i.e., the frequency dependence of M, follows

directly from the conventional f sum rule on the elec-

tronic part of the wave function alone.


