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We have calculated near the transition temperature T, the upper experimental magnetic field H„at
which the metastable, superheated Meissner state becomes unstable against infinitesimally small fluctuations

of the order parameter and the vector potential. For ~& 1.10, the stability limit is determined by fluctuations
of infinite wavelength, and the field II coincides with the maximum field H,h at which solutions of the
Ginzburg-Landau equations cease to exist. For It) 1.10, the stability limit is determined by fluctuations of
finite wavelength, and the value of H„ is smaller than H,h. For example, at a=4.25, H /H, =1, and when

Hip/Hn 0.745 (H, is the thermodynamic critical field). For ~& 1.10, one finds within 1 /z accuracy
H~/H. = (-,'Q5) L1+(2a)»'g.

I. INTRODUCTION

'HE largest magnetic Geld H,h up to which solu-
tions of the Ginzburg-Landau (GL) equations

for the Meissner state exist has been extensively investi-
gated for a semi-inGnite superconducting half-space, ' ~

finite cylinders, " and slabs' of various thicknesses.
These calculations did not investigate the problem of
stability. Because of inGnitesimally small fluctuations
of the order parameter and the vector potential, the
superheated Meissner state, which is metastable, might
become unstable at a field H„which is smaller than
H,&. This problem has been investigated by Galaiko, '
Takacs, and Kramer' " for Ic= , and they Gnd that
H„=0.745H, near T„where H, is the thermodynamic
critical field. " Kramer" has also derived a set of
"variational equations" which are similar to the "per-
turbation equations" obtained by Christiansen and
Smith" provided one makes k,=0, n, =0, and &=0 in
Ref. 12. We have solved Kramer's variational equa-
tions" for various I~: values for the Meissner state of a
semi-inGnite superconducting half-space and have
determined the Geld H at which the metastable
Meissner state becomes unstable. This should be the
largest magnetic Geld up to which the metastable,
superheated Meissner state could possibly exist. Thus
H is the upper experimental limit. In Sec. II we review
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and extend Kramer's" (and to some extent Christian-
sen's") derivation of the variational equations. In Sec.
III we describe the numerical techniques for solving the
variational equations; in Sec. IV the results are dis-

cussed, and Sec. V is devoted to conclusions.

II. VARIATIONAL EQUATIONS

The GL equations in the usual GL normalization are

v'F =z'(F'+ Q' —1)F,

curl curl Q= F'Q—
where the order parameter @=F(pp,y,s)e'«* & *'; Q
= Vq/a —A. A is the vector potential, a= X/P, X(T) is
the low-field penetration depth, $(T) is the coherence
length, and H= curlA= —curlQ. At the boundary
surface H=Hp (Hp is the external magnetic held) and
BF/On= 0, where n is normal to the surface. The varia-
tions of F and Q, nainely, 8F and bQ, are defined by the
symbols f and q. The second variation of the Gibbs's
ree energy Q isu i2

5'0= dg([3F'+Q' 1]f'+(Vf/—x)'+4FfQ q

+F'q'+ (curlq)'l, (3)

where the integral of Eq. (3) is to be extended over all

space. When PQ&0, the solution is stable and when

6 Q(0, it is unstable. Thus the stability limit is deter-
mined by PQ=O. In order to minimize PQ with respect
to the functions f and q, one finds the Euler-Lagrange
equations from PQ for a Gxed set of the equilibrium
functions F and Q (Hp and a are assumed to be con-
stant). This is done below when F and Q are specialized
to the semi-infinite superconducting half-space (x&0).
We consider a semi-inGnite half-space which is super-
conducting for z&0. The magnetic held H= —curlQ is
parallel to the s direction and is deGned by the super-
huid velocity Q= (0; Q„(x);0). Because of symmetry
considerations we may assume that F=F(pp). Following
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Kramer, "f and q are expanded in Fourier series:

f= Q Q f(k„,k.,x) cos(k„y+k,s),
ky& 0 kz& 0

(4)

g, = Q Q g, (k„,k„x) cos(k„y+k,s+n),
ky& 0 kz& 0

g„= P P g„(k„,k.,x) cos(k„y+k.s+P), (6)
ky& 0 kz& 0

g, = Q Q g, (k„,k„x) cos(k„y+k,s+y). (7)
ky& 0 kz& 0

When Eqs. (4)—(7) are substituted into Kq. (3) and
8 Q is minimized with respect to ot, P, and y, one obtains
e= —-'22r, p=O, and y=0. Then Kq. (3) reduces to (C
is a positive coilstaiit)

are positive dehnite and k, and q, are not coupled to
other terms in Eq. (8), the integral (13) reaches a
minimum when k,=O and g, =O. Hence, in order to
find the minimum of Eq. (8) we may put k. and g, in
Eq. (8) equal to zero, which means that we have
translational invariance in the s direction for the largest
effect of the Quctuations on the stability limit of the
GL solutions F and Q. Further, since there is no coupling
between the remaining modes k„, only a single mode
contributes to the ultimate instability, and the sum in
front of the integral of Eq. (8) may be omitted.

The conditions for which 62Q(k„,k,). [Eq. (8)] is an
extremum with respect to k, and k„are

(8/&k. )[PQ(k„,k„)j=O,

(8/Bk„) [O'Q(k„,k,)7=0.

dx( [3F'+Q' 1+—(k22+k, 2)/K2j f'
ky& 0 kz& 0

+~ '(df/dh)'+4FQfq2+F'(q'+q'+q')

+(k,q.. k*f2)'+(k—.q* dq*/dh)'—

+(k„q, dg„/dx) 2) .—(8)

With the boundary conditions df(0)/dx=O, f(O2)=0,
dg„(0)/dh=O, q„(oo)=0, dg, (0)/dx=O, and go(~)=0,
Eq. (8) is proportional to

By varying Kq. (8) with respect to k„one finds that
Eq. (14) is indeed satisfied for k.=0 and g, =0. From
Kqs. (8) and (15) it follows that for k, = 0 andy, =O, the
following condition xnust be satished:

oo f2 -F2 dg 2

de =0.
(F'+k„')' dh

In order that this extrexnum is a stable minimum, the
following relations for k, =O and g,=O xnust be obeyed
[C in Eq. (8) is equated arbitrarily to unityj:

PQ ~ dh[fA+q 8+q„C+q,D], (8')

where A=O, 8=0, C=O, and D=O are the Euler-
Lagrange equations

82

(PQ) =2
Bk,'

co —f2

dx —+g„'+g,' )0,
-K

(17)

—(1/a )(d2'f/dx')+[3F'+Q' 1—.
+ (kw'+k')/~'jf+2FQqw= o (9)

—k*(dq./dh) —k.(dq, /dh)+ (F'+k.'+k') g.=o, (10)

82 F dgy
(PQ) =8k„' dx )0. (18)

Bk„2 2 (F'+k„')' dx

Thus if we confine the fluctuations of f and q to near
the surface, Kqs. (9)-(12) describe the critical fluctua-
tions which niinimizes Kq. (8) and make O'Q=O with
the above stated boundary conditions.

Since the following terms in Eq. (8)

(82Q) (PQ) — (Pg) )0. (19)
-~kz - -~ky — -~kg~kg

It can be shown that 82(52Q)/Bk„8k, =O when dzf2/
dk„=0. As long as solutions for f and g„exist which
satisfy with the above speci6ed boundary conditions
the Euler-Lagrange equations, the inequality (19) is
satisfied provided k„/0 and dB2/dk„= 0. When k„=O,

(13) the minimum of PQ(k„,0) with respect to k„and k,
becomes unstable.

oo — f2
dh k,'—+F'q.'+ (k„q.—k.q„)'

0 K

In deriving Eq. (18) the condition dH2/dk„=O was
d'g„/dx'+k„(dq—„/dx)+ (F2+k.2)g„ assumed to hold for the optimum value of k„. We come

k„k,g,+2FQf —=0, (11) back to this condition in Sec. IV. Further, the inequality
(19) must be satisfied:—d'g„/dh'+k. (dg, /dx)+ (F'+k„')g, k„koq2=0. (12—)



PRESSONH. j F, NK AND +

IIL ~UMEM ~ PROCEDURE

"g Issner

I
I.Q

Q. l

tabi]jty ].1In&t o

F

0,8—

eliminated any gener
rical methods are ra

IQ .0

num er&ca

e sensltlve

Q.6—

0.3

these equations
owing

K =~50

n(I tjme consum
characterlstlc

]aborio™ an
ditions and t e coint boundary c n

parameterhya a
t tion used after somThe method of comp .

I- nd-error technique fre-

0.2—

].IInlnary st" '
t boundary»

l.s
on two-poln o

use of fjnite
quently use

h d whicIl Inake

Q—0 4 Q.6 '

Ho/HC

ms' More .
re unsatisfactory

0
ma&n y

1 i, pro
re,matlons were

condi t j.ons

F 1 Order Param
f a semi-ln6nlte s p

1 d 6eld
b use of the

p (0 a
~ argon Qc

t t1M s««" ' '
d t&ng difference app

d;ent boundarygero-gra &

analog corn.pm uterF s. (21) a"d '

The arallel

f~ etio o~ +'./ "
11 ~ns~ab10 and 8 ' P

r
'

required fOr q '
~

al COInputatIOn

ha1f spam as a "
~,g~, isphX»ca ~

.10. yhe c«~p for
' f r the num

uter»s an
was use(4

compu

lo~er
b h near )he pea

ch aracterlstlc
searching «r

og th«pper '
R,g 4) froln~'0 =

( omputlng
dvantage &n sea-

is ca1cglated

e('onomlC

an gy

0 Eqs.
wn bound y

unj que solution

~ '
tlons &~=0 an &' i

iI tIle un no
necess~~y or a un

th the s~pl6" . . nbyKrame:
eigenvalue ~y

ressions gIVen
e

cond&-uatlons an
lxed & value.

d the boundary conThe variatio»l q .
erconducting Ilalf sp ace'f the semi-In6nlte sup o

f th cal«lat, on

PQ=

eexpressed»t e o

0

on the comPute~.
20)

d2F/d~2 «'pp'+Q—2 2—17

5{)0

tl-

0.4

1.4

y
dS

g
~y'+P-'+;(~x)

P2 Zgy
+4pgfqy+p qy

F2gp 2 dh

2- 2+

(2')d2Q/dx =F Q ~

k, -
2pgq (21)

1 d f
2yg2+ — 1 f

g2 dS
dp(0)/dg —0 Q(0)A i Q(0)~0 ~ P ( 00 )=

dg
(22)

(0)/dx — +2'

1,)d, -/„.=„L-(3P +g'+( ~ "—p /„) 1)f+2FQq 7

p2 dqy
2 2pgf

2+) 2 dX

dq„~y
(p2- +2pgf)d~qy(23)

m) =0,

F2yp„2 dx

0 q„(0)%0~ qyf 0 W r

h re the collstan
~0 f(oo) =0, df '

t of integration I

resent »ve 'tigatlon to fin
d d- (0)/dz=0 w e .

f Zqs (1 ) and

aim of t"e p . „t' field Ifo and
22); zero. The .

h t; 1 snd «ro

an gy
solutions

I'

lue of the appl'ed
F s (21) and q' h„d hy selecting

d g(0) which

h "elge"v""' "
uatlo» w'"' '

dary values (
d«con-

cons .
2y and(22) Equations ( )

h p(2) and Q($) fu
uniq'ue solu

d t were svslla

relinearin f andqy'
1 ancl (2) w "h

s For some cas~s
m utation (R f

dg(0)id* d""
f. p- ""' ' p

(21')

must satisfy slmu t
d'p(0)/d~=0 p(~)=1'

f p(0) and Q(0 f om.
l quatlons LEqs'

dary conditions
suspect that o

h cond variatlona
d.ffi lt to solve or

One Dlay .
l p, e

aIl
for a

and Q( '
the optlmumv '

22')7 were more se -
d the paramet r ~y .

~

venp value, w"'c . t,sfied and tha™
k own values qy( ) f

(21') and (22) sre
0 (0) an

I linear

dltlon dH2/dI2y .
a funcfioll of y'

g e However 'q '
h ndary values

polllt 0(
E (16) ls satls '

ll t ln f alld gyes

l t d arhltrsrlly

at p„=ko, Eq'
~ ~ lsthentllesm

(0) r f(0) was se ec
t he unity an

he magnetic fiel ' .
solutio» of Eqs qy —

0) was usually .
lue were used to

»lu "
„; g M at w»ch the . .

ll all tatio»~ &y

d p f r a given I(, vau

plied mag"e"'
» hl for infi»«slma y l„s of f(0) a"

(1) and (2) he
~ discuss this'nm

1 os for solutlo».
fluctuatlons
n Sec. IV.



182 SUPERHEATED M EISSNER STATE 50i

Most of the original exploration for the solutions
were made with Eqs. (21') and (22') expressed in the
following form:

I I I I I I I I I I I I I

K=0,707

1 d'f —2FQg„
3F2+Q2+ ($ /K)2 1 ~2 dz2

(21")

I.2—

10
K =I.IO

2FQ(d'f/dP)
dI . (22")

Kp(3pp+Qp+ (p /~)2 1)—

O

0

I.O

This reduced the survey time considerably by elimi-
nating the sensitive boundary condition f(0) from the
trial-and-error routine. However, accuracy was some-
what impaired because integration can be performed
with greater precision than differentiation on an analog
computer. For relative large ~ values, this error was
probably insignificant since ~ '(d' f/dx') and ii '(d' f/dP)
were less important in comparison with the other terms
in Eqs. (21")and (22").The calculations were repeated
with Eqs. (21') and (22') for greater accuracy.
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FIG. 2. "Eigenvalue" k„of Eqs. (21) and (22) as a function of
the applied field Ho for various II: values. Uncertainties are$indi-
cated by dashed lines.

IV. RESULTS OF VARIATIONAL EQUATIONS

In order to find the solutions of Eqs. (21) and (22)
the solutions of Eqs. (1') and (2') have to be known.
Some of the latter solutions were computed previously. 4

FxG. 3. Same data as in Fig. 2 except that k„ is divided by a. In
real units (unnormalized} k„/~ becomes k„(. The curve through
the minima for II:=const determines H the lowest field at which
the GL equations $(1') and (2')g become unstable for infini-
tesimally small fluctuations of F and Q. Uncertainties are indi-
cated by dashed lines.

In Fig. 1 of Ref. 4 the 8/X values are shown which in the
present notation relate to the boundary value of Q by
Q(0) =Hp8/X, where Hp is written in the GL normali-
zation (Hp/i/ZH, ). The corresponding F(0) values have
also been calculated previously4 or can be obtained
directly from Eq. (4) of Ref. 4. They are shown in
Fig. 1 as a function of the unnormalized magnetic 6eld.
For magnetic fields larger than H, there are two
branches, the lower of which, one would expect, corre-
sponds to a physically unstable situation. The magnetic
field 8„.which we are looking for is therefore of physicaI
significance only if the corresponding F(0) value is
located on the upper branch of Fig. 1.

Figure 2 shows the "eigenvalue" k, which satisfies
Eqs. (21) and (22). For a given value of Hp the F and
Q functions were computed from Eqs. (1') and (2')
while simultaneously Eqs. (21) and (22) were solved
as described in Sec. III. Only for certain k„values
(at a fixed ~ value) solutions of f and g„exist which
satisfy the above equations with the above boundary
conditions. The curve for a= oo is calculated when one
assumes that Eq. (1') reduces to F'+Q'=1, that
k„/a=0, and that for k„~~ the lowest field is reached
which corresponds to the minima of the curves for finite
sc values. When k„~~ we seem to approach the limit

Hp/, H=0.7 54which was calculated by Galaiko and
by Kramer. We discuss this limit in more detail in the.
conclusions. For finite z values the Hp/H, curves have
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Fra. 4. integral of Eq. (16) with k„=0 for q„(0)=0.125. At
K=1.10, Eq. (16) is satisfied. At this K value H =II.h, where
IJ.h is the maximum Geld at which mathematical solutions of
Eqs. (1') and (2') exist, and H is the lowest field at which the
physical solutions of Eqs. (1') and (2') become unstable.

a minimum for a finite value of k„, where k„ is written
in the GL normalization (k„X). The k„value of this
minimum, kp, becomes smaller the smaller the corre-

sponding a value is. When k„=O, the corresponding
H p value is H.h as calculated in Refs. 1—7.Thus a Quctua-

tion whose wave vector k„ is larger thari zero decreases
the field Hp at which a stable solution may exist. A
Quctuation with the wave vector k„=kp determines the
largest magnetic field at which a metastable solution
of F and Q may exist without becoming unstable. For
«=1.5 we found solutions of f and g„ in the magnetic
Geld range as indicated in Fig. 2. In this particular
instance the relative error in k„was large when matching
the boundary conditions of f and q„at large value of x.
This is sufhcient to determine H at ~=I.5, but the
corresponding kp value has a large uncertainty as-
sociated with it. For «=1 the solutions of Eqs. (21)

x/X

Fn. 6. I" (x), Q{x),f(k„,x), and g„(k„,x) for k„=0and K= 1.5.
g„and f are always of opposite sign.

and (22) are associated with the F(0) values on the
lower branch of Fig. 1. Hence this solution is unstable
and not of physical interest. The point at a=a&=1.1
was derived from Figs. 4 and 5 and thus when ~=I~.~

the magnetic field H„=H,h.
Figure 3 shows the same data as Fig. 2, but they are

plotted as a function of k„/«. When we write k„/» in
real units, it becomes k„g. At the minima the value of
k„=kp dehnes H =Hp(kp). This is the lowest Acid at
which solutions of the GL equations P(1') and (2')j
become unstable. The values Hp(kp/«)/H, as a function
of kp/«are shown by the curve which connects the
minima for ~=const. This latter curve extrapolates
to Kramer's value Hp/H, =0.745 for « —+ pp (k„/» ~ 0)
and to 1.245 for «=»~= 1.10 (k„~0). The latter value
was determined from Eq. (16) and Figs. 4 and 5.

In Fig. 4 we show the results when the integral of
Eq. (16) is solved with k„=0:

1.6

1.5-
dg (16')

I;4-

o12

I.I—

1.0-

0.9—

Kg= I.

07 I I I f 1 t I

0,3 0,5 I

0.8-

I 1 I I I 1 I

3 5 10 30 50 I00

FIG. 5. II h is the maximum Geld for which Eqs. (1') and (2')
have solutions for the Meissner state of a semi-infinite half-space.
H is the Geld at which these solutions become unstable for
infinitesimally small Quctuations of F and Q. At K=!Q=1.10 the
value of H~=H, h. For K&1.10, the wave vector k„=O determines
the stability limit. For K&1.10, the value of H„ is determined by
the wave vector ko. The dashed curve is Kramer's (Ref. 11)
"estimate" of H„.

I was solved for four ~ values as indicated in Fig. 4.
A smooth curve through the four points makes I=O
at a=a~=1.10, which is in good agreement with Chris-
tiansen's" calculation of ~& by another method. He
obtains ~~

——1.I3. At this I~: value the Geld H„=H,i,.
H„and H,h as a function of ~ are plotted in Fig. 5.

The corresponding field for A:=1.1 is read from Fig. 5
and is plotted in Figs. 2 and 3. The curve H («) is

located at larger magnetic Gelds than that "estimated"
by E.ramer. "

To give the reader a feeling for the general shapes
of the functions F(x), Q(x), f(k„,x), and L(k„,x), we
show these functions in Fig. 6 for k~=0 and I~. = 1.5 as
an example. For the simplest kind of fluctuations, as
shown in Fig. 6, the functions g„and fmust always be
of opposite sign in order to satisfy Eqs. (21) and (22)
with the above boundary conditions.

~3 P. F. Christiansen (private communication).
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00 ky '
PQ= dx 2 —6Q'+ — f'

0 K

(20')

Because f is an arbitrary fluctuation and the last term
on the right-hand side of Eq. (20 ) is positive definite,
fPQ reaches a minimum with respect to the parameter
k„/«when k„/«= 0. Then Eq. (20') ceases to be positive
definite for all permissible functions f as soon as Q'& —',

somewhere. Since Q(x) has its largest value at the
surface, the stability limit is reached when Q'(0)=-', .
Then it follows from H„'= Q'(0) ——,'Q4(0) LEq. (16) of
Ref. 11) that H„/H, = s+5=0.745.

For K)1.10 one can approximate our results within

1% accuracy by

H„/H, =-,+5s(1+ (2«)
—'ls). (24)

V. CONCLUSIONS

Infinitesimally small fluctuations of the order param-
eter and the vector potential decrease the stability limit
of the superheated, metastable Meissner state for K

values larger than 1.10 below that which is calculated
from the GL equations without taking fluctuations
into account (Fig. 5). These fluctuations are assumed
to be localized near the surface. Depending on the
wave vector of the fluctuations, the Geld corresponding
to the stability limit varies and it is reduced to its
lowest value H„when k„=ks (see Fig. 3). Fluctuations
with this wave vector ko determine the upper experi-
mental field H„which one could measure while investi-
gating the superheated Meissner state. When F(0) is
located on the upper branch in Fig. 1, no solutions to
Eqs. (21) and (22) were found when «&1.10 except
at HO=H, q. At this Geld the value of k„ is zero and
therefore H„=H,s for «&1.10. When «&&1, Hah/He
=H„/H, = 1/(K2«) "s.

When K ~~, the Geld H„can be estimated. It follows
from Eq. (1') that F'(x)+Q'(x) = 1.Then Eq. (20) with
the help of Eq. (22) becomes (k„~oo, « ~~)

Experiments'4 "which were performed on materials
with K values smaller than 4—5 do not contradict the
above calculated fields H.i,'for K&1.1 and H for K) 1.10.
The ultimate stability limit of the giant vortex state"
(for example, superconducting surface sheath on a
large cylinder for Hp& H,s) will be determined by similar
considerations as discussed above, and one might
expect that one will obtain similar results as one has
obtained from the postulate of the critical state of the
surface sheath. "

After completion of this work, Galaiko" calculated,
with a number of approximations and the assumption
k„=k,=0, the stability limit of the superheated
Meissner state for K«1. In this limit he reaches the same
conclusions as Ref. 11 and this paper.
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