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We have calculated near the transition temperature T, the upper experimental magnetic field Hy at
which the metastable, superheated Meissner state becomes unstable against infinitesimally small fluctuations
of the order parameter and the vector potential. For k< 1.10, the stability limit is determined by fluctuations
of infinite wavelength, and the field H, coincides with the maximum field Hsn at which solutions of the
Ginzburg-Landau equations cease to exist. For x>1.10, the stability limit is determined by fluctuations of
finite wavelength, and the value of A, is smaller than Hg,. For example, at k~4.25, Hy/H.~1, and when
k— o0, H,/H,~0.745 (H, is the thermodynamic critical field). For x>1.10, one finds within 1%, accuracy

Hu/H o= (3+/5)[ 1+ (20)712],

I. INTRODUCTION

HE largest magnetic field Hg, up to which solu-
tions of the Ginzburg-Landau (GL) equations

for the Meissner state exist has been extensively investi-
gated for a semi-infinite superconducting half-space,™*
finite cylinders,’¢ and slabs” of various thicknesses.
These calculations did not investigate the problem of
stability. Because of infinitesimally small fluctuations
of the order parameter and the vector potential, the
superheated Meissner state, which is metastable, might
become unstable at a field H, which is smaller than
Hg. This problem has been investigated by Galaiko,?
Takécs,® and Kramer®!! for k= oo, and they find that
H,=0.745H . near T,, where H, is the thermodynamic
critical field.8° Kramer! has also derived a set of
“variational equations” which are similar to the “per-
turbation equations” obtained by Christiansen and
Smith®? provided one makes k,=0, a,=0, and ¢=0 in
Ref. 12. We have solved Kramer’s variational equa-
tions" for various k values for the Meissner state of a
semi-infinite superconducting half-space and have
determined the field H, at which the metastable
Meissner state becomes unstable. This should be the
largest magnetic field up to which the metastable,
superheated Meissner state could possibly exist. Thus
H , is the upper experimental limit. In Sec. II we review
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and extend Kramer’s!! (and to some extent Christian-
sen’s?) derivation of the variational equations. In Sec.
11T we describe the numerical techniques for solving the
variational equations; in Sec. IV the results.are dis-
cussed, and Sec. V is devoted to conclusions.

II. VARIATIONAL EQUATIONS

The GL equations in the usual GL normalization are
V2F=2(F?+Q2—1)F, 1)
curl curl Q=—F2Q, (2)

where the order parameter ¥=~F(x,y,2)e’?®v:2); Q
=Ve/k—A. A is the vector potential, k=N/& N(T) is
the low-field penetration depth, £(T) is the coherence
length, and H=curlA=—curlQ. At the boundary
surface H=H, (H, is the external magnetic field) and
dF /dn=0, where n is normal to the surface. The varia-
tions of F and Q, namely, 6F and §Q, are defined by the
symbols f and q. The second variation of the Gibbs’s
free energy Q is'2

FQ= / AV{[3F4Q*—11f*+(V f/x)*+4F fQ-q
+F+(curlg)?}, (3)

where the integral of Eq. (3) is to be extended over all
space. When 6%0>0, the solution is stable and when
8°0<0, it is unstable. Thus the stability limit is deter-
mined by 8Q2=0. In order to minimize 6°Q with respect
to the functions f and q, one finds the Euler-Lagrange
equations from &2 for a fixed set of the equilibrium
functions F and Q (H, and « are assumed to be con-
stant). This is done below when F and Q are specialized
to the semi-infinite superconducting half-space (x>0).
We consider a semi-infinite half-space which is super-
conducting for #>0. The magnetic field H= —curlQ is
parallel to the z direction and is defined by the super-
fluid velocity Q= (0; Q,(x);0). Because of symmetry
considerations we may assume that F=F(x). Following
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Kramer,! f and q are expanded in Fourier series:

=2 Z f(ku;kzrx) cos (kyy+k.2), “)

ky>0 k>0

== 2. 2 Julkyk.x) cos (kyy+k.z+a), )

ky>0 ko> 0

=2 2 Gy(kykex) cos(kyy+kaz+8), (6)

ky>0 k>0

g.= 2 2 o(kykoyx) cos(kyyth.a+y). (7)

ky>0 k>0

When Eqgs. (4)-(7) are substituted into Eq. (3) and
6%Q is minimized with respect to «, 8, and v, one obtains
a=—3%r, 3=0, and y=0. Then Eq. (3) reduces to (C
is a positive constant)

#=C'Y X
ky>0 k>0
+x2(df/ dw) +4FQJq, +F* (@2 +3,2+3:2)

+ (ky@e — ko)) >+ (koGo—dG./ dx)?
+ (kyGo—dgy/dx)?} . (8)

With the boundary conditions df(0)/dx=0, f(«)=0,

dg,(0)/dx=0, g,()=0, d7.(0)/dx=0, and Z.()=0,
Eq. (8) is proportional to

/ " I3 — 1 (bR 2)

#0c f aa[JA+2.B+a,C+2.D],  (8)
0

where 4=0, B=0, C=0, and D=0 are the Euler-
Lagrange equations
— (/&) (@f/ds?)+[BF+Q—1

+ (k2 +k2) /2 1f+2FQ0g,=0, (9)

—k:(dq./dx) —k,(dg,/dx)+ (F*+k+kHT=0, (10)
— &G,/ do*+ky (dGz/dx)+ (F*+k )G, )

—kykG:+2FQf=0, (11)

—d&qy/d2*+k.(dZ,/dx)+ (F+ k)T~ kok.G,=0.  (12)

Thus if we confine the fluctuations of f and q to near
the surface, Eqgs. (9)-(12) describe the critical fluctua-
tions which minimizes Eq. (8) and make §%0=0 with
the above stated boundary conditions.

Since the following terms in Eq. (8)

0 ]7 2
/ dxl:k,2—2+F2§z2+(ky§z —kg)?
0 K o

ag.\?
2Jz—— 13
+<k 1 dx> :| (13)
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are positive definite and k. and g, are not coupled to
other terms in Eq. (8), the integral (13) reaches a
minimum when k,=0 and §,=0. Hence, in order to
find the minimum of Eq. (8) we may put k, and §, in
Eq. (8) equal to zero, which means that we have
translational invariance in the 2 direction for the largest
effect of the fluctuations on the stability limit of the
GL solutions F and Q. Further, since there is no coupling
between the remaining modes k,, only a single mode
contributes to the ultimate instability, and the sum in
front of the integral of Eq. (8) may be omitted.

The conditions for which 82Q(k,,k.) [Eq. (8)] is an
extremum with respect to &, and &, are

(8/0k.)[%Q(kyk.) =0, (14)

(9/0ky)[3°(ky k) ]=0. (15)
By varying Eq. (8) with respect to k., one finds that
Eq. (14) is indeed satisfied for k£,=0 and §,=0. From
Eqgs. (8) and (15) it follows that for £,=0 and §.=0, the
following condition must be satisfied :

0 J?z ] dq} 2
o B oo
o Let  (F*4-k2)2\dx

In order that this extremum is a stable minimum, the
following relations for 2,=0 and §.=0 must be obeyed
[C in Eq. (8) is equated arbitrarily to unity]:

(16)

62

00 f2
o 2(62&2) =2 / dx[—£+qy2+q"x2:l>0 ) )
2 0

62

(5%02) =8k, / " dx——F2——<@>2>o. (18)

Ok, o (F+k,2)\dx

In deriving Eq. (18) the condition dH,/dk,=0 was
assumed to hold for the optimum value of k,. We come
back to this condition in Sec. IV. Further, the inequality
(19) must be satisfied: '

[62222(529)][62;(529)]—l:ak(:;k‘(aﬁﬂ) ]2>°f (19)

It can be shown that 0%*(8°2)/9%,0k.=0 when dH,/
dk,=0. As long as solutions for f and §, exist which
satisfy with the above specified boundary conditions
the Euler-Lagrange equations, the inequality (19) is
satisfied provided %,70 and dHo/dk,=0. When k,=0,
the minimum of §%2(%,,0) with respect to &, and %,
becomes unstable.
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Fic. 1. Order parameter F(0) at the surface of the metal is
shown for the Meissner state of a semi-infinite superconducting
half-space as a function of Ho/H,, where H, is the applied field.

The lower branch for H¢> H, is physically unstable and so is part

of the upper branch near the peak for x>1.10. The curve for
k= is calculated (Ref. 4) from F4(0)=1— (H/H,)%.

With the simplifications k.=0 and g.=0, Egs. (8)-
(12) reduce to the expressions given by Kramer!':

1 /dj\?

o= aef[smre4() )

+arQipra () 00

1 dzf Fy\? 5
— - Lamrg+(S) -1 |F-rren, @1
k2 da? K
d 2 dg, N
—(F— —)—F2§y=2FQf, 22)
Qe \F*b,? dc
k ag,
o= (23)
F2+4-k,2 dx

It is the aim of the present investigation to find for
a given value of the applied magnetic field Ho and a
constant « value the “eigenvalue” &, of Egs. (21) and
(22). Equations (21) and (22) are coupled equations
which are linear in f and g,. The F (x) and Q (x) functions
must satisfy simultaneously Egs. (1) and (2) with the
boundary conditions dF(0)/dx=0, F()=1, dQ(0)/dx
=—H,, and Q()=0. One may suspect that for a
given k, value, which we define as the optimum value %,
the condition dHo/dk,=0 is satisfied, and that at this
point H(ko) will have a minimum as a function of %,.
Then at k,=ko, Eq. (16) is satisfied. For a fixed «
value, the magnetic field Ho(ko) = H , is then the smallest
applied magnetic field at which the solutions of Egs.
(1) and (2) become unstable for infinitesimally small
fluctuations of F and Q. We discuss this in more detail

in Sec. IV.
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III. NUMERICAL PROCEDURE

The stability limit of the superconducting Meissner
state was determined from solutions of the first [Egs.
(1) and (2)] and second variational equations [Eqs.
(21) and (22)]. Nonlinearities in Egs. (1) and (2)
eliminated any general analytical method. Solution of
these equations by numerical methods are rather
laborious and. time consuming owing to the sensitive
two-point boundary conditions and the characteristic
parameter k, at a fixed « value.

The method of computation used, after some pre-
liminary studies, was a trial-and-error technique fre-
quently used on two-point boundary and eigenvalue
problems. More direct methods which make use of finite
difference approximations were unsatisfactory mainly
because of the zero-gradient boundary conditions
required for Eqgs. (21) and (22). An analog computer
was used for the numerical computation. The parallel
computing characteristic of the computer has an
operational and economic advantage in searching for
the unknown boundary conditions of F, Q, f, and g,
and the eigenvalue k, necessary for a unique solution
at a fixed « value.

The variational equations and the boundary condi-
tions for the semi-infinite superconducting half-space?
were expressed in the following form for the calculations
on the computer:

1)
2)

F(0)#0; F(»)=1, dF(0)/dx=0, Q(0)50, Q(x)=0,
dQ(0)/dx=— H,.

@F /dx*=F[F+Q*—1],

#Q/da=FQ,

EJ /i3 =L GF -0+ (k[ —1)J42F0,],  (21)
dgy ky2 z ~.
—~=(1+—> / (g, +2FQfdt, (22)
dx F? 0

J(0)70, f()=0, df(0)/dx=0, §,(0)#0, §,()=0,
and dg,(0)/dx=0, where the constant of integration in
Eq. (22') is zero. The solutions of Egs. (1) and (2')
were obtained by selecting, through trial and error,
the unknown boundary values F(0) and Q(0) which
gave unique solutions with the above boundary con-
ditions. For some cases the data were available for
F(0) and Q(0) from a previous computation (Ref. 4).
The second variational equations [Eqs. (21’) and
(22’)] were more sensitive and difficult to solve for the
unknown values g,(0) f(0) and the parameter &, for a
fixed « value. However, Egs. (21’) and (22') are linear
in f and g, so one of the unknown boundary values
3,(0) or f(0) was selected arbitrarily. In our compu-
tations, §,(0) was usually chosen to be unity and trial
values of f(0) and k, for a given « value were used to
look for solutions.
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Most of the original exploration for the solutions
were made with Egs. (21’) and (22') expressed in the
following form:

~ 1 (1 aj 2FQ~>
! TP O (k) 1N\ dar )

o e L ey,
i szo I\ TSP O ()1

2FQ(df/dp) } (22
RGFAQ+ (k)2 —1)]

(217)

This reduced the survey time considerably by elimi-
nating the sensitive boundary condition f(0) from the
trial-and-error routine. However, accuracy was some-
what impaired because integration can be performed
with greater precision than differentiation on an analog
computer. For relative large « values, this error was
probably insignificant since k2(d2f/dx?) and x~2(d*f/d??)
were less important in comparison with the other terms
in Egs. (21”) and (22"). The calculations were repeated
with Egs. (21’) and (22') for greater accuracy.

IV. RESULTS OF VARIATIONAL EQUATIONS

In order to find the solutions of Egs. (21) and (22)
the solutions of Egs. (1) and (2’) have to be known.
Some of the latter solutions were computed previously.*

14 T T T T T
L k=0.707

07, 1 1 1 1 1

Fic. 2. “Eigenvalue” k, of Egs. (21) and (22) as a function of
the applied field Hy for various « values. Uncertainties areindi-
cated by dashed lines.
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F16. 3. Same data as in Fig. 2 except that %, is divided by «. In
real units (unnormalized) %,/x becomes k,t. The curve through
the minima for k=const determines H, the lowest field at which
the GL equations [(1’) and (2’)] become unstable for infini-
tesimally small fluctuations of F and Q. Uncertainties are indi-
cated by dashed lines.

In Fig. 1 of Ref. 4 the §/\ values are shown which in the
present notation relate to the boundary value of Q by
Q(0)=Hod/\, where H, is written in the GL normali-
zation (Ho/V2H,). The corresponding F(0) values have
also been calculated previously? or can be obtained
directly from Eq. (4) of Ref. 4. They are shown in
Fig. 1 as a function of the unnormalized magnetic field.
For magnetic fields larger than H, there are two
branches, the lower of which, one would expect, corre-
sponds to a physically unstable situation. The magnetic
field H, which we are looking for is therefore of physical
significance only if the corresponding F(0) value is
located on the upper branch of Fig. 1.

Figure 2 shows the ‘“‘eigenvalue” k, which satisfies
Eqgs. (21) and (22). For a given value of H, the F and
Q functions were computed from Egs. (1’) and (2')
while simultaneously Eqs. (21) and (22) were solved
as described in Sec. III. Only for certain k, values
(at a fixed k value) solutions of f and §, exist which
satisfy the above equations with the above boundary
conditions. The curve for k= » is calculated when one
assumes that Eq. (1’) reduces to F?4(%=1, that
ky/k=0, and that for k, — the lowest field is reached
which corresponds to the minima of the curves for finite
k values. When %, — o we seem to approach the limit
H,/H.=0.745 which was calculated by Galaiko and
by Kramer. We discuss this limit in more detail in the
conclusions. For finite « values the Ho/H, curves have
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Fic. 4. Integral of Eq. (16) with k,=0 for ¢,(0)=0.125. At
x¥=1.10, Eq. (16) is satisfied. At this « value H,=H,n, where
Hg, is the maximum field at which mathematical solutions of
Egs. (1) and (2') exist, and H, is the lowest field at which the
physical solutions of Egs. (1') and (2) become unstable.

a minimum for a finite value of k,, where k, is written
in the GL normalization (k,\). The %, value of this
minimum, %o, becomes smaller the smaller the corre-
sponding « value is. When %,=0, the corresponding
H,valueis Hg, as calculated in Refs. 1-7. Thus a fluctua-
tion whose wave vector k, is larger than zero decreases
the field H, at which a stable solution may exist. A
fluctuation with the wave vector k,=/ko determines the
largest magnetic field at which a metastable solution
of F and Q may exist without becoming unstable. For
x=1.5 we found solutions of f and g, in the magnetic
field range as indicated in Fig. 2. In this particular
instance the relative error in &, was large when matching
the boundary conditions of f and g, at large value of x.
This is sufficient to determine H, at x=1.5, but the
corresponding ko value has a large uncertainty as-
sociated with it. For k=1 the solutions of Egs. (21)

T T T T T

Lar
13F ]
olef 4
I
~N
==
(K J
r— ]
10
09 _Muiky=ko
081
/ PR
07 1 1 ||’|| L1 1 1 1.1 11 1 1 L Ll 11
‘03 05 1 3 5 10 30 50 100

FIG. 5. H is the maximum field for which Egs. (1) and (2)
have solutions for the Meissner state of a semi-infinite half-space.
H, is the field at which these solutions become unstable for
infinitesimally small fluctuations of F and Q. At x=x;=1.10 the
value of Hy=Hg. For k<1.10, the wave vector k£, =0 determines
the stability limit. For x>1.10, the value of H, is determined by
the wave vector ko. The dashed curve is Kramer’s (Ref. 11)
“estimate” of Hy.
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X/

F1c. 6. F(x), Q(x), f(ky,%), and gy (ky,x) for k,=0and k=1.5.
gy and f are always of opposite sign.

and (22) are associated with the F(0) values on the
lower branch of Fig. 1. Hence this solution is unstable
and not of physical interest. The point at k=x;=1.1
was derived from Figs. 4 and 5 and thus when «k=x;
the magnetic field H,=Hg,.

Figure 3 shows the same data as Fig. 2, but they are
plotted as a function of %,/x. When we write %,/ in
real units, it becomes k,£. At the minima the value of
k,=ko defines H,=H(ko). This is the lowest field at
which solutions of the GL equations [(1") and (2')]
become unstable. The values Ho(ko/x)/H. as a function
of ko/x are shown by the curve which connects the
minima for «=const. This latter curve extrapolates
to Kramer’s value Ho/H,=0.745 for k > (k,/k — 0)
and to 1.245 for k=x;=1.10 (k,— 0). The latter value
was determined from Eq. (16) and Figs. 4 and 5.

In Fig. 4 we show the results when the integral of
Eq. (16) is solved with %,=0:

0 2 1 d"' 2
=[O+
o L\k2/ F2\dx
I was solved for four « values as indicated in Fig. 4.
A smooth curve through the four points makes /=0
at k=x;=1.10, which is in good agreement with Chris-
tiansen’s® calculation of x; by another method. He
obtains x;=1.13. At this « value the field H,=Hgp.

H, and Hg, as a function of « are plotted in Fig. 5.
The corresponding field for k=1.1 is read from Fig. 5
and is plotted in Figs. 2 and 3. The curve H,(k) is
located at larger magnetic fields than that ‘““estimated”
by Kramer.!

To give the reader a feeling for the general shapes
of the functions F(x), Q(x), f(k,,x), and §,(%,x), we
show these functions in Fig. 6 for k,=0 and «=1.5 as
an example. For the simplest kind of fluctuations, as
shown in Fig. 6, the functions g, and f must always be
of opposite sign in order to satisfy Egs. (21) and (22)
with the above boundary conditions.

(16")

1 P, F. Christiansen (private communication).
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V. CONCLUSIONS

Infinitesimally small fluctuations of the order param-
eter and the vector potential decrease the stability limit
of the superheated, metastable Meissner state for «
values larger than 1.10 below that which is calculated
from the GL equations without taking fluctuations
into account (Fig. 5). These fluctuations are assumed
to be localized near the surface. Depending on the
wave vector of the fluctuations, the field corresponding
to the stability limit varies and it is reduced to its
lowest value H,, when k,=Fk, (see Fig. 3). Fluctuations
with this wave vector ko determine the upper experi-
mental field H, which one could measure while investi-
gating the superheated Meissner state. When F(0) is
located on the upper branch in Fig. 1, no solutions to
Egs. (21) and (22) were found when «<1.10 except
at Ho=Hg,. At this field the value of %, is zero and
therefore Hy,=Hg for «<1.10. When «<1, Haw/H.
=H,/H.=1/(V2x)"2

When « — o, the field H, can be estimated. It follows
from Eq. (1’) that F2(x)+Q?%(x)=1. Then Eq. (20) with
the help of Eq. (22) becomes (ky, —©, k — )

o0 = / . dx[z —6Q2+(%>2]j2 .

Because f is an arbitrary fluctuation and the last term
on the right-hand side of Eq. (20’) is positive definite,
8%Q reaches a minimum with respect to the parameter
ky/k when &,/k=0. Then Eq. (20") ceases to be positive
definite for all permissible functions f as soon as Q*>%
somewhere. Since Q(x) has its largest value at the
surface, the stability limit is reached when Q?(0)=13.
Then it follows from H,2=Q?(0)—30%(0) [Eq. (16) of
Ref. 117 that H,/H,=3+/5=0.745.

For «>1.10 one can approximate our results within
19, accuracy by

H./H.=3v/514 (26)172).

(20"

(24)
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Experiments'*—2® which were performed on materials
with « values smaller than 4-5 do not contradict the
above calculated fields Hqy for k<1.1 and H,, for «>1.10.
The ultimate stability limit of the giant vortex state?
(for example, superconducting surface sheath on a
large cylinder for Ho> H .5) will be determined by similar
considerations as discussed above, and one might
expect that one will obtain similar results as one has
obtained from the postulate of the critical state of the
surface sheath.?

After completion of this work, Galaiko?® calculated,
with a number of approximations and the assumption
ky,=k,=0, the stability limit of the superheated
Meissner state for k1. In this limit he reaches the same
conclusions as Ref. 11 and this paper.
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