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for V(x)=2xV4(x), which has been used in the calcu-
lations above.

If one wants to stick to a more realistic model with
a finite energy band, there are different ways to improve
our result. The Luttinger model indicates that the
incomplete result is in part due to the linear energy-
momentum dispersion. A more realistic, namely, the
quadratic dispersion leads to anharmonic terms, as can
be seen from Schick’s? paper. Another way would be
to use the energy as variable instead of the momentum.
But while this leaves the kinetic-energy term simple,
the potential energy V would be very difficult to handle,
again leading to anharmonic terms. An important point

9 M. Schick, Phys. Rev. 166, 404 (1968).
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any way is to introduce a more realistic potential of
arbitrary strength. But whatever one tries for larger V,
one is soon struck with anharmonic effects. This should
be sufficient to elucidate the situation. As there are other
ways to calculate the exact transition rate,! ' we did not
try to solve the anharmonic-oscillator problem.
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The semiclassical theory of spontaneous Raman scattering is reviewed. From the semiclassical theory we
identify the parameters and dynamical variables involved in Raman scattering. A classical theory of stimu-
lated Raman scattering is constructed. It is an extension of the theory of Shen and Bloembergen. We show
that the system is a weakly coupled system. Because the driving term contains dynamical variables, the
linewidth of the stimulated Stokes wave should be smaller than that of the spontaneous Stokes wave. Using
Riemann’s method, we obtain Kroll’s solution rigorously, in a more general form. The steady-state limit is
also derived rigorously. The conditions for the transient and steady-state gains are discussed. It is shown
that for the transient case one may have an abrupt change of the Stokes gain versus incident laser power.

I. INTRODUCTION

HEN a light beam passes through a medium, the

most effective entities in scattering the light are
electrons. The nuclear motion can modify the scattering
of light by electrons. This leads to Raman' and Brillouin?
scattering, with the scattered light shifted by the char-
acteristic frequencies of the nuclear motion (optical and
acoustical phonon frequencies for Raman and Brillouin
scattering, respectively). If the intensity of the incident
light beam is very high, the initially scattered waves can
enhance further scattering of the incident wave, and

* Research supported by the Advanced Research Projects
Agency of the Department of Defense and monitored by the
U. S. Army Research Office, Durham, under Contact No.
DA-31-124-ARO-D-257.

T Present address: Division of Engineering and Applied Physics,
Harvard University, Cambridge, Mass.

1 C. V. Raman, Indian J. Phys. 2, 387 (1928). Raman scattering
is an inelastic scattering of light, in which the scattered light is
shifted by the frequency of a vibrational, rotational, or electronic
excitation. In this paper we shall be concerned only with the
vibrational excitation. The scattered light with frequencies shifted
down are called the Stokes lines; those with frequency shifted up
are called the anti-Stokes lines.

2L, Brillouin, Ann. Phys. (Paris) 17, 88 (1922). Inelastic scat-
tering of light, in which the frequency shift is the frequency of an
acoustic phonon, is called Brillouin scattering.

lead to an exponential growth of the total scattered
wave. This further scattering, enhanced by the initially
scattered wave, is called stimulated scattering. In the
past few years stimulated Raman scattering has been
one of the most interesting topics in the field of nonlinear
optics both experimentally and theoretically.? It is now
clear that in order to have an appreciable stimulated
Raman scattering, one requires the incident laser power
to be at least several megawatts. For comparison with
the experimental results, one usually assumes a steady-
state spatial gain for the exponential growth, and good
qualitative agreement is found.? There are several
remarkable features in stimulated Raman scattering.
The stimulated Stokes waves are emitted in the forward
or backward directions with linewidths much smaller
than the spontaneous linewidth. The phase-matching
conditions require the stimulated anti-Stokes waves of
different orders to be emitted in different coaxial cones.*
Also, in many experiments, it is found that the Stokes
gain of the strongest Raman line is anomalously. high

3For a general review see N. Bloembergen, Am. J. Phys. 35,
989 (1967).

4R. Y. Chiao and B. P. Stoicheff, Phys. Rev. Letters 12, 290
(1964); E. Garmire, Phys. Letters 17, 251 (1965).
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if the power of the incident laser beam exceeds a certain
minimum value. The observed gain is typically a few
orders of magnitude larger than the theoretical value.
Recently it has been determined that in liquid media,
the observed minimum power is the critical power
required for the self-trapping of the laser beam,*® and
that the anomalous Stokes gain is enhanced in the
trapped region.” Thus, the observation of the starting
point of the large Stokes conversion provides a direct
measurement of the self-focal length.®® Although the
anomalous gain in liquids is directly connected with the
self-trapping effect, many authors have noted that self-
trapping alone cannot give a satisfactory explanation of
the abrupt change of the Stokes gain. It has been
pointed out that: (i) An abrupt change of the Stokes
gain is also observed in some media which do not exhibit
the self-trapping effect—for example, hydrogen gas.!*!!
(ii) There is a depletion effect when two kinds of liquid
media are mixed, i.e., only the medium having the
higher concentration showing a large Stokes gain in its
strongest Raman line.’? (iii) Some low-power trapped
beams do not cause a large Stokes conversion.’* These
facts show that the change of laser intensity alone is not
sufficient to explain all the abrupt changes in the Stokes
gain. Also, in many experimental situations, the applica-
tion of a steady-state gain to the growth of intensity is
not appropriate.!i14

In this paper we discuss more carefully the theoretical
aspects of Raman scattering. We have been careful to
keep track of the physical parameters involved in
various approximations. We show that because the
driving term contains dynamical variables, the line-
width of the stimulated Stokes wave should be smaller
than the spontaneous Stokes wave. The conditions for
the transient and steady-state gains are discussed in
in detail. For the transient case, if stimulated Raman
scattering starts from the thermal excitation of optical
phonons, then the Stokes power can change abruptly
with changing incident laser power, without self-
trapping. This usually occurs in a gas, where optical
phonons have longer lifetimes than in liquids. Although
both types of media can undergo similar abrupt changes

8 P, L. Kelley, Phys. Rev. Letters 15, 1005 (1965).

¢ P, Lallemand and N. Bloembergen, Phys. Rev. Letters 15,
1010 (1965).

"E. Garmire, R. Y. Chiao, and C. H. Towens, Phys. Rev.
Letters 16, 347 (1966); R. L. Carman, R. Y. Chiao, and P. L.
Kelley, ibid. 17, 1281 (1966).

8 C. C. Wang, Phys. Rev. Letters 16, 344 (1966).

9Y. R. Shen and Y. J. Shaham, Phys. Rev. 163, 224 (1967).

10 G, Bret and M. M. Denariez, Phys. Letters 22, 583 (1966).

1 E, E. Hagenlocker, R. W. Mink, and W. G. Rado, Phys. Rev.
154, 226 (1967).

12 G, Bret and M. M. Denariez, Appl. Phys. Letters 8, 151
(1966). For a mixture of acetone (90%) and CS; (10%) only the
Raman line of acetone has large gain. See also V. A. Zubov,
M. Sushchinskii, and I. K. Shuvalov, Usp. Fiz. Nauk 83, 197
(1964) [English transl.: Soviet Phys.—Usp. 7, 419 (1964)].

1R, G. Brewer and J. R. Lifsitz, Phys. Letters 23, 79 (1966).

1 N, M. Kroll, J. Appl. Phys. 36, 34 (1965). The significance of
the transient effect is first pointed out and analyzed in this paper
for the stimulated Brillouin scattering.

THEORY OF STIMULATED RAMAN SCATTERING

483

in Stokes power, the underlying causes are essentially
different in gases and liquids. In the former the abrupt
change is a transient effect, while in the latter it is
caused by the change of laser intensity due to self-
trapping. Since some filaments do not have a large
Stokes conversion, we know that the intensity in these
filaments is not high enough to induce an appreciable
amount of stimulated scattering. As for the depletion
effect, this can be explained by the larger damping
of optical phonons in the medium with the lower
concentration.

We shall first review the semiclassical theory of
spontaneous Raman scattering in Sec. II. Our purpose
of summarizing the theory of spontaneous scattering is
to see which are the parameters used in various approxi-
mations, and what modifications are needed when the
amplitude of the incident electromagnetic wave becomes
very large. We also identify, for Raman scattering, the
relevant dynamical variables and the parameters con-
necting them. In Sec. III, we develop a classical
description of stimulated Raman scattering. The wave
equations used are the same as those of Shen and
Bloembergen.!s However, our analysis is different. We
obtain a general solution which includes the transient
and steady state. We then discuss the various limiting
cases. Our results are compared with the observed
Stokes gain in hydrogen gas. Finally, the pressure and
the temperature effects on the stimulated Raman
scattering are discussed.

II. SEMICLASSICAL THEORY OF SPONTANEOUS
RAMAN SCATTERING

If the incident electromagnetic field is not too strong
and the target is small such that the scattered Stokes
photons and optical phonons do not affect the scatter-
ing, then one has the spontaneous Raman effect only.
The spontaneous Raman scattering is properly de-
scribed by the semiclassical theory. We review the
semiclassical theory in the following.!¢

A. Transition Polarizability

In the dipole approximation the Hamiltonian for the
interaction between a molecule and the electromagnetic
field can be written

H=H(0)—M-E., (1)

where H(0) is the Hamiltonian of a molecule in the
absence of electromagnetic field, M is the electric dipole
moment of the molecule, and Ey, is the incident electro-
magnetic field intensity

E.=E-¢iet4Eteiot | (2)

16 Qur Lagrangian density and equations of motion are the same
as that of Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787
(1965).

16 We follow the presentation of Born and Huang, Dynamical
Theory of Crystal Lattices (Clarendon Press, Oxford, 1956).
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with E—= (E*)* (since Ej is real). If M-Ez is much
smaller than H(0), then the solution of the Schrodinger
equation

{H(0)—M-E-—¢iwt—M- Ete“t} ¥ =1in(9/9)¥ (3)
can be obtained by a perturbation theory. Consider a
trial solution

¥;=¢,(0) exp[—128:(0)¢/7%]

+[Yireiotyiteet] exp[—i&i(0)t/7], (4)
where ¥;(0) exp[— &:(0)¢/%] is the eigenfunction of
H(0), i.e., H(0)¢:(0)=€;(0)¢:(0). Assuming (subject to
verification later) that ¢;~ and y;+ are of first order in
the perturbation, we have
H(O) [,/, l—e—iwt+¢ l+eiwt:| — [M . E—e-iwt+ M- E+eiwt]¢ 1(0)

=[e(0)+ 7w e
+[€e:(0)— Ao itei@t+second-order terms  (5)

o [H(0)—e(0)+ho =3 MEA:00),  (6)

where « denote the components of E and M.
If we expand ;¥ in terms of the unperturbed eigen-

functions
Yir=3 Qut(0)

and substitute into Eq. (6), we have

1_ (s|Ma|D)
Qut=-2 ——E.*, Q)
oo wgtw

which confirms that ¢, % are of first order in perturba-
tion. The perturbed wave function is

1 r| Mg|l
\I/l=e~—iel(0)t/h{ll,l(0)+}l. % >3 [< | j—I—>¢r(0)Eﬁ"e""‘"
(r| Mgll) »
+m¢r(o)Eﬁ+6 :” . ®

Associated with the transition between / and m states,
the expectation value of the electric dipole moment is
given by

mea(l) = § {[aaﬁ Im(y) FEg—e~i(ertwim)t
Faqp'™(w) Egteitetomity = (9)
1 (ClMealr)r| Mg m)

L) = Z

where

Wrmtw

+(llMalf)(flelm} (10)

Wpp—w

is the transition polarizability. Note that the transition
polarizability depends on the arbitrary phases of the
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wave function used in forming the matrix elements;
therefore the spontaneous Raman effect is incoherent,
i.e., scatterings from two independent molecular sys-
tems are not subject to interference.

B. Placzek’s Approximations

Placzek used the adiabatic approximation (Born-
Oppenheimer approximation) and the normal-mode
expansion to simplify the results.’” In the adiabatic
approximation the nuclear and electronic motion can
be separated. The eigenfunction of H(0) can be written!®

‘I’nv(an)=Xnv(X) ﬁpn(x:X)’ (11)

where ¢,(x,X) is the wave function of electrons moving
in the field of the nuclei, which are held fixed in an
arbitrary configuration, and # is the corresponding
quantum number. The eigenvalue for the electronic
motion is a function of nucleus coordinates X, denoted
by E.(X). The nuclear part X,,(X), on the other hand,
moves in an effective potential E,(X)—E,(X?), with v
being the quantum number for nuclear motion (vibra-
tional quantum number). The eigenvalue of H(0) in

this state is
E.(X")+ €, (12)

where €,y &KEn(X)—E,(X). The transition polariza-
bility associated with a vibrational transition can be
written

1
dap”” (@) == 2 2

n?t yr?

(Ov| M o |0V )0 | M 5| O0')
wn"v”,00'+w

¢(0'1)[M,g[n”'v")(n"'u”[]l[a]Ov')

Wpttp!? 0p—W

We may split the summation over #’’ corresponding to
the two cases #"/=0 and »''>£0, and make the approxi-
mation wn 4,00 =wn,0. Then

1 V| Mo(X) [0 | Ms(X)]|v
) Z{<l X)) [ Ms(X) o)

Qag?? =—
'fz 144 w,)uv»—'—w

¢<leﬂ<X>|v"><v"!Ma(X>tv'>}

Wyrry

—-—w

; > { (Ov| Mo|n'"v")n'"v" | M| 00')

oo
iy <0v!Maln”v”><n"v”I‘Mal0v’)} W)

v’ Wprrog—wW

1" G. Placzek, Marx Handbuch der Radiologie (Academische
Verlagsgesellschaft, Leipzig, 1934), 2nd ed., Vol. VI, pp. 206-374.

18 The motions of molecules include translation, rotation,
vibration, and electronic motion. However, the translational and
rotational motions are much slower than the vibrational and
electronic motion; thus, in static approximation the translational
and rotational motion can be neglected.
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where

M(X)= f 0% (6, XM (5,X) a2, X )it

The first term, which depends only on the nuclear mo-
tion with electrons in the lowest level, is called the ionic
part of the polarizability. Note that the nuclear wave
functions satisfy 3, Xyo (X)X, *(X) = 8(X — X'); there-
fore, the second term may be written (v]aqus(wX)|?'),
with

aap(wX)=— 2

#i n'’50

1 {<0|Mal"”><n”lMﬁl0)

wWarrotw

} (O Ms|n" )(n'" | Ma|0) (14)

Wprro—wW

being the electronic polarizability.

For the static polarizability or infrared refractive
properties, the ionic and the electronic parts are of the
same order of magnitude. For the optical region, where
w is the same order of magnitude as w,+o and is much
larger than w,,, from Eq. (13) we see that the ionic
part of the polarizability is divided by an extra factor
of 102-103, Thus the ionic part becomes much smaller
than the electronic part in the optical region.

We can further expand a(w,X) in Taylor’s series with
respect to the normal coordinate of the nuclear
vibration:

da
a(w,X) =a(w,X)+> <-*—> qi
i \d¢q:/ 0
T g,
i 0q:0q;

da

(15)

where ¢=u~1/2X is the normal-mode coordinate of the
molecular vibration. The first-order term in ¢ contri-
butes to the first Stokes or anti-Stokes Raman scat-
tering. The higher-order terms are responsible for the
multiphonon processes. For the first-order term the
matrix element can be written

do
latar)1)=F 61(5) i)

-z (Zq)u ulo).

(16)

We see that only the normal-mode coordinate g is
involved in the dynamics, and the normal-mode
derivative of the electronic polarizability (da/dq)o
serves as the coupling constant for the interaction of the
electromagnetic field at optical frequency with the
vibrational excitations of the molecular system.

C. Differential and Total Cross Section

Equation (11) shows that the incident electromag-
netic field induces in a molecule an oscillating electric
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dipole moment
Mo (f) =mqe~ st m Fetost a7
where ws=w—w,; w,=—wim=/(1/%)(eo1— €w), and

ma=2_p[aug” T*Eg~, mat=2p0us"" (0)Eg*. From
classical electrodynamics, we have the power per unit
solid angle radiated from the above oscillating electric
dipole moment given by

dP 1 /0%m\? wgt
—= (———> () sinfp=—-3" mytm,"sinZp, (18)

dQ  4mwcd\ 92 21e3 e

where ¢ is the angle between the direction of the dipole
moment and the direction along which the radiation is
emitted. For a linearly polarized incident wave we have

dP  wg? fOo\? 7
——=——<——-> —EL|? cos?f, (19)
dQ 2mc3\dq/ o 2w,
where we have made use of Eq. (16) with (1]¢|0)
= (%/2w,)"?, and 6 is now the angle between the wave
vectors of the incident and the scattered waves. Inte-
grating Eq. (19), we have the total power radiated from

the oscillating dipole moment

dwgt/da\? %
pt N e
3¢ \3¢q/ o 2w,

(20)

From Egs. (19) and (20), we have the differential and
total cross section of the spontaneous Raman scattering
for a single molecule

do dP/c|EL|™\"' 2wsi/do\? #
——=——< ) = (——) —cos?0, (21)
dQ  dQ\ 4r ¢t \3¢/ ¢ 2w,
16mwst/0a\2 %
o= <—> — (=21073% cm?). (22)
3¢t 8q on,,

Since the spontaneous Raman scattering gives rise to
a single molecular excitation (i.e., not collective mode),
the line shape should reflect the statistical properties of
the motion of individual molecules. For a dilute gas the
half-width is given by Doppler width and for a dense
gas or liquid the half-width is the inverse of the lifetime
of the excited state.

Although Raman scattering has been used extensively
in studying the molecular structure and in qualitative
and quantitative analysis of chemical substances,
accurate measurements of the differential and total
cross section are made possible only recently by the
use of the high-intensity laser beam. A very good agree-
ment between the theoretical and experimental angular
distributions has been reported by Damen, Leite, and
Porto.’* The measurement of the cross section for

8T, C. Damen, R. C. C. Leite, and S, P, S, Porto, Phys. Rev.
Letters 14, 9 (1965).



486

hydrogen gas by Bret and Denariez!® also agrees very
well with the theoretical value calculated by Ishiguro
et al?® [(1]a|0Yexpi=(0a/dq)o(t/2w,) /2=1.42X 10725
cm? compared with (1]a]0)ete=1.39X 10725 cm?].

We recall that the approximations utilized to reach
the final description of the spontaneous scattering are
(i) the dipole approximation, which uses the ratio of
the molecular dimension versus the optical wavelength
as an expansion parameter, (ii) the Born-Oppenheimer
approximation, which uses the ratio of the electronic
and nuclear mass as the parameter, and (iii) the normal-
mode expansion, which uses the change of the nuclear
separation versus the separation as the parameter.
(iv) The population of the molecules in the vibrational
ground state is assumed to be much larger than in the
excited states (¢7#¢»/¥7<<1), and (v) we have treated
the interaction of molecules with the electromagnetic
field as a perturbation. The above approximations fail
only when the laser intensity is of the same order of
magnitude as the interatomic field intensity, which is
of order E,>=210'* esu.?! For the usual high-power laser,
the intensity is of order Ez?2<10° esu (Pr=100
MW /cm?). Thus the above approximations are good
and we may use the same parameters and dynamical
variables to investigate the effects of Stokes photons
and optical phonons, which enhance the stimulated
.scattering.

III. CLASSICAL THEORY OF STIMULATED
RAMAN SCATTERING

A. Total Hamiltonian, Lagrangian Density,
and Wave Equations

From the semiclassical theory of spontaneous Raman
scattering we know that the dynamical variables of the
molecular system involved in the scattering are the
normal-mode coordinates. The interaction of the
vibrational excitations with the electromagnetic field is
described as the product of the normal-mode coordinate
and the electric field amplitudes with the normal-mode
derivative of molecular polarizability as their coupling
constant.?? The interaction Hamiltonian is

Hin=3_ M(R,)-E.(R;) =2 o(R)ELEy

=§ (g)oqELEM; (23)

where R, are the position vectors of the center of mass
of the molecules. Thus the total Hamiltonian can be

written
H=Hupv+Hy+Hins, (242)

20 E, Ishiguro, T. Arai, M. Mizushima, and M. Kotani, Proc’
Phys. Soc. (London) A65, 178 (1952).

21 See, for example, N. Bloembergen, Nonlinear Optics (W. A.
Benjamin, Inc., New York, 1965), p. 8.

22This 1s a rare example of the interaction of three “fields,” in
which the coupling constant can be calculated.
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with
1
HEM =*/(D2+B2)d1 5 (24b)
8
No
Hy=% ${q*R)+3w’g*(R)
—36°[Vrs a(R)]}. (240)

In (24b), D and B are the electric and magnetic dis-
placement vectors, respectively (D=¢E). The last
term of (24c) is added phenomenologically to take into
account the possible propagation of optical phonons;
we shall see later than this term does not induce any
appreciable effect on the scattering.?® Ny is the number
of molecules in the system.

If we define a new dynamical variable Q= N'/2(q),
with IV being the number of moleculars per unit volume
and (q) the expectation value of ¢, then, following
Ehrenfest’s theorem,?* we see that the dynamical
variables Q and 9Q/d¢ should follow the classical
equation of motion. The corresponding Lagrangian
density!® can be written

L= LCav+ Ly+ Lint, (25a)

with
Lem= (1/87)(D*+B?), (25b)
Ly=3(0Q/01)*—3w’Q*+382(VQ)?,  (25¢)
Lint=N(93e/0Q0)QEE,. (25d)

The coupled wave equations obtained from the above
classical Lagrangian density are

32Q\* aQ\*
(——) +32V2Q*+wo20*+21‘<—> =2EgE %, (26a)
ar? ot
€ 0?2 47 9?2
V2Eg—— —Eg=——30—Q*E,, (26b)
¢ or o
where 3= N(de/dQ), and Eg and Er, are electric field
amplitudes of the Stokes and the laser field. The term
21(0Q/d)* is added phenomenologically to take into
account the damping of the optical phonons. The
depletion of the laser field is assumed to be negligible.
Before discussing the solution of Egs. (26a) and (26b),
we shall first point out that they form a weakly coupled
system. We note that the right-hand side of Eqs. (26a)
and (26b) is composed of driving terms due to the
incident laser beam, which provide a coupling between
the Stokes wave and the optical-phonon wave. Equation
(26a) shows that the amplitude of the Stokes wave
should be of the order Eg=AQ*E;, and therefore

23 For a noninteracting system (ideal gas), 8=0; for strongly
interacting system (solid), B is the ordinary sound velocity s (as
we can see from the analysis of diatomic linear chain). For usual
liquids or gases 8 should be between zero and v,. We shall regard
B=1; in the following.

24 See, for example, A. Messiah, Quantum Mechanics (Wiley-
Interscience, Inc., New York, 1966), p. 216.
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NESE*22\2| Ep|%Q*. Trom Eq. (26a) we see that
A2|Ep|? is the coupling strength to be compared with
wo®. For hydrogen gas, with | Ez|2=105 esu, we have
A?| Ep]?2210" sec?, while w 2221028 sec—2. Therefore,
A?| EL|? is much smaller than we?, and Eqgs. (26a) and
(26b) are thus weakly coupled equations. For a weakly
coupled system, since the coupling terms are very small,
the real parts of frequencies and wave vectors are not
changed significantly by the coupling terms.

B. Steady-State Gain and Line Shape
A solution of Egs. (26a) and (26b) can be written
ES= Esoeiks-r—iwst ,

Q*=Qg*e ko rtivyt , (27)
with

—_ kL r—iwLt
EL—ELOez L r—iwl ,

where Ego, Ero, and Qg* are constant amplitudes; kg’
k,, ws, and w, are complex numbers. By substituting
Eq. (27) into Egs. (26a) and (26b) we obtain, for the
frequency- and phase-matched waves (wr=wg+ws,

kL= kS+ kv),
(_wDZ —ﬂQk v2+<—002 —Ziwor)Qo* = DbESOELO* s

€0 47[' (28)
(—ks2+—;ws2>Eso =”"2‘wS29bELOQO*
¢

c

or the dispersion equation

€

<kS2 __:w’s2> (wo?—wo?+Bk,?—2iweT')
4

2

drwg
+ )\2[EL0!2=0. (29)

c?

For the steady state we have the real frequencies
ws=wg, and w,=w,,. The growth of the Stokes wave
and the optical phonon can be represented by the imagi-
nary part of the wave vectors (ks=kg,+1ks;, With
Ckg,/no=wg,). As we have already shown that the
system is a weakly coupled system, the imaginary parts
of ks and &, should be much smaller than the real parts.
Also, since 8 is very small, the term 8%k, is negligible.
For the mode with w,?=w,,2=w®—B%,2 we have
from Eq. (29)

(30)

as the steady-state gain of the first Stokes wave in the
forward or backward direction.’® For the frequency-
mismatched mode in the same direction (w,=w,,==Aw),
we have

gs

ksi(w)=————.
“ (Aw/T)*+1

€2Y)
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Therefore, the gain (or the logarithm of intensity)
rather than the intensity takes a Lorentzian shape,
with T' as the half-width. (This was also noticed by
Pohl et al.?5 in Brillouin scattering.) The half-width of
the intensity 7Ig(w)=1TI,exp{2gsz/[(Aw/T)2+17]} is

given by
In2\ /2
Awl/gg('—-) P

32)
2g.2

Thus the intensity half-width is smaller if the gain is
larger, i.e., one has gain narrowing. [We note that
Eqgs. (31) and (32) apply only to steady state; for the
transient case, if the imaginary part of the frequency is
comparable to T, then from Eq. (29) we see that the
line width will be further narrowed.] In Fig. 1, we plot
the line shapes of the Stokes wave with various values
of the gain factors. The steady-state gain as a function
of frequency mismatch is also shown in the graph. We
note that the gain narrowing is due to the fact that the

“driving terms contain the dynamical variables (the

Stokes wave or optical phonon amplitudes). It should
occur in all the stimulated effects and other nonlinear
responses.

From the steady-state gain formula [Eq. (30)], we
see that in order to have an appreciable stimulated
scattering (kg; be a few cm™") one requires the intensity
of the laser beam to be larger than 10 MW/cm? (for
liquid one needs higher intensity because I' is larger).
The laser beam with this intensity is attainable only in
pulse form with time duration of the order 10~° sec.
This duration is comparable to the phonon lifetime.
Thus, the transient effect becomes important. To

1.0,

0.8
I (w)
0.6
0.4

0.2

-3 -2 -1 0 o 2
Aw/T

Fic. 1. (a) Steady-state Stokes gain as a function of the fre-
quency mismatch. (b) Line shapes of the stimulated Stokes wave.
The number on each curve indicates the various gain factors.

2% D, Pohl, M. Maier, and W. Kaiser, Phys. Rev. Letters 20,
366 (1968).
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analyze the transient effects, one requires the boundary
conditions.

C. Solution of Coupled Differential Equations

We recall that Eqgs. (26a) and (26b) are weakly
coupled. This means that the spatial gains are much
smaller than the wave vectors, and the temporal gains
are much smaller than the frequencies. Thus, we may let

ES(";t) =eg(r,l)eiks ziost
Q% (7,1) = Qg (1, {)e—ikv Hiant

and regard all the frequencies and wave vectors as
constants. In this form the growth of the Stokes wave
and the optical phonons are characterized by the varia-
tions of the amplitudes es(7,) and Qo(,f). Substituting
Eq. (33) into Egs. (26a) and (26b) and neglecting all
the second-order derivatives of the amplitudes with
respect to space and time (since the gains are much
smaller than the wave vectors or frequencies), we have,
for the frequency- and phase-matched mode
(wr=ws+w,, k=Fks+k,), the coupled first-order
differential equations

(33)

€ Oeg des 4w g?
Ziws'—- ——+2iks———= - )\QO*EZ )
¢ 9t 9z c?

34
200+ (34)

ot

. 00
21wy —2ik 32—+ 2iw,TQ* =NesE*.
9z

For convenience we shall use the following notations:

Cs=C/r/eo, Cv=B%,/w,, G=es, F=iQ,*, (35)
X1=)\El*/2wv y X2= (ersz/CS2ks>)\El.
Equation (34) then becomes
oF oF
—+TF+4+Cyr—=X,G,
at dz
(36)
1 G G
— ——4—=X,F
Cs 0t 0z

This set of equations is similar to that for the stimulated
Brillouin scattering.?® The following discussion with
slight modifications (change of parameters) is also
applicable to the stimulated Brillouin scattering.

We note that the term Cy(dF/dz2) is negligible, be-
cause Cy=[2%k,/w, is of the order 1 cm/sec; for a laser
pulse with duration 10~° sec, it is of the order 10~°

26 The solution of these equations (with the term 0G/dt
neglected) has been discussed by Kroll (see Ref. 14). He changed
the coupled differential equations into integral equations and
obtained the solution of the integral equations. The transient
solution has an excellent agreement with the experimental results
(Ref. 11). However, the approximations made in the limits of the
integrations are not clear. We shall use a different method to ob-
tain the solution of the differential equations and discuss the
relevant parameter in various limiting cases more clearly.
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smaller than the other terms. (For Brillouin scattering,
with Cy equal to the sound velocity, this term is of the
order 10—* smaller than the other terms.) The term
(1/Cs)(0G/3t) can also be neglected if the pulse
duration At is such that CgAf is much larger than the
cell length Az. (The cell length is usually a few centi-
meters, while, for laser pulse with duration of a few
narrow seconds, CgAt is of the order 100 cm.) Therefore,
we may look for the solution with the terms 8G/dt and
0F/dz neglected. (It was first pointed out in Ref. 11
that these two terms are negligible in most of the
experimental situations.) We shall leave the discussion
of the general solution of Egs. (36) to Appendix B. Thus

we consider the coupled equations in the form
AF/t+TF=X,G,
/9t+ " (37)
aG/ 62 = XQF .

For the steady state {—, dF/dt— 0, the solution is
G=G o122/ T=Gyevs? (38)

where gg is the steady-state gain given in Eq. (30).
By differentiating Eq. (37), we see that both F and G
satisfy the same second-order hyperbolic equation

A A
———2=0, (39)
dxdy 9y
where
Z=F,G; x=X1t, y=X2Z, and B—“—I‘/XL (40)

We shall use Riemann’s method to obtain the solution
of Eq. (39). For clarity and continuity, we shall relegate
the mathematical discussion of Riemann’s method to
Appendix A.

For the solution of Eq. (39), we take the area (see
Appendix A) to be PAQBP with AQ parallel to the
v axis and BQ parallel to the « axis (see Fig. 2). Thus
along AQ we have cos(nix)=1, cos(ny)=0, ds=—dy,
D,=3%9/dy, and E,=ae¢=0. And along BQ we have
cos(n,y)=1, cos(n,x)=0, dx=ds, D,=3%9d/9x, and
E,=b=4. The last term of Eq. (A7) is then given by

Q OR 0z YA
/ %(Z-—R~>dy=%(RZ)Q—%uezu— / R dy
4 dy dy e Oy

A

and

Bri/ oZ OR
/ [—(R———Z——)-}—ﬂkz:ldx
« L2\ 0x dx

=HR2)s=4(RD [
Q

B /3R
Z <— —BR)dx .

dx

¥16. 2. Contour of Riemann’s integration.
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Combining these and Eq. (A7), we have
B /3R e 9z
Zp=(RZ)p— ] Z(-——ﬁR)dx-i— / R—dy. (41)
Q ox 4 0y
The adjoint equation of Eq. (39) is
0R oR

—B——R=0.

ax’ay’ 9y (*2)

A solution of Eq. (42) which satisfies the conditions
(AS) is

R(«',y' y,y) = e = L[ 24/ ((x—2") (y—»"))],

where I, is the zeroth-order modified Bessel’s function.
For Z=G(x,y), we take Q to be (0,0) and use the
boundary conditions

G(x,O) = Go y

(43)

(0G/3y)z—0=Fo. (44)

Then we have the first two terms of Eq. (41) given by
oo 2v/((x—X)y)
! D
X

*AL[2/(ry)]
=Go+Go / —pr Y
0 o1

G1=Go—/ GoegB—X)
0

T1
and the last term of Eq. (41) given by
4 3G v
G2=/ R——dY=F0/ e“ﬂxlo[Z\/(x(y—— Y))]dy
e 9V 0
v - olo[2v/(xy) ]
_Fy / B2/ (ny) dy! = Fogpm ™
0 ox
Thus the solution?” of Eq. (37) is G=G1+4G: or
0Io[ 2v/(11y)]
e e a— L 2

37'1

G(x,y) =Go+GO/ e hr
0

+F, ] e B[ 24/ (xy')]dy' . (45)

Similarly, for Z=F(x,y), we have
F(x,y) =Foe#=I[ 24/ (xy)]

z

+Go/'6—ﬁ7110[2\/(7'1y):|dT1. (46)

It can be easily checked that Egs. (45) and (46)
satisfy Eq. (37). In the following we discuss the various
limiting cases of Eq. (45).

27 This solution coincides with the special case (y=0) of the
solution obtained by Kroll (Ref. 14).
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D. Steady-State Limit, Transient Effect, and
Abrupt Change of Stokes Gain

For convenience we shall introduce the dimensionless
parameters 7, 7o, and ¢ defined by

ro?=Bx=T%, and a®=(@Xy/T)z. (47)

2=,

With these we have

0
Gy =Go+God/ e"”]l(ar)dr
0

and
Go= Fo[\/(wswv)](41rZ/C%0l) 1/26_70211(d7'0) .

The steady state corresponds to the special case when the
conditions (a) Go>Fon/(wsw,) and (b) 7o= (T'!)!/2 —
are satisfied. Using the identities?®

I(Z)=3ZF:(—1, 2;12?)
and

1F1(1,2,Z)=f dt e—'lon,('—l, Z,Zt)‘,
0
one can readily show that
G1t= Go+God/ e“Tle(aT)d‘r =Go€“2/4=Goegsz,
>0 0

which is the steady-state solution (38). Condition (b),
i.e., the interaction time must be infinite, is not a
stringent condition. To see how long the interaction
time is required to reach the steady state, one must
perform a numerical integration for G1. Figure 3 shows

A

=2ft/ -
T/
/

1 1 L 1 1 1
0 5 10 15 20 1 25
0 | 2 3 4 12 5
F16. 3. G1 as a function of time (in units of 1/T") and the square

root of time for various values of a (with Go=1). The solid curves
are for functions of ¢ and the broken curves are for /2.

% E. D. Rainville, Special Functions (The Macmillan Co.,
New York, 1960), pp. 121, 128.
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25

L [ L
5 375 5 1 6.
0 1.5 2 V2 25

Fic. 4. (a) G: as a function of a? (solid curve) and ¢ (dashed
curve) for a typical transient case (ro=1). (b) G; as a function
of ¢ (solid curve) and /2 (dashed curve) for a=10 and a=15. Note
that logioGy varies linearly with respect to #/2 for transient case.

the numerical results for Gy as a function of time. We
see that for small ¢ (¢<3), the steady state is reached
when T'¢ is larger than 3. For large a, the steady state
can be reached only when I't>a? For I't<a? Gi is
transient, and the gain varies linearly with respect to e
and the square root of time. In Figs. 4(a) and 4(b) we
plot log1G1 as a function of ¢ and time, for a typical
transient case.
We note that for ar¢>>1, we have, with

In(X) >~ ¢*/(2rX)'2,
X >0

20 swyz\ /2
G:=2F, gaTo—T0?
Cntary

(48)

If, in addition to aro>>1, we have ¢> 7 (the transient
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case), then G takes the same exponential factor as Gs:
GlgGO/(47l'aT0) 1/26111'()—702 .

If Go>Fp/(ww,), then G, is negligible for either
a<ty or a>1o. In this case the Stokes power changes
smoothly with respect to a. However, G, can be a
dominant term when Foy/(wsw,)>>Go. From Eq. (48) we
see that G» changes rapidly with changing @, when a
becomes larger than 7o Thus, if Fo/(ww,)>>Gy and
70>1, the Stokes power can increase abruptly with
respect to the incident laser power. For most of the
experimental situations G, is much smaller than
Fp/(wsw,). To see this we shall give the following
estimation.

We note the comparison of Gy and Fon/(wsw,) Is
equivalent to the comparison of 8s/w and §,0/wv (here
8s0xGo?/8r and 8,0 w,?F, are the energy density of
the Stokes wave and the optical phonons), which, in
turn, is a comparison of the numbers of quanta per unit
volume, i.e., # and #,9. If there is no large amount of
input Stokes power, the main contribution to 7, comes
from the spontaneous Raman scattering.? For an input
laser beam with intensity of the order 20 MW/cm?
(n=2.33X10" photons/cm?), we have the number of
Stokes photons per unit volume due to spontaneous
Raman scattering:

nso=nroNL=4.12X10° photons/cm?,

where we have used L=1 cm, ¢=5.86X1073° cm?, and
N=2.5X10% cm~* for hydrogen gas at P=10 atm and
T=300°K. At the same pressure and temperature we
have the density of the thermally excited optical
phonons

Myo=Nemo/FT=587% 1012 cm™2.

Thus Fon/(wsw.) 1s three orders of magnitude larger than
Go. And, as with stimulated Brillouin scattering,'* we
should have the transient Stokes gain starting from
thermal excitation of optical phonons. The gain in-
creases abruptly when the incident laser power is such
that @a> o, or, using (47) and (35), we have

CnT 2wt /a2
IE1|2>]E1[82=——————<~—) .
arw;Nz \dq/¢

As an example, in Fig. 5, we compare the steady-state
and transient gain with the observed Stokes gain for
hydrogen gas at 10 atm, with ¢=2 nsec, 3/4=1.1X10~*
cm™l, I'=9.4X10% and P,==10"7 W/cm?. For the
transient case, below threshold the Stokes power is
given by the spontaneous scattering. When the incident
laser intensity reaches the threshold value, the Stokes
power increases rapidly and reaches the saturation value
(Stokes power becomes the same order of magnitude as
the laser power). The best fit one can obtain with a
steady-state gain is also shown in the graph.
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,,,,,,,,,, —Scottering —
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Fic. 5. Comparison of the steady-state gain G, and the transient
gain G, with the observed Stokes gain in H gas. The experimental
points are taken from the paper of Hagenlocker ef al. (Ref. 11).
The scale on the Stokes power is approximately in units of watts.
The dashed curve shows the best fit that one can obtain for Stokes
power as an exponential function of laser power (Ref. 11).

E. Pressure and Temperature Effect on
Stimulated Raman Gain

The pressure affects the Stokes gain mainly through
the lifetime of the optical phonons, which in turn control
the threshold and the gain of the stimulated Raman
scattering. The threshold of the abrupt gain is given by
a@®=T1, where a®= (4nw,N /cnol'w,)(da/dq)?| EL|?. Since
the only pressure-dependent parameters are N and T,
the threshold intensity can be written

| EL] 2= constXT?/N.

If we use the lifetime of optical phonons calculated
by Hagenlocker ef al.!* (for hydrogen gas): I'(10 atm)
=1.25X10" sec™!, T'(100 atm)=1.25X 10! sec™!, then
we have |Ez|2(100 atm)=10|Ez|.2(10 atm). On the
other hand, if we use the half-width measured by
Lallemand et al.,2? we have I'(10 atm) = 9.43 X 10° sec™?,
T(100 atm)=3.77X10Y; then |Ez|.2(100 atm)
=1.6| Er|2(10 atm), while the observed value is
| Er| 2(100 atm)=4]| E.|2(10 atm).! Thus the agree-
ment of the predicted and the observed pressure effect
is not as conclusive as in the case of stimulated Brillouin
scattering.!! However, the agreement is still within the
uncertainty of the optical-phonon lifetimes.?*

The lifetime of the optical phonons can also be
changed by changing temperature.!' In addition to
this, the temperature can affect the initial conditions of
the stimulated scattering. In stimulated Brillouin scat-
tering the acoustic phonons have a very small energy

2 P, Lallemand, P. Simova, and G. Bret, Phys. Rev. Letters
17, 1239 (1966). -

30 An accurate measurement of the optical-phonon lifetime at
various pressures and temperatures, by comparing the spontaneous
linewidth, the steady-state gain, and the steady-state linewidth,
is thus desirable.
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(hw,=8.6X 1076 eV). The thermal excitation of acoustic
phonons is not changed singificantly with the changing
temperature, unless the temperature is very low
(T'~1°K). However, in the stimulated Raman scat-
tering, the optical phonon has a larger energy (fw,
=0.515 eV). Thus below 100°K (¢—#«/*T=10-25), one
has practically no thermal excitations. The Stokes gain
at low temperature can only start from the spontaneous
scattering or an input Stokes power. It should not
change abruptly. We also note that the Stokes power
due to spontaneous scattering is of the order 10~%
W/cm?. Therefore, it is possible to amplify a Stokes
signal from a few milliwatts to a few megawatts. The
stimulated Raman scattering is thus a better parametric
amplification system than the stimulated Brillouin
scattering. However, because of the short lifetime of the
phonons, both systems require laser power of order a
few megawatts, which can be obtained only in the pulse
form.
IV. CONCLUSION

We have treated the stimulated Raman scattering as
a classical parametric coupling of the laser wave, the
Stokes wave, and the optical-phonon wave. We show
that the coupling is a weak coupling, so that the optical
phonon frequency is not significantly modified by the
high-intensity laser field. Nevertheless, due to the
stimulation effect the scattered wave can grow ex-
ponentially. For the stimulation effect, since the driving
terms contain dynamical variables, the linewidth of the
scattered wave should be narrower than the spon-
taneous linewidth. A general solution of the coupled
wave equations which includes the transient and the
steady-state Stokes gain is obtained. It is shown that
for low incident laser power, the steady state can be
reached if the duration of the laser pulse is longer than
three times the lifetime of optical phonons. For higher
incident power one requires longer interaction time to
reach the steady state. In the transient cases, if the
stimulated scattering starts from the thermal excitation
of the optical phonons, then the Stokes gain can change
abruptly with respect to the incident laser power.

As with stimulated Brillouin scattering, pressure and
temperature can affect the threshold and the gain of
stimulated Raman scattering. For a temperature near
liquid-oxygen temperature, the thermal excitation of
the optical phonons is negligible, and hence the stimu-
lated scattering can only start from the incident Stokes
wave or from the spontaneous scattering. A coherent
amplification of a small signal Stokes wave using
gaseous media at low temperature should be possible.
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APPENDIX A: REIMANN’S INTEGRATION OF
HYPERBOLIC DIFFERENTIAL EQUATION
The solution of a second-order hyperbolic-type

equation®!
0z

0z oz
+a——4b—+CZ=0, (A1)

dxdy dx 9y

with constant e, b, and ¢, can be obtained by using the
adjoint equation

L(Z)=

d%?R dR OR
M(R) =———a——b—-+CR=0.
dxdy 9dx = dy
Consider a region S in which L(Z)=0 and M (R)=0;
we have

(A2)

/ / [RL(Z)—ZM (R)]dxdy
8
0%z ’R 0Z 9R
= / / [R -7 'ra<R +Z—~—>
0xdy  9xdy ox ox

0Z  OR
+b(R———l—Z——>]dxdy
dy 9y

Iréo,s 0Z OR\ 9,/ dZ OR
ST
J 2Lox\ 9y dy/ dy\ ox ox

a d
+—(eZR)+—(bRZ) } dxdy
ox dy

TG

where

1/ 0Z R
M=E<R———-—Z——>+aRZ,
dy 9

y  dy A9)

1/ oZ 0R
N =—<R——Z—->+6RZ .
2\ ox ox

Take S to be an area PABP with PA||x axis and PB|ly
axis (see Fig. 6); then

A A R
/Ndx=%(ZR)A—%(ZR)p-—/ Z(————bR)dx,
P

P ox

r B /3R
/ Mdy=—}(ZR)s-+1(ZR) o+ / Z<~———-aR>dy.
B P 6y

N

5 See, e.g., A. R. Forsyth, Theory of Differential Equations
(Dover Publications, Inc., New York, 1959), Vol. V, pp. 120-130.

Fi1c. 6. General form of the contour
of Riemann’s integration.
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Equation (A3) becomes .,
(ZR)p==%(RZ)A+%(RZ)B—-/ (Mdy—Ndx)
4

4 /0R B /3R
— / Z(———bR)dx— / Z(————aR)dy .
P ox P dy

If we choose a solution of the adjoint equation (A2)
which satisfies the boundary conditions

(a) RP: 17
(b) OR/dx—bR=0 along P4, (A5)
(c) dR/9y—aR=0 along PB,

then we have the solution of (A1) as

B
Zo=}(RZ)4+}(RZ) 5 / (Mdy—Ndz), (AG)
A
which can also be written
Zp=%(RZ)4+3(RZ)3

B
+ / (RD,Z—ZD,.R+RZE,)ds, (AT)
with 4
i)
D, =3% cos(n,x) —=+3% cos(n,y) —,
Jdy ox
E,=a cos(n,x)+b cos(n,y),

where ds is the integration along the curve AB and # is
the inner normal to the curve. The curve AB is to be
chosen according to the available boundary conditions
of (Al). The function R which satisfies (A4) and (A5)
is called Riemann’s function.

APPENDIX B: GENERAL SOLUTION OF
COUPLED DIFFERENTIAL EQUATIONS (35)
In this Appendix we give the general solution of the
coupled differential equations (35). If we use the
notations

t’=X1t, ﬁ=I‘/X1, Z/=X22, af=X1/chs, 7=CVX2/X1,
then (35) can be written
oF oF
+6I;‘+7——=G)
or 97’
G oG

a—+

o o7

(B1)

al

Using the coordinate transformation

g 9 a
r={—ai, —=

=—+7
dx o oF
a 9 9

—to—,
dy 97 o

)

(B2)

y=z’——~/t’,
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Equation (B1) becomes

OF /dx=BF=G, dG/dy=1F. (B3)
Thus, we have
02z oz
+B8——Z=0, with Z=G,F. (B4)
dxdy 9y

This equation is in the same form as the equation for the
case that both the terms a(dG/dt') and v(9F/92’) are
omitted; therefore the Riemann’s function is still the
same as Eq. (42), i.e.,

R(xy,Em)=e= L[ 20/ ((x— &) (y—m)]. (BS)

However, the boundary conditions are different; we
have at =0, Z=F, or G,

oG 9G
a—

o 97

=Fo, (B6)

and at =0, Z=F, or Go. Thus, we may choose the
curve AB to be a curve AQB such that along AQ, ¢'=0,
and along OB, =0 (see Fig. 7). From (A7) we have
the solution of (B4) as

Z(Em) =3(RZ)a+5RZ)5

B 1 EYA
SRR
dy
51, 9Z OR
+ / ( ———Z——> ~+BRZdx

=-1-(RZ)B-—-1-(RZ)A+(RZ)Q

OR

+ / R——dy—i— Z<—-—6R>dx
£)'e
OR

+ / Z——dy / <———B/R>dx. (B7)
£)'e
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F16. 7. Contour of Riemann’s integration.

In order to express the solution in terms of 2’ and ¢/
we let

E=r—af, n={—nvr. (B8)

Then we have

=('—7)—ald—¢),

y=n=E"=—v{'~1).

Thus, along AQ, =0, we have dy=d7, dx=—ad?/,

tfm—r—ald—0),

y—g=2—=¢{+vyr, and X=-—ay,

and along BQ, 2’ =0, we have dx=dt', dy=—~dt/,
a—ft=t'—7+af,

y—g=——y({'—1),

If we let o=24/[(x—&(y—n)], then from (B5) we
have

and y=—vX.

OR al 2(y—
— —BR=¢Gb8 °(¢)=e<x—e>ﬂ]1(¢,) &=

ox dx 1)

and

oR 2(x—¢§)
—=e@DB](y) .
9y @

For Z=G, using the boundary conditions (B6) and
neglecting the factor ay=Cy/Cs whenever it is added
to 1, we have

I1(¢’)

f: Z(%?"“)‘i”:(”“gc"/ Y =0

_Gog"/.f—are<t’~r+anall{2\/([:tl—T+a(][_g‘_7(t,_T):I)}dt'

T—af
=Gof f

V=7 =y —7) ]}
11[2\/0(? vt))]
VI — 7t)]

YA {—yr
/ R—dy=F, / a0 {2/ ([r+a(s' —{)J[E —2' —y7])} d’
Q 0

9y

=1
=F0/ eBraBton [ 123/ ([1—a(z+v7)]e)} d3,
0
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and
A

4 7OR dlo(¢)
/ z(———ﬁk>dx=(;o / et=bp dx
Q X Q x

A
—[GoR]e"—GoB / e8I [2/((v—£) (y—n))] da
Q

§—yr

~[GoRo"+Gof / e L2/ (=) ) ds.

Combining the above results, we have the solution of (B1) as

ot L2V —vD)]
G T, =Goy+Gy —~H
w)=GrtGa [ VTG =]

For the special case considered by Kroll, i.e., a=0, we have

LL2V(U(—vr)] -
- dt+Foe p——oooI1[ 2/t —7))].
VLG )] N Ay Y]

=7

Gr8) =Got-Got / -
0

Using the identities?®

t m/2 o ]" NOre
( ) TuLv/ (A= 20ty]= 5 O

{—2ux n=0 n!
and

/ e_ﬂ’t“lfn(at)dt =w ,

no™
it can be easily shown that the steady-state limit (r —) is given by
lim G(r,§) =Go exp[ (¢/2v)(V/ (8*+47) —B) ],

and for B>y
G=Get/P=Gev52.

di+(Fo+Goop) / e PreB Gt [ 24/ ([r —a(z+vy7)]2) }ds.
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(B9)

(B10)

(B11)



