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Damped Alfven Waves in Bismuth: A Deteiriiination of
Charge-Carrier Relaxation Times*
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The average charge-carrier relaxation times in single-crystal bismuth at 4.2'K have been measured using
a new technique. For Alfvbn waves propagating in a slab of thickness d, the amplitude of Alfvbn-wave
oscillations increases with magnetic Geld B as (V/c) e "~+', where V is the Alfven-wave velocity proportional
to B. Inasmuch as V can be determined from the standing-wave oscillations, our measurements of the
amplitude growth in B provide us with a direct determination of the average relaxation time 7.. We studied
Alfven-wave propagation along the three crystal axes using a resonant-cavity method in magnetic Gelds

up to 11 kG. Strongly anisotropic relaxation times ranging from 0.15 to 0.40 nsec were obtained. The
results are in good agreement with McLachlan's determination of the same quantities, but are in poor
agreement with Brownell and Hygh's theory of Alfven-wave damping. The experimental methods used
here have several advantages over the usual galvanomagnetic and size-effect methods of determining v.
In addition, we predicted an interference e6ect in nonparallel-plate samples analogous to the Newton s-

rings effect; this was borne out in our observations.

I. INTRODUCTION

~ 'HAT electromagnetic waves could propagate with
small attenuation in certain stellar plasmas in the

presence of a magnetic field was first proposed by
Alfven. ' Buchsbaum and Gait' later suggested that this
propagation mod" now called Alfven waves —could
also occur in solid-state plasmas. They interpreted the
high magnetic field results of a microwave experiment by
Gait et al.' and found good agreement with charac-
teristic Alfven-wave behavior. Observations of Alfven-
wave propagation in solids were later reported by
several authors. ~"

Alfven waves propagate only in materials having
equal numbers of holes and electrons. To observe weakly
damped Alfven waves requires that the product of the
average carrier relaxation time r and the Alfven fre-
quency ~ be greater than 1 (~r)1). In addition, the
Alfven frequency must be much less than the cyclotron
frequency co, of the heaviest carrier.

Bismuth, which is a compensated semimetal belonging
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to group V of the Periodic Table, is a convenient solid-
state plasma in which to study Alfven waves. First, it
has equal numbers of electrons and holes, since its
carriers are due to the overlap of a filled valence band.
and an empty conduction band. Second, at 4.2'K
scattering of carriers by phonons is essentially frozen out
and the condition co7 &1 is fulfilled at microwave fre-
quencies. Third, the carrier eRective masses in bismuth.
are much smaller than the free-electron mass, so that
co&&co at low magnetic fields ( 1 kG). Last, because of
the stability of the carrier concentration in solids, the
bismuth solid-state plasma can be used to study funda-
mental plasma dynamics.

Alfven-wave propagation can also provide much in-

formation about bismuth itself. Several authors" "
have calculated the masses and concentrations of the
bismuth carriers by measuring the Alfven velocities for
various crystal-axes —magnetic-field orientations.

The attenuation of Alfven waves in bismuth has been
studied in three experiments. Khaikin et a/. ' measured'
the Landau damping of Alfven waves at microwave fre-
quencies. Bartelink and Nordl. and' investigated Alfven
waves in the low-megacycle region. At these frequencies
Alfven waves are strongly damped, and their behavior
is qualitatively diRerent from that observed in the
microwave region. McLachlan" studied lightly damped
Alfven waves from 200 to 3000 Mc/sec. In this fre-

quency range co7- 1 and the Alfven velocity is a func-
tion of the frequency and relaxation times. By varying
the frequency, McLachlan was able to obtain the aver-
age relaxation times.

In the present work, done in the 24-Gc/sec frequency
range and at 4.2'K, the Alfven velocity is frequency-
independent. To determine the Alfven damping, we
derive in Sec. II an expression describing —as a function
of magnetic field—the absorption of microwave power
propagating as Alfven waves 'in parallel-plate bismuth
samples. From this expression, it is straightforward to
obtain the power rejected from the sample surface, .
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which is the quantity we measured experimentally. The
derived result relates the rejected power to the sample
thickness, microwave frequency, Alfven velocity, and an
average relaxation time. The erst four quantities can be
directly measured. , allowing the derived expression to be
6tted to the relaxation time. Also derived in Sec. II is an
expression describing Alfven-wave propagation in non-
parallel-plate samples. A strong modulation of the
Alfven-standing-wave pattern was predicted and
observed.

Section III describes the experimental techniques and
Sec. IV presents the results. Section V is a discussion of
these results and the conclusion.

D. THEORY

In this section we wish to derive expressions describing
the propagation of Alfven waves in bismuth under the
conditions of our experiment. The conditions are that 8
is in the plane of the parallel-plate sample, k is perpen-
dicul. ar to the sample surface, ~,&&or, and co~&1, where
~, is the cyclotron frequency of the heaviest carrier, co

is the fixed microwave frequency, and ~ is the average
relaxation time.

Assuming plane-wave propagation in an isotropic
solid-stRte plasma) we write

k)& (k&&E)= —(4m')/c') j

j=e(8).E,
where k is the wave vector and e(B) is the magnetocon-
ductivitv tensor. From (1) and (2)

k(k E)—O'E+(47rico/c')e(B) E=o.
We may derive the dispersion relation from this equa-
tion. For magnetic Geld 8 parallel to the s axis and in the
plane of the sample and for )'r (~~x) perpendicular to the
sample surface, Eq. (3) becomes

k'= (4iruo/c') (o„„—o,„o„./o ..),
where the y axis is in the sample plane, and o-„,o-„,a-„„
and cr,„are taken to be zero.

I Rx 8$ cl.
q assuming isotropic damping and a model

of the bismuth Fermi surface consisting of three electron

ellipsoids and one hole ellipsoid, have worked out the
magnetoconductivity expressions for tbis material. In
general, the conductivity tensor elements obtained are
quite complicated. However, an examination of these
elements for co,»co and J3 perpendicular to the micro-
wave E field allows us to write Eq. (4) in the form

where f(m) is a function of the effective masses. Using
the results of Lax et a/. , we list in Table I the f(m) for
the six field-axis configurations used in this experiment.

In the limit co7»1, we obtain the propagation con-
stant from (5):

where t/' is the Alfven velocity:

V= B/L4mm f(m) g'".
For co7.&&1, the wave propagates with little attenuation
and V is independent of frequency and increases linearly
with magnetic fjLeld.

To measure the Alfven velocity, we use the fact that
in a parallel-plate sample of thickness d, standing waves
will occur when

where l is an integer and X is the AUven wavelength
2ir V/co. Assuming that the l standing wave occurs at Bi
and the 1+1 standing wave at B,, we have

f= (rod/irBi) $4~If(m) j'i',
1+1=(~Z/~B, )L4 mf(r )ji&2.

Subtracting and rearranging yields

6(1/B) = (ir/cod) L4irii f(rrr) j—"',
where

An experimental measurement of 6(1/B) gives the
real part of the propagation constant. In order to
measure the imaginary part of y, we must derive a
relation between 8 and the power absorbed and re-
Qected by the sample. We first match boundary condi-

@ABLEL Function f(m) for various 6eld-axis con6gurations. Here mo is the free-electron mass, the m's are the electron efkctive masses,
and the M's are the hole effective masses. For details, see Refs. 14 and 16.

Sample

1

2
2

3
3

2 3
1 3 2
2, 1, 3
2 3 1
3 1 2

3, 2, 1

f(m)

-gm1+ (8/3)m1m2/(3m1+m2}+iV1
y (m1+m2) —$ (m4' jma)+Sf'
Bm2+ (8/3) mlm2/(ml+3m2) +~2
—,
' (m1+m2) —-', (m42/ma)+3f 2

m3 —2m42/(m1+3m2)+3f g

ms —m42/3m2 —3m4' j(3m1+m2)+%3

f(m)/mp

0.088
0.403
0.643
0.403
0.780
0.774

V (meas)
10'8 (kG)
(cm/sec}

5.73
2.48
2.36
2.48
1.97
1.87

V (calc)
1078 (kG)
(cm/sec)

5.85
2.73
2.16
2.73
1.97
1,.97

'4 B.Lax, , K. J. Button, H. J. Zeiger, and L. Roth, Phys. Rev. 102, 715 (1956).
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tions on both sides of a parallel-plate sample of thickness
d and solve the equations for the ratio of the amplitudes
of the incident (A) and reflected (8) waves:

(~2/e2 ~2) (1 e2 ~'y d)

(~/e+~)' —(~ie —V)'e"'"
(9)

Assuming that Ior&)1 and c/V)&1, Eq. (9) is solved.
for"

where A is the sum of the power absorbed and trans-
mitted by the sample; we obtained

A =D+n(4V/c) $1+2 cos(42rd/X) e—@v'1, (10)

where D and 0. are undetermined constants charac-
teristic of the microwave system.

I't Is clcRI floIII Eq. (10) 'tlIRt. tile powcl clltcI'IIlg thc
sample oscillates as cos(42rd/P, ) because of geometric
resonances. The expression also shows that the ampli-
tude of the oscillations will increase with B. This
amplitude growth is most easily analyzed by looking at
the difference between the upper and lower oscillation
envelopes. Setting cos(4rd/X) =&1, we have

=D+n(4V/e) (1+2e @r') (11)

A =D+n(4V/e)(1 —2e el''). (12)

Subtracting Eq. {12)from Eq. (11) gives the oscilla-
tion envelope amplitude:

E=16 (n/V)ee"' '
Using Eq. {13), the fact that the detection system

output is directly proportional to the power absorbed
and transmitted by the sample, and the determination
of the Alfven velocity from A(1/8), it is possible to
measure the average relaxation times.

The above results were derived for parallel-plate
samples. In our frequency and ma, gnetic 6eld range, the
Alfven wavelength is on the order of 0.002 cm. It is
therefore of interest to see what CBects arise in a sample
with nonparallel surfaces. To investigate the domain
where the variation in thickness hd is about an Alfven
wavelength, we average the oscillatory term in Eq. (10):

pcI'Iodlc In 4rd/X —will bc modulated by slow osclllR-

tions —periodic in 22rLM/X —as 8 increases. The ratio of
the periods will go as 2d/Ad.

B. Microwave Syectrometer

During the runs, a sample was placed over a hole in
the bottom wall of a rectangular, silver-plated micro-
wave cavity resonating at 24 Gc/sec in the TE102
mode. The sample was ahgned on the cavity by eye and
was subject to an error of O'. The cavity, sample, and
associated waveguide were then placed in a Sulfrian
stainless-steel Dewar whose tail was between the pole
faces of a 12-in. Magnion electromagnet mounted on a
rotatable base. %ith this geometry, the magnetic Geld

was always parallel to the sample surface and could be
rotated from 8 parallel to E,q to 8 perpendicular to E,g.

All data were taken at 4.2'K and in fields up to 11 kG.
Microwave power was coupled into the cavity through

a round iris between the cavity and waveguide. An
adjustable screw set into the waveguide near the iris
permitted Gne a,djustments in the coupling. Most runs
were made with the cavity undercoupled, approximately
15% from the critically coupled position.

CASLK CRYSTAL

DKTKCTOR

IIL EXPERIMENTAL TECHNIQUES

A SR111Ple Px'ePRf RtloIl

The three parallel-face bismuth samples used were all

spark-cut from the center of a single-crystal ingot 15 cm
long. The crystal was grown from commercially ob-
tained 99.9999%-pure bismuth by zone leveling. Zone
leveling was used so that the three samples would have
a uniform impurity content.

Each sample was approximately 1X1X0.2 cm with a
principal axis perpendicular to the surface. The samples
were oriented mith an. accuracy of 1' by back-reQection
I.aue photography. After cutting and orienting, the

sample surfaces were chemically polished in a solution
of six parts glacial acetic acid, six parts fuming nitric
acid, and one part distilled water.

8V "+" 4~zq
cos ~e

*'"'Ch,
xi (14) POSER

SUPPLY
KLYSTRON ISOLATOR

DIRECTIONAL

COUPLER

whclc d ls thc thickness at one cnd of thc sample and
4+Ad is the thickness at the other. Carrying out the
integration and dropping small terms yields

8V 42rd sin(22rhd/X)
cos e @~'

c A, 22rhd/X

CAVITY

'+AV KOU ID K
D IRKCTIONAL

COUPLER

This expression predicts that the fast oscillations— SAUSSIIKTKR
X-Y

RK CORDER

KK I THI. K Y

VOLTNK TKR

CR YS TAL

DKTKCTOR

I~ Ed~in H. Marston and Y. H. Kao, Physik Kondensierten
Materie 9, 195 (1959). FIG. 1.Block diagram of the microvrave system.
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Figure j. is a schematic of the microwave spectrometer.
Power rejected from the cavity caused a dc voltage in
the crystal detector. The voltage was fed into a Keithley
150AR milli-microvoltmeter ~hose output drove the F
axis of a Varian F-80 X-V recorder. The X axis of the
recorder was driven by the output of a Bell 240 Hall
probe gaussmeter which measured the magnetic Geld at
the sample.

Because the short-term drift of the klystron was com-
parable to the cavity resonance width, it was necessary
to use an automatic frequency control (AFC) system.
The AFC consisted of an oscillator which modulated the
cavity resonance at 10 kc/sec and a phase-sensitive de-
tector tuned to 10kc/sec to monitor the power reflected
from the cavity. As long as the klystron was centered on
the cavity resonance, the 10-kc/sec modulation resulted
in a pure 20-kc/sec modulation of the power reflected
from thc cavity. But if thc microwave frequency drifted
off the cavity resonance, some 10-kc/sec signal would be
mixed in. The phase-sensitive detector would then apply
a correction voltage to the klystron's repeller, pushing it
back on resonance.

C. Detection Characteristics

vAeez etc FiELo (~6)

I

IO

minima) versus the fringe index. Figure 3 is a typical
plot of f versus 1/8 with the points fitted to a straight
line. The slope is

FIG. 2. Typical standing-wave oscillations with k parallel to the
bisectrix axis and E,g parallel to the trigonal axis in sample 2 at
24.2 Gc/sec. The amplitude grows with 8. The curve also sho~s
the Shubnikov-de Haas modulation of the oscinations.

If the crystal detector is operated in the square-law

region, then
AI'„~AV g, y,

~here AI'„ is the change in power reQected from the
cavity Rnd At/ xggi 18 thc chRngc ln detector voltRgc. It
can also be shown that in the square-law region for small

changes in the sample surface resistance hR,

0P„~—AQ ~AE„(16)
where Q is proportional to the ratio of the power stored
to the power lost in the cavity and R, is the cavity
surface resistance. Background runs on the cavity
without the sample showed no change in the rejected
power as 8 was swept, so all observed changes were

attributed to the sample. Therefore, changes in crystal
detector voltage were directly proportional to the sur-

face resistance of the sample, which in turn was directly
proportional to changes in the power absorbed or
transmitted by the sample. This was convenient, since
the quantity' in Eq. (10) was directly proportional to
the crystal detector voltage.

The six measured Alfven velocities are listed in
Table I along with their theoretical values. The latter
were calculated using the conductivity tensor derived

A typical experimental curve is shown in Fig. 2. An
X-F recorder plotted the magnetic field (X axis) versus
the crystal detector voltage (F axis), which was pro-
portional to the sample surface resistance. All data were
taken at 4.2'K with E,g and 8 in the plane of the
sample.

The Alfven velocity was obtained for each of the six
Geld —crysta1-axes configurations as listed in Table I by
plotting the 1/8 values of the oscillation maxima (or

o.loo O. IRO

txs (t*Aussj-1

FIG. 3. Typical plot of l versus j/B. k is parallel to the binary
axis and E,f to the trigonal axis. The errors are the size of
the X's.
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0.8—

0.6—

O. IOO

I

0. I20

I/8 (QAUSS)"'

I

0.140% IO 5

16B dt 47rnf(m) J"
E=u —exp (18)

cj'4s.nf(m) J" 87-

Rearranging and taking the natural log of both sides

yields
d(47m f(m))"16n

ln—=ln
c[4~nf(m)]»'

(19)

If E/B is now plotted versus 1/B on a semilog scale

and the points fitted to a straight line, the slope of the
line is

in'/B dl 4w nf(m) j"'
S= (20)

Sec. II LEq. (13)g. To measure E, the amplitude of the
oscillation envelope, we drew in on the X-F plot the

upper and lower envelopes and measured the separation
at 200-6 intervals. To use these data it is convenient to
rewrite Eq. (13) as

FIG. 4. Semilog plot of 1/B versus E/B, where E is the oscillation
envelope, for sample 2. k is parallel to the bisectrix axis, B to the
trigonal axis, and E,& to the binary axis.

by Lax et al. ,
' Kao's' effective-mass values, and

Bhargava's" value for the carrier concentration. Agree-
ment is good except for the second and fourth configura-
tions, where the m4 term is important. These two
orientations are very sensitive to the crystal field
directions and the discrepancies are probably due to
misalignment.

An inspection of the X-I' plots shows that the oscilla-
tion amplitude grows with increasing magnetic field.
This growth is predicted by the expression derived in

Since $4~nf (m))"is known from the velocity measure-

ments, the slope gives the relaxation time.
Figures 4 and 5 are semilog plots of E//B versus 1/B.

The large oscillations about the straight line are due to
the presence of the Shubnikov —de Haas effect. This

effect, which is periodic in 1/B, is due to a variation of

the carrier scattering time. The "error limits" are the

approximate variation in the relaxation time due to the
magnetic Geld dependence of r.

The measured relaxation times are listed in Table II,
along with McLachlan's values of v."The first six v's in

Table II are those determined using the three samples

prepared from the center section of the zone-leveled

ingot. The seventh relaxation time (1') was obtained

from sample 1 after it was reduced in thickness by
0.020 in. and the surface repolished. The eighth and

TABLE II. Relaxation times.

0.6—

l5
0.4—

0.2 "

O. I IO
I I

0. I 50
I/B(GAUSS) '

I I

O. I50xIO I

FrG. 5. Semilog plot of 1/B versus E/B, where E is the oscillation
envelope for sample 1. k is parallel to the binary axis, B to the
bisectrix axis, and E,f to the trigonal axis.

~6 Y. H. Kao, Phys. Rev. 129, 1122 (1963).
R. N. Bhargava, Phys. Rev. 156, 785 (1967).

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2

1, 2, 3

1 3 2

3 1 2

24

24

24

24

Sa~l ~e ~II, ~ll, &II iG~/s«l This work

0.13
(o.17-o.o9)

0.31
(0.34-0.28)

0.38
{0.42—0.34)

0.40
(0.44-0.36)

0.20
(o.22-o.1s)

0.35
(o.43—o.27)

0.15
(0.20—0.10)

0.35
(O.38—O.32)

0.14
(0.16-0.12)

(nsec)
McLachlan

0.15
(o.17-o.12)

0.22
(0.27—0.18)

0.55
(1.0 -0.35)

0.27
(0.34-0.23)

0.21
(0.24—0.18)

0.37
(0.50—0.28)

0.15
(o.17—o.12)

0.22
(0.27-0.18)

0.21
(0.24—0.18)
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ninth values were obtained on samples 4 and 5 prepared.
from different ingots and one run was made at 9.0 rather
than 24.15 Gc/sec.

As can be seen from Table II, the last three relaxation
times are in good agreement with the corresponding
relaxation times among the first six. This shows that the
values are not strong functions of the surface condition
or of the particular crystal on which the measurement
was made. The agreement with four of the six relaxation
times measured by McLachlan is also good. The two
values for which there is disagreement are for the second
and fourth field-axis configurations for which, according
to McLachlan, his method of determining r is subject to
errors of up to 30%.

In Sec. II, we derived Kq. (15), which predicts that
the effect of a nonparallel-plate sample would be to
modulate the growth of Alfven oscillations according to

/4~d sin(2m. hd/X)
cosi

2mhd/X
(21) 7

S(KO)

s

!O

lK

CP
bJ

Lal

8(ka)
)O

Fxo. 6. Sample 2 in the parallel-face state with E parallel to the
binary axis and 8 parallel to the trigonal axis.

where small terms have been dropped.
To test this prediction, data were taken on parallel-

plate sample 4. The sample was then spark-planed so

that d/Ad=25. In the parallel-plate state (Fig. 6), no

modulation was observed, but in the nonparallel state,
with the same crystal-axis —field orientation, a strong
modulation was seen, as shown in Fig. 7.

To evaluate Kq. (21) quantitatively, we relate d/Ad

to the number of oscillations between adjacent modula-

tion minima. In a full cycle we expect

No. of peaks=2d/6d —50.

In Fig. 7, there are approximately 28 peaks between the
two minima, corresponding to 56 peaks in a full cycle.
The agreement is reasonably good, considering the
uncertainty in the exact position of the minima and the
variation of the microwave fields over the sample
surface.

FIG. 7. Sample 2 in the nonparallel state. E is parallel to the binary
axis, 8 parallel to the trigonal axis.

This interference effect can be thought of as a dynamic
observation of Newton's rings. In the optical Newton's-
rings effect, a standing-wave interference pattern is
formed by two nonparallel reflecting surfaces. In the
present situation, the interference pattern is integrated
over rather than scanned across. Then, as X increases,
the number of fringes in the sample decreases, causing
the integrated interference pattern to oscillate in
intensity.

V. DISCUSSION

At 4.2'K, if lattice vibrations are frozen out, the
possible relaxation mechanisms are impurity or defect
scattering and electron-electron scattering. Assuming
that electron-electron scattering is the dominant mecha-
nism, then the relaxation time should vary as T'."We
attempted to determine the temperature dependence,
but the rapid growth of the Shubnikov —de Haas effect
below 4.2'K and the loss of sensitivity at higher tern-
peratures prevented an accurate measurement.

Assuming ionized impurity or defect scattering,
Srownell and Hygh" have calculated the ratios of the
relaxation times measured in this experiment. Figure 8,
which compares their predictions with our data, shows
that the agreement is not good. They stated that to fit
their results to McLachlan's data required the concen-
tration of ionized impurities to be 4.2% of the electron
or hole concentration. However, an impurity concen-
tration of this size would make the sample too uncom-
pensated for Alfven-wave propagation. Brownell and
Hygh therefore suggested that Frenkel defects could

'8 J. M. Ziman, E/ectrons and Phonons (Oxford University
Press, New York, 1960).

» D. H. Brownell, Jr., and E. H. Hygh, Phys. Rev. 164, 916
(&967).
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a
O
I-
X

lal

I-
0
O
I-
IK I

(I, 2) (2,3)

ORIENTA TION (Ill, Kll)

Fic. 8. Normalized ratios of the theoretical relaxation times
calculated by Brownell and Hygh to our experimental values. On
the X axis, the fnst number in parentheses refers to the B held
direction and the second to the E,& Geld direction. The binary axis
is 1, bisectrix axis 2, and trigonal axis 3. The ratio at (2,3) was
taken to be 1.

provide the required percentage of scattering centers
and yet preserve electron-hole equality. But the Frenkel
defect concentration is sensitive to the prior history of
the sample, and we would expect different samples to
give different results, especially those prepared in differ-
ent ways or cycled from room temperature to 4.2'K a
different number of times. The good internal agreement
in the present experiment and the agreement between
our results and McLachlan's results imply that the

cause of the relaxation-time values is probably not
Frenkel defects.

The present experimental technique is very con-

venient in comparison with the size-effect and galvano-
magnetic" methods of determining the relaxation times.
In the size-effect method, the resistance is measured in

samples at different thicknesses, allowing a determi-
nation of d/Vzr (where Vz is the Fermi velocity).
However, the frequent thermal cycling and the possible
strains and dislocations introduced in reducing the size

of an already very thin sample make the method subject
to error. In the present method, e

—"' ' is determined in

a single sample with one sweep of the magnetic field. In
comparison with galvanomagnetic methods, no assump-
tion is made about the Fermi-surface model and no
leads are attached to the sample in the present work;
thus, it should give a more direct determination of the
relaxation times.
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I

A microscopic calculation of the Raman scattering process in almost transparent semiconductors is pre-
sented. The calculation takes into account band structure, phonons, and the collective motions of the con-
duction electrons. It is based on many-body perturbation theory and is "valid" within the framework of
the random-phase approximation. Our results show resonance scattering from the coupled collective modes
of the conduction-electron longitudinal-optic-mode system. The detailed efFect of the band structure mani-
fests itself in determining the intensity of the resonance lines.

I. INTRODUCTION

'HK ever increasing availability of intense mono-
chromatic sources in the infrared has Inade

possible Raman scattering from narrow-band-gap
semiconductors. More specifically, successful light
scattering experiments have been performed in weakly
doped GaAs, ' InAs, and InSb. ' An analysis of the data

' A. Mooradian and G. B. Wright, Phys. Rev. Letters 16, 999
(1966).' R. E. Slusher, C. K. N. Patel, and P. A. Fleury, Phys. Rev.
Letters 18, 530 (1967); C. K. N. Patel and R. E. Slusher, Phys.
Rev. (to be published).

in these three experiments has been based on rather
simple theoretical treatment of the light scattering
problem. '4 The theory is essentially formulated in terms
of a single-band model of a semiconductor. The band
structure is assumed to be completely characterized by
an effective-mass tensor and sometimes by an additional
enhancement factor which in an approximate way

' P. M. Platzman, Phys. Rev. 139, A379 (1965); A. L.
McWhorter, in I'hysics of Quantum Electronics, edited by P. L.
Kelley, B. Lax, and P. K. Tannenwald (McGraw-Hill Book Co.,
New York, 1966), p. 111.

4 Y. C. Lee and N. Tzoar, Phys. Rev. 140, A396 (1965).


