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Calculations on the hyperfine-splitting constants for the atoms B, C, N, 0, and F have been
carried out by both the unrestricted Hartree-Fock (UHF) method and a method corresponding
to optimizing the orbitals of a Slater determinant after spin projection (the GF method). This
is equivalent to one form of Lowdin's extended Hartree-Fock method. These calculations
account for core-polarization contributions to the spin density but not for any significant
part of the electron correlation. It is found that the core-polarization term is significantly
larger (for N about 65% larger) than the experimental value, indicating that the remaining
correlation effects significantly decrease the magnitude of the spin density at the nucleus.

Since these calculations used analytic expansions, an extensive set of basis sets was ex-
amined in order to determine what type of basis set is required in order to obtain accurate
values for various properties.

On the basis of these calculations and the observed hyperfine structure, we obtain a
magnetic moment (in nuclear magnetons) of INN= + 0.97 for C and electric quadrupole mo-.ri

ments (in barns) of @=0.037 for B, @=0.031 for C (assumiug ~ for C to be negative),
and Q=-0.025 for 0.

INTRODUCTION

Qf the interactions responsible for the hyperfine
structure in atoms, the Fermi contact term' ' has
been the most difficult to predict accurately. The
reason is that this term is proportional to the spin
density at the nucleus, Q(0), and thus depends
solely on the accuracy of the wave function at a
single point, the nucleus, which does not even con-
tribute significantly to the energy. It was recog-
nized early that the Hartree-Fock (HF) wave func-
tion does not lead to reliable values for Q(0).'
The reason is that only s orbitals can contribute
to Q(0) yet in most atoms, such as C, N, 0, P,
and Mn, the s orbitals are all spin paired, leading
to a predicted Q(0) of zero. One solution ' " to
this problem has been to retain a Slater determi-
nant wave function, but relax the restriction that
the s orbitals be doubly occupied. This method,
called the unrestricted Hartree-Fock (UHF) meth-
od, leads to nonzero Q(0) which are generally
within a factor of 2 of the experimental value.
However the UHF wave function does not have the
correct spin symmetry. 'y"~ "y" This led to the
use of wave functions which were spin projected
in order to have the correct spin symmetry
(PUHF). 1~" "&" For some systems PUHF led
to worse results"y' than UHF and for others it
was better. ' '6 It was generally felt' y' y that
the problem is that the orbitals should be opti-
mized after spin projection rather than before.
This approach is called the spin-polarized ex-
tended Hartree- Fock (SPEHF) method and was
originally suggested by LNydjn. 'y However, the
complexity of such procedures prevented' ' such

calculations until the recent development of the
GF method, "~"which leads to wave functions
equivalent to those obtained by optimizing the or-
bitals of a Slater determinant after spin projection.
This method has been used to calculate the Q(0)
for the ground" and excited" states of Li, and as
expected the results are in good agreement with
experiment. However, we expect more trouble
for larger atoms since the contributions to Q(0)
from different closed shells often tend to cancel
one another. In this paper we present the results
of GF calculations on the ground states of B, C,
N, 0, and F. We find that the calculated Q(0) de-
pends very sensitively upon the basis set for both
GF and UHF wave functions. For these atoms the
Q(0) from GF and UHF calculations are 60%%uo to
250%%uo higher than the experimental values while
the PUHF results are rather close to experiment.
This is in contrast to the results for the Li atom.

THE CALCULATIONS

The GF method has been described in detail
elsewhere. "y' y" The equations which must be
solved for the GF orbitals are similar to the HF
equations and are solved in the same way. We ex-
pand each orbital in terms of a finite set of basis
functions, ()(&), and solve for the coefficients of
the expansion. " Slater orbitals" are used, and
in order to minimize bias in the basis set, the or-
bital exponents are optimized. We found that the
spin density at the nucleus, so
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ia quite sensitive to the specific basis set used.
Consequently, we considered a number of different
kinds of basis sets in order to determine if cer-
tain types of basis sets might lead to faster con-
vergence in Q(0) (as the size of the basis set is
increased). We were also interested in deter-
mining if any small basis sets (i. e. , about double
zeta size) would consistently yield reliable values
for Q(0), the reason being that calculations in
polyhtomic molecules cannot presently use basis
sets as large as those we can consider for atoms,
yet it would be of great interest to calculate spin
densities for polyatomic molecules and radicals
for comparison to the experimental information
available.

Extensive calculations"3 "were carried out on
8, C, and N and are reported in Tables I, II, and
III (the basis sets are listed in Tables IV, V, and
VI). In addition to the energies and Q(0} for the
UHF and GF calculations, we report the values for
several properties, (/is/r'), p(0) =($5(r;)) (the
density of electrons at the nucleus), and (gr'),
in order to give an idea of how well these quanti-
ties converge for large atomic basis sets. We
found that the trends for Q(0} and other proper-
ties were the same for both UHF and GF, so
many basis sets were rejected before carrying
out GF calculations.

We separately optimized the orbital exponents
for several basis sets for the HF, UHF, and GF
wave functions and found the orbital exponents to
be the same within the estimated error in de-
termining the orbital exponents. Consequently,
all orbital exponents were optimized for the HF
wave functions since the efficient LMSS atomic
program" was available. For the larger basis
sets we found that reoptimization of the orbital ex-
ponents was often not necessary (e. g. , compare
the p orbitals of the C5 and C14 basis sets).

We considered two different types of basis sets.
The first is the usual type with several ls, 2s,
and Ss orbitals and several 2p orbitals. These
are listed first in each of the tables. The second
type has one ls, no 2s, and several 2s orbitals
(and maybe a 4s). As pointed out by Roothaan and
Kellyl such a basis set would automaticaOy lead
to each self-consistent field (SCF) s orbital satis-
fying the cusp condition if f ~s =Z, the nuclear
charge. We mill call such a basis set an s-cusp
set. We thought that the cusp condition would be
quite important for a good Q(0), so we considered
an extensive series of s-cusp sets. As expected
the Q(0) converged far more rapidly (as a function
of the number of basis functions) for the s-cusp
sets than for the regular-type basis sets. It was
not clear that the cusp condition for the P orbitals

TABLE I. Energies and properties from UHF and GF calculations on B. All quantities are in Hartree atomic units. a

B sis setb

1 2/1
2 3/1
3 3/2

3/2
5 4/2
6 4/3
7 5/4
8 6/4
9 6/4

10 6/4
11 3/1
12 3/1
13 3/2
14 4/2
15 5/2
16 5/3
17 6/3
18 6/4
18 7/3
20 7/4
Numeric ale

Energy

—24.498 37
—24.505 46
—24.526 76
—24.526 94
—24.528 12
—24.529 18
—24.529 25
—24.529 09
—24.528 89
—24.52930
—24.496 44
—24.508 99
—24.51972
—24.528 73
—24.528 85
—24.529 20
—24.629 28
—24.629 28
—24.529 29
—24.52930

q(p) C

0.0000
—0.0492
—0.0856
—0.0932

0.0032
0.0057
0.0110

—0.0121
0,0206
0.0258

—0.0690
0.0235
0.0135

—0.0153
0.0115
0.0145
0.0192
0.0195
0.0189
0.0192
0.0172

UHF
&zf', /r')

0.5916
0.5891
0.7506
0.7485
0.7572
0.7787
0.7806
0.7825
0.7828
0.7814
0.5808
0.5872
0.7486
0.7540
0.7544
0.7789
0.7797
0.7816
O.V798

0.781V
0.7819

p(0)

68.193
69.453
71.692
71.858
71.569
71.937
71.979
71.931
71.538
71.927
72.918
68.917
68.882
71.874
71.957
71.973
71.959
71.958
71.965
71.964

14.752
14.395
15.401
15.364
15.752
15.832
15.826
15.879
15.762
15.837
13.786
14.612
15.486
15.705
15.701
15.767
15.846
15.842
15.844
16.840

Energy

—24.498 37

—24.529 52
—24.529 66

—24.529 38
—24.529 80

—24.529 69
—24.529 75

—24.529 80

g(0)'

0.0000

0.0256
0.0483

0.0385
0.0439

0,0285
0.0350

0.0351

aIn Hartree atomic units, m~=1, I=1, e=1, the unit
of energy is the Hartree (27.2107 eV), and the unit of
length is the bohr (0.529167k).

bsee Table IV for the basis f'unctions.

The spin density at the nucleus, see Eq. (1).
The electronic density at the nucleus.

eReference 11.
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TABLE II. Energies and properties from UHF and GF calculations on C. All quantities are in Hartree atomic units.

Basis set

1 2/1
3/2

3 4/2
4 4/3
5 5/4
6 6/4
v 6/4
8 3/1
9 4/2

10 5/2
11 5/3
12 6/3
13 6/5
14 6/4
15 7/3
16 7/4

Energy

-37.622 39
—37.683 96
-37.687 88
-37.68942
-37.68970
-37.68948
-37.689 98
-37.637 49
-37,688 24
-37.688 64
-37.689 67
—37.689 90
—37.689 95
-37,689 94-37.689 95
—37.689 98

q(p)C

0.0000
-0.2856

0.0057
0.0194
0.1334
0.0887
0.1011
0.1493

-0,0219
0.0650
0,0709
0.0819
0.0811
0.0824
0.0743
0.0753

UHF

&zf,/r')

1.2848
1.6404
1.6601
1.6996
1.7060
1.7079
1.7080
1.2789
1.6547
1.6565
1.7012
1.7036
1.7094
1.7088
1.7039
1.7091

p (p)d

122.039
127.192
126.822
127.454
127.548
126.873
127.472
123.017
127.261
127.453
127.460
127.452
127.484
127.492
127.517
127.515

&zr')

12.312
13.377
13.661
13.747
13.751
13.733
13.780
12.317
13.636
13.649
13.740
13.796
13.787
13.783
13.791
13.778

Energy

-37.622 39

-37.690 21
-37.690 68

-37.690 66
-37.69101

—37.691 14

q(0)c

0.0000

0.0244
0.1302

0.0675
0.0786

0.0733

aSee footnote a, Table I.
See Table V for the basis functions.

cThe spin density at the nucleus, see Eq. (1).
The electronic density at the nucleus.

TABLE III. Energies and properties from UHF and GF calculations on N. All quantities are in Hartree atomic units.

Basis set

1 2/1
2 3/2
3 4/2
4 4/2
5 4/3
6 5/4
7 6/4
6 6/4
9 3/1

10 4/2
11 5/2
12 5/3
13 6/3
14 6/3
15 6/4
16 v/3
1V V/4

Numerical

Energy

—54.268 90
—54.392 88
—54.410 05
—54.401 03
-54.403 08
—54.403 85
—54.403 37
—54.404 51
—54.290 40
-54.400 84
—54.401 74
-54.403 92
—54.404 32
-54.404 37
-54.404 44
—54.404 46
—54.404 53

q(0)c

0.0000
—0.5447

0.0033
—0.0262

0.0263
0.3187
0.2237
0.2127
0.4198

—0.0313
0.1611
0.1751
0.1934
0.1922
0.1940
0.1835
0 ~ 1853
0.1883

p(0)d

198.536
205.283
204.930
204.686
205.933
206.014
204.979
205.867
199.817
205.529
205.883
205.892
205.569
205.941
205.939
206.029
206.026

&zr')

10.476
11.719
11.926
11.949
12.032
12.038
12.058
12.054

11.918
11.942
12.042
12.092
12.092
12.078
12.088
12.073

Energy

—54.268 90

—54.404 39

—54.405 62

—54.406 21

—54.406 42

GF
q(p)c

0.0000

0.0118

0.1461

0.1629

0.1579

See footnote a, Table I.
See Table VI for the basis functions.
The spin density at the nucleus, see Eq. (1).

The electronic density at the nucleus.
eReference 11.

would be important for Q(0), and this was verified
for C where the 6/5 sp-cusp set" led to essential-
ly the same Q(0) as the 6/4 and 6/3 s-cusp sets.
In addition the sP-cusp set required at least one
additional p basis function for an energy com-
parable to that for an s-cusp set (using 2p orbit-
als). For this reason only s-cusp sets were con-

sidered in the other atoms. It is possible that
an sp-cusp set would attain greater importance
for F or 0 because of the greater numbers of P
electrons.

For a given s-cusp set the optimum f~s is not
usually Z; consequently the cusp condition is not
exactly satisfied although typically it is within
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TABLE IV. Basis sets (Ref. 32) for boron. An asterisk indicates that the orbital exponent was not reoptimized.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

I. CR: ls 4.6795, 2s 1.2881, 2P 1.2107
2. ls 4.7841, 2s 1.3319, 3s 1.7110, 2p 1.2090
3. BGCR: ls 4.353, ls 7.177, 2s 1.317, 2P 2.218, 2P 1.004
4 ls 6.2495, 2s 5.0445, 2s 1.3221, 2P 2.2121, 2P 1.0025
5. CDZ: ls 4.30481, ls 6.84691, 2s 0.88143, 2s 1.40704, 2p 1.00366, 2p 2.20855
6. BGCR: ls 7.732, ls4.413, 3s 2.431, 2s 1.152, 2P 4.558, 2P 1.753, 2P 0.931
7. BGCR: ls 7.338, Is 3.996, 3s 4.796, 2s 1.724, 2s 1.110, 2p 5.509, 2p 2.155, 2p 1.243, 2p 0.845
8. BLM: ls 3.9469, ls 4.3308, ls 7.605, 2s 1.1571, 2s 2.0887, 2s 8.682, 2p 0.8662, 2p 1.3946, 2p 2.7692, 2p 7.3539
9. BLM: Is 5.0, 2s 5.0, 3s 5.0, ls 1.14, 2s 1.14, 3s 1.14, 2P'8 as in set 8

10. CRY: ls 4.4661, ls 7.8500, 2s 0.8320, 2s 1.1565, 2s 1.9120, 2s 3.5213, 2p 0.8783, 2p 1.3543, 2p 2.2296,
2p 5.3665
ls 5.0*, 3s 4.9485, 3s 1.8123, 2p 1.2033
ls 4.7411, 3s 2.931, 3s 1.5352, 2P 1.207V

ls 4.7403, 3s 2.931, 3s 1.538, 2P 1.003, 2P 2.210
ls 4.9986, 3s 5.431, 3s 2.53V, 3s 1.398, 2p 1.0029, 2p 2.210
ls 5.0145, 3s 5.794, 3s 4.08, 3s 2.4173, 3s 1.3776, 2p 1.003, 2p 2.2082
ls 5.016, 3s 5.79*, 3s 4.08*, 3s 2.405, 3s 1.374, 2P 0.934, 2P 1.754, 2P 4.54*
ls 5.015, 3s 5.79, 3s 4.06, 3s 2.424, 3s 1.393, 3s 0.69, 2p 0.931, 2p 1.752, 2p 4.54*
s orbitals as in set 18, P orbitals as in set 7

Is 5.0172, 3s 5.83, 3s 3.98, 3s 2.392, 3s 1.403, 3s 0.65, 4s 0.88, p orbitals as in set 17
s orbitals as in Set 19, p orbitals as in set V.

TABLE V. Basis sets (Ref. 32) for carbon. An asterisk indicates that the orbital exponent was not reoptimized.

1. CR: Is 5.6727, 2s 1.6083, 2p 1.5679
2. BGCR: ls 5.332, ls 8.696, 2s 1.647, 2P 2.73, 2P 1.255
3. CDZ: ls 5.2309, Is 7.96S97, 2s 1.16782, 2s 1.82031, 2p 1.25572, 2p 2.72625
4. BGCR: Is 9.153, ls 5.382, 3s 3.076, 2s 1.428, 2p 5.152, 2p 2.177, 2p 1.150
5. BGCR: Is 9.055, ls 5.025, 3s 6.081, 2s 2.141, 2s 1.354, 2p 6.827, 2p 2.779, 2p 1.625, 2p 1.054
6. BLM: ls 6.0, 2s 6.0, 3s 6.0, ls 1.42, 2s 1.42, 3s 1.42, orbitals as in set 5
7. CRY: Is 5.4125, Is 9.2863, 2s 1.011, 2s 1.502, 2s 2.5897, 2s 4.2595, 2p 0.9554, 2p 1.4209, 2p 2.5873, 2p 6.3438
8. ls 5.7386, 3s 3.535, 3s 1.859, 2p 1.5655
9. ls 5.989, 3s 6.464, 3s 3.08, 3s 1.691, 2p $.2547, 2p 2.725

10. ls 6.012, 3s 6.93, 3s4.84, 3s 2.872, 3s 1.64S, 2P 1.255, 2P 2.725
11. ls 6.0129, 3s 6.93, 3s 4.77, 3s 2.877, 3s 1.6553, 2p 1.1502, 2p 2.178, 2p 5.159
12. ls 6.013, 3s 6.93, 3s 4.75, 3s 2.877, 3s 1.673, 3s 0.85, p orbitals as in set 10
13. s orbitals as in set 14, 2p 3.088, 4p 1.163, 4p I.S47, 4p 2.998, 4p 4.85
14. ls 6.016, 3s 6.95, 3s 4.74, 3s 2.859, 3s 1.675, 3s 0.89, 2P 1.054, 2P 1.625, 2P 2.781, 2P 6.824
15. ls 6.018, 3s 6.98, 3s4.58, 3s 2.894, 3s 1.667, 3s 0.87, 4s 0.996, 2P 1.1505, 2P 2.179, 2P 5.17
16. s orbitals as in set 15, p orbitals a8 in set 14

0. 02 of Z for the larger basis sets. For larger
basis sets forcing r ls = 2 typically changed Q(0)
only slightly (e. g. , compare basis sets 13 and 14
for N in Table III) and led to a significantly larger
error in the virial ratio. " For this reason the
&1s was optimized for most s-cusp sets.

The BGCR (5/4) and CRY (6/4) basis sets"'"
are essentially at the Hartree-Fock limit; how-
ever, we see that they lead to rather different
Q(0) and that both are probably still somewhat
from the limiting value. The slightly smaller
BGCR (4/3) sets although yielding nearly as good
as energy as the BGCR (5/4) lead to quite poor
Q(0) for all these atoms, as do the double-zeta
(4/2) sets. ~ In contrast the Q(0) for s-cusp sets

seems to have converged for (I/O) and is fair
even for (6/3), (5/3), and (5/2) sets. It may be
that the use of an s-cusp (5/2) set for polyatomic
molecules would lead to fairly accurate" Q(0) if
they were corrected for the error in Q(0) for the
atom.

In Tables VII and VIII we report some calcula-
tions for 0 and F (the basis sets are listed in
Tables IX and X). In the UHF and GF calculations
for 0 and F, we solved for all P orbitals indepen-
dently as for B, C, and N. However, for 0 and
F this led to different radial dependencies for
different m~ and the same spin. Thus in these
calculations the many-electron wave function does
not have the correct spatial symmetry. For com-
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TABLE VI. Basis sets (Ref. 32) for nitrogen. An asterisk indicates that the orbital exponent was not reoptimized.

1. CR:
2. BGCR:
3. CDZ:

5. BGCR:
6. BGCR:
7. BLM:
8. CRY:

10.
11.
12.
13.
14.
15.
16.
17.

ls 6.6651, 2s 1.9237, 2P 1.917
ls 6.395, 2s 8.28, 2s 1.967, 2p 3.247, 2p 1.497
1s 6.11S63, 1s 8.938 43, 2s 1.393 27, 2s 2.22157, 2p 1.505 85, 2p 3.26741
1s 5.969, 1s 8.445, 2s 1.438, 2s 2.272, 2p 1.4959, 2p 3.2386
1s 10.507, 1s 6.346, 3s 3.715, 2s 1.697, 2P 5.573, 2P 2.555, 2P 1.352
1s 10.586, 1s 6.037, 2s 7.334, 2s 2.$39, 2s 1.588, 2p 7.677, 2p 3.270, 2p 1.890, 2p 1.222
1s 6.9, 2s 6.9, 3s 6.9, 1s 1.6, 2s 1.6, 3s 1.6, 2P 0.952, 2P 1.2264, 2P 1.9087, 2P 3.8675, (see Ref. 13)
1s 6.4595, 1s 10.8389, 2s 1.4699, 2s 1.9161, 2s 3.156, 2s 5.0338, 2p 1.1937, 2p 1.7124, 2p 3.0012,
2P 7.1018
1P 6.V366, 3s 4.147, 3s 2.174, 2P 1.9155
1s 6.9800, 3s 7.45, 3s 3.690, 3s 2.012, 2P 1.4948, 2P 3.236
Is 7.010, 3s 8.06, 3s 5.58, 3s 3.34, 3s1.921, 2p 1.495, 2p 3.236
1s 7.011, 3s 8.07, 3s5.53, 3s 3.326, 3s 1.920, 2p 1.3527, 2p 2.560, 2p 5.6
1s 7.0*, 3s 8.1, 3s 5.48, 3s 3.327, 3s 1.935, 3s 0.93, 2p 1.353, 2p 2.56, 2p 5.6*
1s 7.015, 3s 8.1, 3s 5.48, 3s 3.302, 3s 1.938, 3s 1.0, 2p 1.353, sp 2.56, 2p 5.6*
s orbitals as in set 13, p orbitals as in set 6
1s 7.020, 3s 8.20, 3s 5.49, 3s 3.438, 3s 2.054, 3s 1.03, 4s 1.13, 2p 1.353, 2p 2. 56, 2p 5.60*
s orbitals as in set 16, p orbitals as in set 6

TABLE VII. Energies and properties from UHF and GF calculations on O. All quantities are in Hartree atomic
units. a

Basis set

6/4
S/3

3 5/3
4 6/3
S V/3

6 v/4
7 7/4

Energy

—74.813 96
—74.807 00
—74.812 52

74.812 66
—74.812 68
—74.813 94
—74.813 87

Q{0)'

0.1939
0.1113
0.1746
0.1741
0.1781
0.1944
Q.1979

UHF

(zlg/r )

4.3698
4.4278
4.5186
4.517V
4.5178
4.3701
4.3753

p(0)

311.775
311.734
311.716
311.727
311.692
311.701
311.69V

(zr')

11.205
10.979
11.130
11.140
11.140
11.211
11.189

Energy

—74.814 95

—74.816 84

GF
Q(O)

0.1889

0.2137

aSee footnote a, Table I.
bSee Table IX for the basis functions.

The spin density of the nucleus, see Eq. {1).
d The electronic density at the nucleus.

TABLE VIII. Energies and properties from UHF and GF calculations on F. All quantities are in Hartree atomic
units. a

Basis set

6/4
5/2

3 5/3
4 6/3
5 7/3
6 7/4
7 7/4

Numerical

—99.41129
—99.402 77
—99.410 60
—99,410 64
—99.410 67
—99.411 27
—99.41129

Q(0)c

0.1432
0.0604
0.1215
0.1229
0.1216
0.1267
0.1298
0.1335

UHF

&zt,/r')

7.0337
6.9583
7.1025
7.1009
7.1007
7.0379
7.0332
7.309

448.505
448.510
448.495
448.491
44S.457
448.465
448.462

(zr )
10.250
10.01V

10.208
10.217
10.216
10.251
10.240

Energy

—99.412 99

-99.414 15

GF
Q(0)'

0.2303

0.2455

aSee footnote a, Table I.
See Table X for the basis functions.
The spin density at the nucleus, see Eq. (1) .
The electronic density at the nucleus.

Reference 11. This is an LRUHF calculation and

should be compared with the analytic LRUHF calculation
in Table XI, i.e. , Q(0) =0.1327, (x )=7.3128.
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TABLE IX. Basis sets (Ref. 32) for oxygen. An asterisk indicates that the orbital exponent was not reoptimized.

I. CRY:

2.
3.
4
5.

ls 7.6160, ls 13.3243, 2s 1.7582, 2s 2.5627, 2s4.2832, 2s 5.9445, 2P 1.1536, 2P 1.7960, 2P 3.4379,
2p 7.9070
s orbitals as in set 3, 2p 3.692&, 2p 1.656* (from BGCR)
1s 8.015, 3s 9.23, 3s 6.22, 3s 3.757, 3s 2.182, 2P 1.4788, 2P 2.897, 2P 5.87
1s 8.016, 3s 9.21, 3s 6.03, 3s 3.69, 3s 2.196, 3s 1.04, 2P 1.4777, 2P 2.895, 2P 5.88
1s 8.0138, 3s 9.18, 3s 6.00, 3s 3.796, 3s 2.249, 3s 1.03, 4s 1.28, p orbitals as in set 4
s orbitals as in set 5, p orbitals as in set 1
s orbitals as in set 5, 2p 1.318*, 2p 2.121*, 2p 3.744*, 2p 8.45* (from BGCR)

TABLE X. Basis sets (Ref. 32) for fluorine. An asterisk indicates that the orbital exponent was not reoptimized.

1. CRY:

2.
3.
4
5.
6.
7.

Is 8.5126, 1s 14.4130, 2s 1.8599, 2s 2.7056, 2s 4.9019, 2s 6.4440, 2P 1.2655, 2P 2.0301, 2P 3.9106,
2p 8.6363
s orbitals as in set 3, 2p 4.180, 2p 1.848 (from BGCR)
1s 9.017, 3s 10.37, 3s 6.79, 3s 4.169, 3s 2.452, 2p 1.603, 2p 3.125, 2p 6.00
ls 9.016, 3s 10.32, 3s 6.80, 3s 4.136, 3s 2.433, 3s 1.11, 2p 1.601, 2p 3.124, 2p 6.00*
1s 9.0167, 3s 10.40, 3s 6.63, 3s 4.209, 3s 3.513, 3s 1.11*, 4s 1.44*, p orbitals as in set 4
s orbitals as in set 5, p orbitals as in set 1
s orbitals as in set 5, 2P 1.434*, 2P 2.356*, 2P 4.249*, 2P 9.435* (from BGCR)

parison we also carried out UHF and GF type
calculabons where the orbitals cif different m~ and
same spin were restricted to have the same radial
dependence. W'e will refer to these as LRUHF and
LRGF calculations (LR stands for I, restricted).

The hyyerfine constants and some other yroper-
ties for HF, UHF, PUHF, and GF calculations
using the s-cusp (7/4) sets are collected together
in Tables XI, XII, and X~~~SB (see Appendur. B for
definitions of terms). The equations used to cal-
culate Q(0) for GF and PUHF wave functions are
derived in Appendix A.

DISCUSSION

Spin Densities

The spin density, Q(0), has not been unambig-
uously determined exyerimentally for B and C;
thus there is some difficulty in assessing the ac-
curacy of Q(0) for these atoms. However, for N,

0, and F the GF results are 63, 87, and 242% too
high and the UHF results 91, 71, and 81% too
high. On the other hand PUHF leads to a Q(0)
21' too high for N and 11 and 38% too low for 0
and F. Similarly it appears that GF and UHF
lead to too high a value of Q(0) for B and C and
that PUHF leads to more nearly correct values
for these systems. This better agreement for
PUHF is probably just due to a peculiar canceling

.of errors in the contribution to Q(0) from the ls
and 2s shells arid may not occur for atoms in
other rows of the periodic table.

The difference between the experimental and
Hartree-Pock values of Q(0) is said to be due to
core polarization since the primary change from
the Hartree-Fock wave function is an incorpora-
tion of spin density into the atomic core. We see
here that for 8, C, N, 0, and F, correlation effects
not included in the GF and UHF wave functions
must have an effect on Q(0) comparable with the
effect which are included. This is in contrast
with the case of the Li atom where the correla-
tion effects were small.

Even poorer results have been reported" for
Q(0) of the P atom using UHF wave functions; in
this case the calculated Q(0) had the wrong sign.
On the other hand, for some transition metal
ions'y "rather good agreement had been obtained
between the UHF-calculated and experimental
values of Q(0). This may indicate that the GF and
UHF methods will treat core polarization for d
electrons more accurately than for p electrons.
On the other hand, this agreement may be just a
coincidence and of no general significance.

We should point out that because of the extreme
sensitivity of Q(0) to basis set, one must be care-
ful to use large appropriate basis sets to ensure
that Q(0) has converged with respect to further
increase in the basis set. Because of the large
basis sets required for only fair convergence of
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Q(0) it would seem appropriate to solve the SCF"
equations numerically if a reliable value for the
SCF value of Q(0) is desired. However, the nu-
merical approach would be far more difficult for
molecules. Because of the apparent importance

of the cusp condition for spin densities, it would
be sheer folly to expect the Q(0) from calculations
using Gaussian orbitals ' to be even remotely re-
lated to the correct Q(0) without extensive cal-
culations and comparisons to atomic results.
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TABLE XIII. Properties for ¹ All quantities are in Hartree atomic units.

N HF
UHF
PUHF
GF
EXPER

Energy

—54.400 92
—54.404 53
—54.405 77
—54.406 42
—54.612 2b

p(0)

206.126
206.026
206.027
205.975

12.080
12.073
12.064
12.067

g(0)

0.0000
0.1853
0.1179
0.1579
0.097 0505

0.000
0.517
0.329
0.441
0.271 015c

Using basis set N17.

bSee Ref. b, Table VI. s

From L.W. Anderson, F.M. Pipkin, and J.C. Baird,
Jr. , Phys. Rev. 116, 87 (1959), N.

For C, N, and 0 we obtain rather similar val-
ues of Q(0) from the UHF and GF calculation.

This is in agreement with the proofs by MarshalPO

and Bessis et al. "that Q(0)UHF = Q(0)GF through
first order in the splitting of the orbitals. On the
other hand we find that Q(0)PUHF is quite different
from Q(0). This should settle speculations'~"
that for the first-row atoms Q(0)PUHF rather than
Q(0)UHF would be closer to the Q(0) obtained by
orbital optimization after spin projection [i.e. ,
Q(o)GF].

In summary we have the following results for
Q(0). If for the atoms B through F we consider
the HF wave function, we calculate that the spin
density is zero. Allowing the exchange terms to
split the core electrons (to obtain the GF wave
function) induces a net positive spin density at the
nucleus, referred to as core polarization. This
core polarization is accompanied by only a small
decrease in energy. Accounting for the remaining
instantaneous correlations of the electrons de-
creases the energy sharply down to the experi-
mental energy and also must lead to a significant
reduction of the spin density at the nucleus.

More pictorially one can consider the change
from HF to GF as primarily that of allowing
triplet character in the 1s and 2s shells (coupled
together to yield a singlet). As expected this
leads to significant changes in Q(0) but not in the
energy. Enormously more significant changes in
the energy are obtained by correlation within the
1s shell and the 2s shell and between these shells,
where each is taken to be singlet coupled. Such
effects would not lead to any change in Q(0) ex-
cept that they reduce the importance of the core-
polarization terms (since there are now other
avenues for effecting correlation) and thus lead
to a decrease (in magnitude) in Q(0) from the GF
value. On the basis of this physical argument we
would expect the magnitude of the GF value of
Q(0) to always be larger than the experimental
value; this has been observed for all calculations
carried out to date. '4~ "

Magnetic Hyperfine Radial Constants

The orbital and spin-dipole magnetic hyperfine
interactions are characterized by the parameters4'
(r ') I and(r ')d, respectively (see Appendix B).
The accuracy of these parameters depends on the
quality of the wave function over the whole atom;
hence all of the wave functions lead to somewhat
similar values for these parameters.

The HF wave functions for these atoms lead to
(r ') I =(r ')d, as do the UHF and PUHF wave
functions for B, C, and N and the LRUHF wave
functions for 0 and F. However the experimental"
value for this ratio (r ') d/(r ') I is 1.133 for 0
and 1.074 for F, which are close to the ratios ob-
tained from the UHF, PUHF, LRGF, and GF cal-
culations. 44 Since the UHF, PUHF, and GF wave
functions allow P orbitals of the same spin but dif-
ferent m~ to split, the above agreement would
seem to indicate that the 10%%uo splitting in (r ') is
due to an orbital exchange effect quite analogous
to the spin exchange effect leading to nonzero spin
densities for these atoms. However the LRGF
calculations also lead to good values for (r ')d/
(r ') I . despite the fact that such splitting is not
allowed. In this case the (r ')d differs from
(r ')I because in an expanded LRGF wave function
each orbital is sometimes associated with an up
spin and sometimes with a down spin. Thus since
the spin-dipole operator involves the product
[(3s' —r')/r'] ss, ' we obtain a different weighting
of various terms than is the case for the orbital

A

operator l~/'~'. From this analysis it appears
that the correct (r ~) splitting is a natural result
of considering general SCF wave functions which
have the correct spin symmetry. However recent
limited configuration interaction (CI) calculations"
indicate similar (r ) splitting for B and C, where-
as the GF wave function leads only to a very small
splitting here (the splitting has not been deter-
mined experimentally for either atom).

Since the magnetic moment of "C is not known
experimentally, ' we could not compare our cal-
culated hyperfine constants directly with the ex-
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perimental values. " However, we may use the
calculated and experimental a&, to deduce the
magnitude of p,& for "C. From the HF, UHF,
PUHF, and GF calculations of a„we obtain
1.056, 0. 906, 0. 967, and 0. 903 for l JLt~l, re-
spectively. Comparing the errors in the calcu-
lated a~, for other atoms, we estimate p~=0. 97
+0.06 for "C. This is similar to a value of
l p~l =0.99V obtained by Schaefer eI; al. "from
the limited CI calculations. Previously Bessis
ef;al. "obtained I p,~) =1.0563, 0. 8856, and
0. 9591 for HF, UHF, and approximate PUHF cal-
culations, respectively, and Haberstroh et al. "
obtained I p~I =1.02V using a privately communi-
cated wave function from Moser.

Electric Hyperfme Interactions

The effective(r ') labeled as (r ')I and (r ') d
in Tables XI and XQ are related to the orbital and
spin-dipole hyperfine constants, . al and ad in ex-
actly the same way as would be the case for the
HF wave functions. For all the wave functions
(HF, UHF, PUHF, and GF) discussed here, the
(r ') is similarly related to the electric fieldl
gradient at the nucleus and (x ~)d is similarly re-
lated to the expectation values of ge (l ~ s)/r',
which would be required in evaluating the electron-
nuclear part of the fine-structure splitting.

Using the (x ')I from the calculations best fitting
the observed magnetic hyperfine structure and the
measured"~ "~"quadrupole coupling constants
(see Tables XI and XII), we calculate the follow-
ing nuclear quadrupole moments (in barns) "B:Q
=0. 037, "C:Q=0. 031 (assuming p~ for "C to be
negative), and "0:Q = —0. 025. These values
should be good to about 10% and are similar to the
values predicted by Schaefer et al. " See Appen-
dix B for definitions relating to the electric hyper-
fine constants.

We have restricted the SCF~ orbitals to be
eigenfunctions of lz,. we will call this the ml re-
striction. If upon relaxation of the ml restriction
the SCF are still eigenfunctions of l, then be-
cause of Brillouin's theorem" for HF, UHF, and
GF wave functions, the first-order perturbation
energy is given by the diagonal matrix element,
as has been assumed in discussing the hyperfine
interactions. However, if upon dropping the ml
restriction, the SCF orbitals should change, then
the other part of the first-order energy, "2Be
x((' IH' }g'), may be nonzero (here SP and g' are
the zero-order many-electron Hamiltonian and
wave function and g' is the first-order many-
electron wave function; bear in mind that P is an
approximate wave function and thus not an eigen-
state of H'). Such corrections are usually re
ferred to as Sternheimer" corrections and have
not been applied in this paper since no reliable
values for these corrections are available.

Comparison with Previous Calculations

Blinder" and Das and Mukherjee" carried out
early calculations for the UHF value of Q(0) ofÃ
Blinder's result has the wrong sign while Das and
Mukherjee used a perturbation approach to ob-
tain the correct sign but only 1/3 of Q(0)UHF.
Goodings" carried out numerical UHF calcula-
tions on B, N, and F obtaining values in good
agreement with those reported here. As discussed
earlier the numerical approach is probably su-
perior to the analytic approach since it avoids
problems with optimizing basis sets and leads to
accurate values for the wave function at the nu-
cleus. Bessis et al. " "carried out calculations
for B, C, N, 0, and F using non s-cusp 6/4basis
sets. Since their basis sets were neither opti-
mized nor of s-cusp type, their values of Q(0)UHF
were not always close to the correct value.
Bessis et al. " "found that in all cases the PUHF
led to better values of Q(0) than did UHF. How-
ever, they did not actually calculate the PUHF
wave function. Instead they used

(2)

This approximation (see Ref. 12, also see Ap-
pendix A) holds if the splitting of each pair of or-
bitals Qi~ and P@ (corresponding to the doubly
occupied orbital Qi in the HF wave function) is so
small that (pis I pif, ) =1. The exact expression
for Q(0) for a spin-projected Slater determinant
is derived in Appendix A" (the expectation values
for spin-independent properties are found with the
expressions given in Ref. 24). We have correct-
ly projected many of the wave functions in Tables
I, II, III, VII, and VIII and found that (2) is a
fairly good approximation for large basis set cal-
culations (see Tables XI, XII, and XIII). Note
that for approximate PUHF it was not at all clear
how the spin dipole term

( ~g [(3Z' —r')/r']s ~)

was to be obtained for the projected wave function.
The expression in Appendix A obtains the exact
value for this property also, and values for B, C,
0, and F are given in Tables XI and XII.

Nesbet~ has recently carried out calculations on
N using generalized Bethe-Goldstone equations.
The calculations for Q(0) were only through third
order and it could be that higher-order terms are
important; however, the calculated Q(0) was
0. 1008 which is in excellent agreement with ex-
periment. In addition Schaeffer, Klemm, and
Harris" have recently carried out single-excita-
tion configuration interaction calculations which
account for a large fraction of the correlation
energy but lead to Q(0) somewhat less than the
experimental values. After submission of this
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manuscript, a calculation on B by Kaldor ap-
peared" which used the spin-polarized extended
Hartree-Fock (SPEHF) method (which obtains
wave functions equivalent to the GF wave func-
tions). This calculation used a restricted basis
set, BV, and thus obtained a Q(0) about 33% too
large (see Table I). Other approaches have re-
cently been applied to Li by Larsson'4 and
Lunell. '5

A recently developed methodw combining various
Gg& operators has given even better results for
Li than GF and promises to do well on larger sys-
tems also since this method generally leads to
smaller Q(0) than GF. Work is now in progress
in applying this method to larger systems.

&F& =&4 l&,f(i) Io @&/&4 lo (A-4)

which can be evaluated from the density matrices
given in III. '4 Now consider the operator

M=+, m(i)f (i), (A-5)

where m(i) is independent of spin. Here we can-
not carry out the steps taking (A-2) to (A-3) since
co and 0 do not commute with M. Thus we will use
a different approach. From Appendix C of I (Ref.
57) we have"

CONCLUSIONS
4x=(N!/8') ~(c»x), (A-5)

The GF and UHF methods do not lead to partic-
ularly good values of spin density for B, C, N, 0,
and F, not even when very large basis sets are
used. This means that correlation effects axe im-
portant here and that they decrease the magnitude
of Q(0). In addition the usual type of basis set
leads to slowly converging Q(0). For these rea-
sons most published calculations of the Fermi con-
tact contributions to the hyperfine splitting in
atoms and molecules are not expected to be very
reliable.

APPENDIX A. SPIN-DEPENDENT PROPERTIES

Expectation values and matrix elements for
spin-independent operators are quite simple and
have been treated before. " " If F =/if(i) is a
one-electron spinless operator, then"

where 8 is the antisymmetrizer,

tt =(I/N!)Z g r.

Thus (M) = A/28,

where A=-2
t ! N! I (G Cx IMIG 4x)

eN! el 2

'! «@~ibex IMI«'~. ix&
2eet

(@~„xI2MI@c&a„x), (A-3)
BNI

since Ce = 6 . Similarly

8N! 8 l'
N„I &Gf4x IGfcx& (A-9)

&G cx I~,.f(i)!G ~x&
8Nt

, &@~ibex I@4'~ibex&.nI mt

(0 e(g-- x lgf (i)!0 4(o--x& (A-2)
o rf rf . sf sfxs vs Z

and, since /if(i) commutes with &o and 0 we obtain

The numerical factors introduced in A and B are
for later convenience. Expanding @and separating
the iritegrals over spatial and spin coordinates,
we obtain

&+x P,.f(i)lo,o, c— (A-3)
B=z &Cled@)t:, , ((o x lr(g x). (A-10)

Thus
Now C' =

QI Q2
~ ~ Q (A-11)

&G ox l~;f(i)IG cx&

=f &@IX,.f(i)!o @)&x!~--x&,

where f is the number of terms in the sum over
r Hence' s

where" &P. Ig. ) =5

'b&z 2 U

(y, I@. )=&5,

(A-12)
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Thus the sum over r in (A-10) may be restricted
to permutations which do not interchange elements
of different columns of the tableau in Fig. 1. The
group of such permutations is called' %„ the
group on the columns. Now consider

where oN 1 i is a permutation over the N-1
elements not including i, and since

o '[2s (i)]o =2@ (j),g 8

we have

and expand 7,
7'= Ursv' t's

p, r, s

Using A-13 we obtain

Q 0 Q 0 OI ~ Q Q

11 11 11m 11 11 11' 11

8&x l~»x& =&,Ull, &x lox)

However because of the form of X,

x=a(1)n(2) ~ n(n)P(n+1) ~ P(N) (A-18)

we have

&x», (j) ~~llx& = 8»», , &xl», (j)lx&.
1

FC (f'g

Thus

where' 0', is the group on the rows of Sy in Fig. 1.
Thus

(A-14)

v'= —r Z
7 8 7 j=1 o.

Now we rewrite A as

& = ~ & &+ l~(i) lv c & v, (A-15)
z v cQLy

(n N
Q A. — Q A. I

It =1 jn 1+

(A-19)

where

&&11X 2s (i) r&11X)
i 8

7 11 z

QA. -2 Z A.
8 7'. j . j~'

I,j =1 j =n+1

But

Us!m! r 1la
N

where

U
.(j, i) 11'(r .(j,i) .j oIN- l, i

N
But Q A. =QU U =8U

j=1 0'

(from the orthogonality theorem on group rep-
resentations),

n+I n+2 " N

thus
N

V'=g U
T r

I
ill 8 . j )

Now consider i =N, in this case

FIG. 1. The first Young's tableau for the shape
fn, m]. This is the tableau used for co.

U =U for j&m,
t
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thus that is, 1f =i. In this case(4( vc) =1 for all
v c5t, (see A- 14) and

2m

1 N 11'-l, N 11~+N- 1,N

Since i =N we have

Uat = U+11' 1 Ã oN 1

where e* is the shape obtained from 0. by de-
leting N, thus

U
110 117 0' 11m

U =8 U

7 7

(by the orthogonality theorem for I~ 1), where
8* is the 8 for ~*. Hence

m~ g (n-r)l (n +I)
n!

0 (m —~) t (is —m+1) '

Similarly if w does not include i, then

(e m(f)~ve)= y.(0)~*

(see A-15), and if & includes i,

(C m(f) r4) =y (0)y ., (0), .

wherei'=i+n ifi &n, andi =i -n if i &n. Using
these values and (A-21) and (A-22) we obtain

Q(0) = [(n —m)/(n+2-m}(n+2-m)]

m

E (s+3-m)[|t,. (0)]'-ay,. (0)/f5(0)
z=1-

V = f U (I-am8~/8).
11m

(A-ao) -(~-~+&)I. 0+(&)1' + E I+ (O)j'I
i=PS+1

Hut m8*/8 =(8+1-m)/(n+a-m),

and if v' involves r disjoint transpositions, then"
~»,,= I/(").

We will refer to the part of Q(0) involving Qz and

/f5 with i up to m as Q(0)core. Thus within the ap-
proximation (A-23) we obtain

(s-m)
(n+ 2- m)(P)

A related analysis yields

(A-21)
Q(0)

core (n —m)
Q(0)

core
PUHF (n+ 2- m) UHF

m

i=1
s (n+2+v) N

7
=

(s r) 7r r
(A-22)

From (A-16) we see that for i)n, we have

@&zan =@7.&N; and for i &n, we have Vq~&=VT&n,
if i is not included in vz. However if i is in-
cluded in 7y, the derivation proceeds just as for
i=N, and we obtain Vq ~=V~~

If in (A-5) we take m (i) =6(r~), we call the ex-
pectation value of 2M the spin density, Q(0}. Thus
(A-21) and (A-22) are sufficient to exactly evaluate
the spin density.

In the past the spin density has been obtained" "
by approximating (g~ I Pj5) as

(A-23)

where

Q"'UHF = ~[ &M"']'- [&$"']'&
a=1

is the core part of the spin density for UHF wave
functions. Since

(n -m)/(n+2-m) =2&/(~+2) =&/(~+1),

this leads to

core 8 core
PUHF S+I UHF

which has usually been 8sed' "to obtain approx-
imate values for Q(0)PUHF
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APPENDIX 8. THE HYPERFINE SPLITTING CONSTANTS

(I ) The Magnetic Hyperfine4phtting Constants.

We take the magnetic hyperfine interaction operator as"

( 2 ~(l ~ I) g 3(" ~ )( ~ I) — '(" ~ I) 8 g I ]
"hff =gs "agN"N

~

+ - -, +3 5r r I
8 e

and we take the matrix elements to be"

&ZM IM ~II ~ZM IM) =A ~ m, &J~ I~ ~II„,. ~Z-1, M IM )=X (J'-~ ')'"I .

In addition we define the reduced hyperfine constants, a~ and ag g

J s If N~N J' J', J'- 1 s I& N J, J'- 1

and define

a =(1/L}&LSLSI~ (I /r')ILSL»

a = S (ISI.S g 5(r)C' ~LSLS) =(2S ) 'Q(0),
C 8

a =[SI (2L —1)] (LSLS~L [(3g —r )/r ] s ~LSLS),

where Q(0) is called the spin density at the nucleus. Then for 'P states we have

(B-3)

(B-4)

(S 8)

a, ,=-,' [2(2/g )a, +a„+a ] =-;[(2/g )(r-'), --,'(r-') ] +(8v/9)Q(0),

al 2
= —,

' [4(2/g )af —10ad —a ] =4 [(2/g )(r ') +(r-') ] —(8v/9)Q(0),

[(2/g ) 1+ d
— ] = —[(2/g )( )

1
— ( )d] —(8 /9)Q(0),

where the (r-')I and (r ')d parameters have been introduced for convenient comparison of terms.
For 'P states we have

a2 [(2/g )af +ad+a ] 2 [(2/g ) ( r )1 + 5 &r ) dl + (2v/3)'Q(0)

al =-,'[(2/g )af —5ad+a ] =2[(2/g )(r )I —(r ) ]+(2v/3)Q(0),

a =(1/2M3)[(2/g )a +2a -a ] =(1/2M3)[(2/g )(r ') + —',(r-') —(4v/3)Q(0)],

a =(2/3)"*[(2/g )a ——,'a —a ] =(2l3)"*[(2lg )&r '& —a &r ') —(4v/3)q(0)],

2,
0=0.

For 4S states we have a3 =a = (8w/9)Q(0).3 2 c

To convert aJ from atomic units to Mc/sec, we multiply by C = 95.5198gN." For comparison to ex-
perimental. results we have used the following values of Igw" and C:
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lip. 2. 688 52, 171.205; ~3C: 0. 702381, 134.183; N: 0.403 71, 38. 562;
VO- 1 893/0 72 3543- 9F 2 62850 502

(2) The Electric Hyperfine Constants

We take the perturbation to be

U ~2

where Q.. =Q (3R.R. -R'6. . ), q ..=Z (3x r -. r.'p. . )/r',ij n i j ij ' ij e i j ij

and 8 and r represent nuclear and electronic coordinates, respectively. Then for an atom

(JIFF ~H ~JIFM ) =[0 /2I(2I-1)J(2J-1)][3(I~ J)2+2 (I.J) —I(I+1)J(J+1)] (B-S)

where (I ~ J) =2[F(F+1)—I(I+1)—J(J +1)].

The quadrupole coupling constant, bJ, can be written as

(B-9)

where the nuclear quadrupole moment, Q, is

q=(II ~Q 3Z2-R2~II)

and the electric field gradient, qJ, is

q =(O'J Q (3z' —r')/r' JJ).J e

We will evaluate electric field gradients for 1 LMLSMg) type wave functions, for which we define

q =(LLSM ~Q (3z' r')/r' LL-uS ).

In this case q =C& q
1,8

J Jq

(B-10)

(B-ll)

(B-i2)

(B-i3)

where (see Appendix C)

C = [6(L .J') ' —3 (L ~ J) —2L (L + 1)J (J+ 1)]/L (2 L —1)(J+ 1)(2J+ 3)Jq

(L.J) = —.'[J(J+1)+I(I, +1)-S(S+i)].

(B-i4)

(B-15)

For maximum J, we obtain CJq =1, and for 'P we obtain C1q" =- &. For the states and wave functions
considered in this paper we have

q = —5(w s)&for B~P
/

and 03P; and q =+ —',(r ') for F'P
/

and C~P .

If in Eq. (B-9) bJ is inM&, qJ is in a. u. , and Q is in barns, then

bJ (Mc) = 234. 9V4 && qJ (a.u. ) Q (barn), (B-16)

where the conversion factor is based upons 1 cm '=4. 556336x10 ' hartree=2. 997 925&10' Hz and
1 F0=0 52916V A
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APPENDIX C

The relationship between qJ and qL is derived as follows. Using the signer-Eckart theorem" we have

(LM SM l~; ILM SM ) =[q /L(2I —1)]&LM SM IT" ILM SM, ) (c-1)

where T.. —= g (L.L.+L L.) —L26
ij ' i j qi ij'

(JM lj,, lJM ) =[q /J(2J —1)](JM Tf. JM ), (c-2)

where T.. = 2 ( J.J + J.J. ) —J26.. .ij ' i j ji ij'

But for I,S coupling we can expand lI SJM ) in terms of lLMLSMS) to obtain

LSJM ) =[q /L(2L —1)](LSJMT"'ILSJM ).J zj J L J (c-3)

In order to evaluate the right side of (C-3), we use the Wigner-Eckart theorem to write

&Ls JM lT, lLSJM ) =c&LSJM lT. . lLSJM ) . (c-4)

Next we note that

(LSJMJ lZ T.. T.. lLSJM =C(LSJMJ lQ T.. T.. lLSMJ)
zj

J .. zj ij
zj

J J .. zj

with the same constant C as in (C-4).

(c-5)

But —Q T.. T.. =3(L ~ J)(L.J)-—(L ~ J) —L2J' and —Z T.. T.. =2J J ——J',3" ij ij
zj

2 3 .. ij ij 2
ij

and LsJMJ) is one eigenstate of both of these operators Thus.

C = [6(L ~ J) 2 —3(L ~ Z) —2L(C+1)Z'(J'+1)]/J(J+1)(2J'- 1)(2J'+3),

where the number (L ~ J) is given in (B-15). Hence we obtain q& =C q with C LS as given in EqJq L Jq
(B-14). A similar approach is used to relate aJ and af, ad, and ac as given in Ref. 26.
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Dispersion Calculation of Resonant Photo-Ionization Line Shapes:
Application to Helium

William P. Reinhardt*
Department of Chemistry, Harvard University, Cambndge, Massachusetts 02138

(Received 16 January 1969)

For resonant photo-ionization of spherical atoms, unitarity and simple assumptions about
the analytic properties of inelastic scattering amplitudes allow calculation of the photo-
ionization line shape from the elastic final-state phase shift. Explicitly, the Fano shape fac-
tor, q, is given by cot6, where 6n is the nonresonant elastic phase shift for the final
state. This result predicts that if 6nr is constant for a series of resonances below an in-
elastic threshold, the values of q will be constant for the series and independent of the type
of resonance. For photo-ionization of helium, values of q calculated from the elastic phase
shifts are seen to be in fair agreement with those calculated from wave functions.

I. INTRODUCTION

In atomic and molecular physics it is usual to
assume that the Hamiltonian is known. This
means that, in principle, one can determine wave
functions appropriate to processes of interest
and, using these wave functions, calculate or
predict experimental results. However, in many
cases of interest the wave function is not im-
mediately available or mould be difficult to cal-
culate to the necessary accuracy. It is thus of
interest to investigate the use of mathematical
techniques mhich do not depend directly on the
use of wave functions, but rather on the symme-
tries of the Hamiltonian and on simple conjec-
tures as to the analytic structure of certain am-
plitudes mhich describe processes of interest.
These techniques' have been developed for use
in high-energy particle physics where even the
existence of potentials (in the ordinary sense) is
in doubt and thus theories must be based on uni-
tarity (conservation of probability) and conjec-

tures as to symmetries of the urdrnomn equations
of motion.

In atomic and molecular scattering processes,
as in particle physics, it will prove useful to
consider determining the scattering amplitude
directly, rather than calculating it through the
intermediary of the wave function. Rather than
directly making use of the Mandelstam double
dispersion' relation which provides a dynamical
framework for direct calculation of the scattering
amplitudes, and, thus, is equivalent to the fa-
miliar Schrodinger dynamics, ' we will concentrate
on those aspects of the theory which point to re-
lationships between the results of different experi-
ments. For example, in the case where an in-
elastic process is dominated by a single final-
state interaction we shall see that the phase of
the inelastic amplitude is determined by the phase
shift for elastic scattering in the dominant final
channel. This result is known as watson's the-
orem4 and is often useful because the phase of
the inelastic amplitude determines the discontinu-


