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Calculations on the hyperfine-splitting constants for the atoms B, C, N, O, and F have been
carried out by both the unrestricted Hartree-Fock (UHF) method and a method corresponding
to optimizing the orbitals of a Slater determinant after spin projection (the GF method). This
is equivalent to one form of Lowdin’s extended Hartree-Fock method. These calculations
account for core-polarization contributions to the spin density but not for any significant
part of the electron correlation. It is found that the core-polarization term is significantly
larger (for N about 65% larger) than the experimental value, indicating that the remaining
correlation effects significantly decrease the magnitude of the spin density at the nucleus.

Since these calculations used analytic expansions, an extensive set of basis sets was ex-
amined in order to determine what type of basis set is required in order to obtain accurate

values for various properties.

On the basis of these calculations and the observed hyperfine structure, we obtain a
magnetic moment (in nuclear magnetons) of uy== 0.97 for ¢ and electric quadrupole mo-
ments (in barns) of @=0.037 for !B, @=10.031 for !!C (assuming by for ¢ to be negative),

and @=—0.025 for 0.

INTRODUCTION

Of the interactions responsible for the hyperfine
structure in atoms, the Fermi contact term!™5 has
been the most difficult to predict accurately. The
reason is that this term is proportional to the spin
density at the nucleus, Q(0), and thus depends
solely on the accuracy of the wave function at a
single point, the nucleus, which does not even con-
tribute significantly to the energy. It was recog-
nized early that the Hartree-Fock (HF) wave func-
tion does not lead to reliable values for Q(0).°
The reason is that only s orbitals can contribute
to @(0) yet in most atoms, suchas C, N, O, P,
and Mn, the s orbitals are all spin paired, leading
to a predicted @(0) of zero. One solution 716 to
this problem has been to retain a Slater determi-
nant wave function, but relax the restriction that
the s orbitals be doubly occupied. This method,
called the unrestricted Hartree-Fock (UHF) meth-
od, leads to nonzero @(0) which are generally
within a factor of 2 of the experimental value.
However the UHF wave function does not have the
correct spin symmetry. 1,1%1%18 This led to the
use of wave functions which were spin projected
in order to have the correct spin symmetry
(PUHF), 10012-16,19  For some systems PUHF led
to worse results'®?° than UHF and for others it
was better. 12716 It was generally felt'~5:1220 that
the problem is that the orbitals should be opti-
mized after spin projection rather than before. ?',22
This approach is called the spin-polarized ex-
tended Hartree-Fock (SPEHF) method and was
originally suggested by L8wdin.?»22 However, the
complexity of such procedures prevented'~° such
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calculations until the recent development of the
GF method, 2% ?* which leads to wave functions
equivalent to those obtained by optimizing the or-
bitals of a Slater determinant after spin projection.
This method has been used to calculate the Q(0)
for the ground® and excited®® states of Li, and as
expected the results are in good agreement with
experiment. However, we expect more trouble
for larger atoms since the contributions to @(0)
from different closed shells often tend to cancel
one another. In this paper we present the results
of GF calculations on the ground states of B, C,
N, O, and F. We find that the calculated @(0) de-
pends very sensitively upon the basis set for both
GF and UHF wave functions. For these atoms the
Q(0) from GF and UHF calculations are 60% to
250% higher than the experimental values while
the PUHF results are rather close to experiment.
This is in contrast to the results for the Li atom.

THE CALCULATIONS

The GF method has been described in detail
elsewhere. 232427 The equations which must be
solved for the GF orbitals are similar to the HF
equations and are solved in the same way. We ex-
pand each orbital in terms of a finite set of basis
functions, {xu}, and solve for the coefficients of
the expansion.?® Slater orbitals®® are used, and
in order to minimize bias in the basis set, the or-
bital exponents are optimized. We found that the
spin density at the nucleus,

QW) =(¥|2;80r,)(28, )| W, (1)
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is quite sensitive to the specific basis set used.
Consequently, we considered a number of different
kinds of basis sets in order to determine if cer-
tain types of basis sets might lead to faster con-
vergence in @(0) (as the size of the basis set is
increased). We were also interested in deter-
mining if any small basis sets (i. e., about double
zeta size) would consistently yield reliable values
for Q(0), the reason being that calculations in
polyatomic molecules cannot presently use basis
sets as large as those we can consider for atoms,
yet it would be of great interest to calculate spin
densities for polyatomic molecules and radicals
for comparison to the experimental information
available.

. Extensive calculations®!; 3 were carried out on
B, C, and N and are reported in Tables I, II, and
III (the basis sets are listed in Tables IV, V, and
VI). In addition to the energies and @(0) for the
UHF and GF calculations, we report the values for
several properties, (Jl;/7°),p(0)=(35(r;)) (the
density of electrons at the nucleus), and (§72),

in order to give an idea of how well these quanti-
ties converge for large atomic basis sets. We
found that the trends for Q(0) and other proper-
ties were the same for both UHF and GF, so
many basis sets were rejected before carrying
out GF calculations.

We separately optimized the orbital exponents
for several basis sets for the HF, UHF, and GF
wave functions and found the orbital exponents to
be the same within the estimated error in de-
termining the orbital exponents. Consequently,
all orbital exponents were optimized for the HF
wave functions since the efficient LMSS atomic
program® was available. For the larger basis
sets we found that reoptimization of the orbital ex-
ponents was often not necessary (e.g., compare
the p orbitals of the C5 and C14 basis sets).

We considered two different types of basis sets.
The first is the usual type with several 1s, 2s,
and 3s orbitals and several 2p orbitals. These
are listed first in each of the tables. The second
type has one 1s, no 2s, and several 3s orbitals
(and maybe a 4s). As pointed out by Roothaan and
Kelly* such a basis set would automatically lead
to each self-consistent field (SCF) s orbital satis-
fying the cusp condition if ¢ 1s =Z, the nuclear
charge. We will call such a basis set an s-cusp
set. We thought that the cusp condition would be
quite important for a good Q(0), so we considered
an extensive series of s-cusp sets. As expected
the Q(0) converged far more rapidly (as a function
of the number of basis functions) for the s-cusp
sets than for the regular-type basis sets. It was
not clear that the cusp condition for the p orbitals

TABLE I. Energies and properties from UHF and GF calculations on B. All quantities are in Hartree atomic units. 2

UHF GF
Basis set? Energy Q(0)° 1 ,/7) p(0)d ) Energy QO)°
1 2/1 —24.49837 0.0000 0.5916 68.193 14.752 —24.49837 0.0000
2 3/1 —24.50546 - 0.0492 0.5891 69.453 14.395
3 3/2 —24.52676 —0.0856 0.7506 71.692 15.401
4 3/2 —24.526 94 -0.0932 0.7485 71.858 15.364
5 4/2 —-24.52812 0.0032 0.7572 71.569 15.752
6 4/3 —24.52918 0.0057 0.7787 71.937 15.832 —24.52952 0.0256
7 5/4 —24.52925 0.0110 0.7806 71.979 15.825 —24.529 66 0.0483
8 6/4 —24.52909 -0.0121 0.7825 71.931 15.879
9 6/4 —24.52889 0.0205 0.7828 71.538 15.762 —24.52938 0.0385
10 6/4 —24.52930 0.0258 0.7814 71.927 15.837 —24.52980 0.0439
11 3/1 —-24.49644 -~0.0690 0.5808 72.918 13.786
12 3/1 —24.50899 0.0235 0.5872 68.917 14.612
13 3/2 —24.51972 0.0135 0.7486 68.882 15.486
14 4/2 —24.52873 -0.0153 0.7540 71.874 15.705
15 5/2 —24.52885 0.0115 0.7544 71.957 15.701
16 5/3 -~24.52920 0.0145 0.7789 71.973 15.767 —24.52959 0.0285
17 6/3 —24.52928 0.0192 0.7797 71.959 15.846 | —24.52975 0.0350
18 6/4 ~24.52928 0.0195 0.7816 71.958 15.842
19 17/3 -24.52929 0.0189 0.7798 71.965 15.844
20 7/4 —-24.52930 0.0192 0.7817 71.964 15.840 —24.52980 0.0361
Numerical® 0.0172 0.7819

2In Hartree atomic units, mg=1, B=1, e=1, the unit
of energy is the Hartree (27.2107 V), ® and the unit of
length is the bohr (0.529167 &), &

bgee Table IV for the basis functions.

CThe spin density at the nucleus, see Eq. (1).

dThe electronic density at the nucleus.
€Reference 11.
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TABLE II. Energies and properties from UHF and GF calculations on C. All quantities are in Hartree atomic units. 2

UHF GF
Basis set? Energy Q(0)° (Efz/r3) p(0)d Erdy Energy Q(0)¢
1 2/1 -37.62239 0.0000 1.2848 122.039 12.312 -37.62239 0.0000
2 3/2 —37.683 96 -0.2856 1.6404 127.192 13.377
3 4/2 —-37.68788 0.0057 1.6601 126.822 13.661
4 4/3 —37.68942 0.0194 1.6996 127.454 13.747 —-37.69021 0.0244
5 5/4 —-37.68970 0.1334 1.7060 127.548 13.751 —-37.690 68 0.1302
6 6/4 —37.68948 0.0887 1.7079 126.873 13.733
7 6/4 —37.68998 0.1011 1.7080 127.472 13.780
8 3/1 -37.63749 0.1493 1.2789 123.017 12.317
9 4/2 -~37.688 24 -0.0219 1.6547 127.261 13.636
10 5/2 —37.688 64 0.0650 1.6565 127.453 13.649
11 5/3 —37.68967 0.0709 1.7012 127.460 13.740 —37.69066 0.0675
12 6/3 —-37.68990 0.0819 1.7036 127.452 13.796 —-37.69101 0.0786
13 6/5 —37.68995 0.0811 1.7094 127.484 13.787
14 6/4 —37.68994 0.0824 1.7088 127.492 13.783
15 17/3 -37.689 95 0.0743 1.7039 127.517 13.791
16 7/4 —37.68998 0.0753 1.7091 127.515 13.778 —37.69114 0.0733
agee footnote a, Table I. CThe spin density at the nucleus, see Eq. (1).
bSee Table V for the basis functions. dThe electronic density at the nucleus.

TABLE III. Energies and properties from UHF and GF calculations on N. All quantities are in Hartree atomic units. 2

UHF GF
Basis set? Energy Q)° p(0)d Erdy Energy Q)¢
1 2/1 —54.268 90 0.0000 198.536 10.476 —54.268 90 0.0000
2 3/2 —-54.39288 —0.5447 205.283 11.719
3 4/2 —54.41005 0.0033 204.930 11.926
4 4/2 —54.40103 -~ 0.0262 204.686 11.949
5 4/3 —54.403 08 0.0263 205.933 12.032 —-54.40439 0.0118
6 5/4 —54.403 85 0.3187 206.014 12.038
7 6/4 —54.403 37 0.2237 204.979 12.058
8 6/4 —54.40451 0.2127 205.867 12.054
9 3/1 —-54.29040 0.4198 199.817
10 4/2 —54.40084 -0.0313 205.529 11.918
11 5/2 —54.40174 0.1611 205.883 11.942
12 5/3 —54.403 92 0.1751 205.892 12.042 -54.40562 0.1461
13 6/3 —54.40432 0.1934 205.569 12.092
14 6/3 —54.,404 37 0.1922 205.941 12.092 —54.406 21 0.1629
15 6/4 ~54.,40444 0.1940 205.939 12.078
16 17/3 —54.404 46 0.1835 206.029 12.088
17 17/4 —54.40453 0.1853 206.026 12.073 —54.40642 0.1579
Numerical® 0.1883
28ee footnote a, Table I. dThe electronic density at the nucleus.
bgee Table VI for the basis functions. €Reference 11.
©The spin density at the nucleus, see Eq. (1).
would be important for @(0), and this was verified sidered in the other atoms. It is possible that
for C where the 6/5 sp-cusp set 2 led to essential- an sp-cusp set would attain greater importance
ly the same Q(0) as the 6/4 and 6/3 s-cusp sets. for F or O because of the greater numbers of p
In addition the sp-cusp set required at least one electrons.
additional p basis function for an energy com- For a given s-cusp set the optimum ;¢ is not
parable to that for an s-cusp set (using 2p orbit- usually Z; consequently the cusp condition is not

als). For this reason only s-cusp sets were con- exactly satisfied although typically it is within
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TABLE IV. Basis sets (Ref. 32) for boron. An asterisk indicates that the orbital exponent was not reoptimized.

1. CR: 1s 4.6795, 2s 1.2881, 2p 1.2107
2. 1s 4.7841, 2s 1.3319, 3s 1.7110, 2p 1.2090
3. BGCR: 1s4.353, 1s 7.177, 2s 1.317, 2p 2.218, 2p 1.004
4. 1s 6.2495, 2s 5.0445, 2s 1.3221, 2p 2.2121, 2p 1.0025
5. CDZ: 1s 4.30481, 15 6.84691, 25 0.88143, 2s 1.40704, 2p 1.003 66, 2p 2.20855
6. BGCR: 1s7.732, 1s4.413, 3s 2.431, 2s 1.152, 2p 4.558, 2p 1.753, 2p 0.931
7. BGCR: 1s7.338, 1s3.996, 3s 4.796, 2s 1.724, 2s 1.110, 2p 5.509, 2p 2.155, 2p 1.243, 2p 0.845
8. BLM: 1s3.9469, 1s 4.3308, 1s 7.605, 2s 1.1571, 2s 2.0887, 2s 8.682, 2p 0.8662, 2p 1.3946, 2p 2.7692, 2p 7.3539
9. BLM: 1s5.0, 255.0, 355.0, 1s 1.14, 2s 1.14, 3s 1.14, 2p’s as in set 8
10. CRY: 1s4.4661, 1s 7.8500, 2s 0.8320, 2s 1.1565, 2s 1.9120, 2s 3.5213, 2p 0.8783, 2p 1.3543, 2p 2.2296,
2p 5.3665
11. 1s 5.0*%, 354.9485, 3s 1.8123, 2p 1.2033
12. 1s 4.7411, 3s 2.931, 3s 1.5352, 2p 1.2077
13. 1s 4.7403, 3s 2.931, 3s 1.538, 2p 1.003, 2p 2.210
14. 1s 4.9986, 3s 5.431, 3s 2.537, 3s 1.398, 2p 1.0029, 2p 2.210
15. 1s 5.0145, 35 5.794, 35 4.08, 3s 2.4173, 3s 1.3776, 2p 1.003, 2p 2.2082
16. 1s 5.016, 3s 5.79%, 3s 4.08*, 3s 2.405, 3s 1.374, 2p 0.934, 2p 1.754, 2p 4.54*
17. 1s 5.015, 35 5.79, 35 4.06, 3s 2.424, 3s 1.393, 3s 0.69, 2p 0.931, 2p 1.752, 2p 4.54*
18. s orbitals as in set 18, p orbitals as in set 7
19. 15 5.0172, 3s 5.83, 35 3.98, 3s 2.392, 3s 1.403, 3s 0.65, 4s 0.88, p orbitals as in set 17
20. s orbitals as in set 19, p orbitals as in set 7.

TABLE V. Basis sets (Ref. 32) for carbon. An asterisk indicates that the orbital exponent was not reoptimized.

CRY: 1s5.4125, 1s 9.2863, 2s 1.011, 2s 1.502, 2s 2.5897, 2s 4.2595, 2p 0.9554, 2p 1.4209, 2p 2.5873, 2p 6.3438

1. CR: 1s 5.6727, 2s 1.6083, 2p 1.5679
2. BGCR: 1s5.332, 1s 8.696, 2s 1.647, 2p 2.73, 2p 1.255
3. CDZ: 1s 5.2309, 1s 7.968 97, 2s 1.16782, 2s 1.82031, 2p 1.25572, 2p 2.726 25
4. BGCR: 1s9.153, 1s5.382, 3s 3.076, 2s 1.428, 2p 5.152, 2p 2.177, 2p 1.150
5. BGCR: 1s9.055, 1s5.025, 3s 6.081, 2s 2.141, 2s 1.354, 2p 6.827, 2p 2.779, 2p 1.625, 2p 1.054
6. BLM: 1s6.0, 25s6.0, 3s6.0, 1s 1.42, 2s 1.42, 3s 1.42, orbitals as in set 5
7.
8. 1s 5.7386, 3s 3.535, 3s 1.859, 2p 1.5655
9. 1s 5.989, 3s 6.464, 3s 3.08, 3s 1.691, 2p 1.2547, 2p 2.725
10. 1s 6.012, 35 6.93, 3s4.84, 3s 2.872, 3s 1.648, 2p 1.255, 2p 2.725
11. 1s 6.0129, 3s 6.93, 3s 4.77, 3s 2.877, 3s 1.6553, 2p 1.1502, 2p 2.178, 2p 5.159
12. 1s 6.013, 3s 6.93, 3s 4.75, 3s 2.877, 3s 1.673, 3s 0.85, p orbitals as in set 10
13. s orbitals as in set 14, 2p 3.088, 4p 1.163, 4p 1.847, 4p 2.998, 4p 4.85
14, 1s 6.016, 3s 6.95, 3s 4.74, 3s 2.859, 3s 1.675, 3s 0.89, 2p 1.054, 2p 1.625, 2p 2.781, 2p 6.824
15. 1s 6.018, 35 6.98, 354.58, 3s 2.894, 3s 1.667, 3s 0.87, 4s 0.996, 2p 1.1505, 2p 2.179, 2p 5.17
16. s orbitals as in set 15, p orbitals as in set 14

0.02 of Z for the larger basis sets. For larger
basis sets forcing {14 =Z typically changed Q(0)
only slightly (e.g., compare basis sets 13 and 14
for N in Table III) and led to a significantly larger
error in the virial ratio. 3 For this reason the
¢1s was optimized for most s-cusp sets.

The BGCR (5/4) and CRY (6/4) basis sets332
are essentially at the Hartree-Fock limit; how-
ever, we see that they lead to rather different
Q(0) and that both are probably still somewhat
from the limiting value. The slightly smaller
BGCR (4/3) sets although yielding nearly as good
as energy as the BGCR (5/4) lead to quite poor
Q(0) for all these atoms, as do the double-zeta
(4/2) sets.* In contrast the @(0) for s-cusp sets

seems to have converged for (7/3) and is fair
even for (6/3), (5/3), and (5/2) sets. It may be
that the use of an s-cusp (5/2) set for polyatomic
molecules would lead to fairly accurate®’ Q(0) if
they were corrected for the error in Q(0) for the
atom.

In Tables VII and VIII we report some calcula-
tions for O and F (the basis sets are listed in
Tables IX and X). In the UHF and GF calculations
for O and F, we solved for all p orbitals indepen-
dently as for B, C, and N. However, for O and
F this led to different radial dependencies for
different 7; and the same spin. Thus in these
calculations the many-electron wave function does
not have the correct spatial symmetry. For com-
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TABLE VI. Basis sets (Ref. 32) for nitrogen. An asterisk indicates that the orbital exponent was not reoptimized.
1. CR: 1s 6.6651, 2s 1.9237, 2p 1.917
2. BGCR: 1s6.395, 2s 8.28, 2s 1.967, 2p 3.247, 2p 1.497
3. CDZ: 1s6.11863, 1s8.93843, 2s 1.39327, 2s 2.22157, 2p 1.50585, 2p 3.26741
4. 1s 5.969, 1s 8.445, 2s 1.438, 2s 2.272, 2p 1.4959, 2p 3.2386
5. BGCR: 1s 10.507, 1s 6.346, 3s 3.715, 2s 1.697, 2p 5.573, 2p 2.555, 2p 1.352
6. BGCR: 1s 10.586, 1s 6.037, 2s 7.334, 2s 2.539, 2s 1.588, 2p 7.677, 2p 3.270, 2p 1.890, 2p 1.222
7. BLM: 1s6.9, 256.9, 356.9, 1s 1.6, 25 1.6, 3s 1.6, 2p 0.952, 2p 1.2264, 2p 1.9087, 2p 3.8675, (see Ref. 13)
8. CRY: 1s6.4595, 1s 10.8389, 2s 1.4699, 2s 1.9161, 2s 3.156, 2s 5.0338, 2p 1.1937, 2p 1.7124, 2p 3.0012,

2p 7.1018
9. 1p 6.7366, 3s 4.147, 3s 2.174, 2p 1.9155

10. 1s 6.9800, 3s 7.45, 3s 3.690, 3s 2.012, 2p 1.4948, 2p 3.236

11. 1s 7.010, 3s 8.06, 3s 5.58, 3s 3.34, 3s1.921, 2p 1.495, 2p 3.236

12. 1s 7.011, 3s 8.07, 3s5.53, 3s 3.326, 3s 1.920, 2p 1.3527, 2p 2.560, 2p 5.6

13. 1s 7.0*%, 3s 8.1, 3s 5.48, 35 3.327, 3s 1.935, 35 0.93, 2p 1.353, 2p 2.56, 2p 5.6*

14. 1s 7.015, 3s 8.1, 3s 5.48, 35 3.302, 35 1.938, 3s 1.0, 2p 1.353, sp 2.56, 2p 5.6*

15. s orbitals as in set 13, p orbitals as in set 6

16. 1s 7.020, 35 8.20, 3s5.49, 3s 3.438, 3s 2.054, 3s 1.03, 45 1.13, 2p 1.353, 2p 2.56, 2p 5.60*

17. s orbitals as in set 16, p orbitals as in set 6

TABLE VII. Energies and properties from UHF and GF calculations on O. All quantities are in Hartree atomic
units. 2
UHF GF
Basis set? Energy Q(0)° (21,/7%) p()d =rdy Energy Q)

1 6/4 ~174.813 96 0.1939 4.3698 311.775 11.205

2 5/2 -74.807 00 0.1113 4.4278 311.734 10.979

3 5/3 ~174.81252 0.1746 4.5186 311.716 11.130

4 6/3 -174.81266 0.1741 4.5177 311.727 11.140 —174.81495 0.1889

5 7/3 —~174.81268 0.1781 4,5178 311.692 11.140

6 7/4 ~174.813 94 0.1944 4.3701 311.701 11.211 —~174.816 84 0.2137

7 7/4 ~174.813 87 0.1979 4.3753 311.697 11.189

235ee footnote a, Table I.
bsee Table IX for the basis functions.

CThe spin density of the nucleus, see Eq. (1).
The electronic density at the nucleus.

TABLE VIII. Energies and properties from UHF and GF calculations on F. All quantities are in Hartree atomic

units.
AUHF GF

Basis set? Energy Q(0)¢ (zt,/7r%) p(d =rly Energy QO)°

1 6/4 -99.41129 0.1432 7.0337 448.505 10.250

2 5/2 - 99,402 77 0.0604 6.9583 448.510 10.017

3 5/3 -99.41060 0.1215 7.1025 448.495 10.208

4 6/3 —99.410 64 0.1229 7.1009 448.491 10.217 -99.41299 0.2303

5 7/3 -99.41067 0.1216 7.1007 448.457 10.216

6 7/4 -99.411 27 0.1267 7.0379 448.465 10.251

7 7/4 —-99.41129 0.1298 7.0332 448.462 10.240 —-99.41415 0.2455
Numerical® 0.1335 7.309

4gee footnote a, Table 1.

bSee Table X for the basis functions.

CThe spin density at the nucleus, see Eq. (1).

dThe electronic density at the nucleus.

€Reference 11.

This is an LRUHF calculation and

should be compared with the analytic LRUHF calculation
in Table XI, i.e., @(0)=0.1327, ('r'a)=7.3128.
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TABLE IX. Basis sets (Ref. 32) for oxygen. An asterisk indicates that the orbital exponent was not reoptimized.

1s 7.6160, 1s 13.3243, 2s 1.7582, 2s 2.5627, 2s4.2832, 25 5.9445, 2p 1.1536, 2p 1.7960, 2p 3.4379,

1. CRY:
2p 7.9070
2. s orbitals as in set 3, 2p 3.692%, 2p 1.656* (from BGCR)
3. 1s 8.015, 3s 9.23, 3s 6.22, 3s 3.757, 3s 2.182, 2p 1.4788, 2p 2.897, 2p 5.87
4. 1s 8.016, 3s 9.21, 35 6.03, 35 3.69, 3s 2.196, 3s 1.04, 2p 1.4777, 2p 2.895, 2p 5.88
5. 15 8.0138, 35 9.18, 35 6.00, 35 3.796, 3s 2.249, 3s 1.03, 45 1.28, p orbitals as in set 4
6. s orbitals as in set 5, p orbitals as in set 1
7.

s orbitals as in set 5, 2p 1.318%, 2p 2.121*, 2p 3.744%, 2p 8.45* (from BGCR)

TABLE X. Basis sets (Ref. 32) for fluorine. An asterisk indicates that the orbital exponent was not reoptimized.

1s 8.5126, 1s 14.4130, 2s 1.8599, 2s 2.7056, 2s 4.9019, 2s 6.4440, 2p 1.2655, 2p 2.0301, 2p 3.9106,

1s 9.017, 3s 10.37, 35 6.79, 3s 4.169, 3s 2.452, 2p 1.603, 2p 3.125, 2p 6.00
1s 9.016, 3s 10.32, 35 6.80, 35 4.136, 3s 2.433, 3s 1.11, 2p 1.601, 2p 3.124, 2p 6.00*
1s 9.0167, 3s 10.40, 3s 6.63, 3s 4.209, 3s 3.513, 3s 1.11%, 4s 1.44*, p orbitals as in set 4

1. CRY:
2p 8.6363
2. s orbitals as in set 3, 2p 4.180, 2p 1.848 (from BGCR)
3.
4.
5.
6. s orbitals as in set 5, p orbitals as in set 1
7.

s orbitals as in set 5, 2p 1.434%, 2p 2.356*, 2p 4.249%, 2p 9.435* (from BGCR)

parison we also carried out UHF and GF type
calculations where the orbitals of different 7; and
same spin were restricted to have the same radial
dependence. We will refer to these as LRUHF and
LRGF calculations (LR stands for L restricted).

The hyperfine constants and some other proper-
ties for HF, UHF, PUHF, and GF calculations
using the s-cusp (7/4) sets are collected together
in Tables XI, XII, and XIII* (see Appendix B for
definitions of terms). The equations used to cal-
culate @(0) for GF and PUHF wave functions are
derived in Appendix A.

DISCUSSION

Spin Densities

The spin density, @(0), has not been unambig-
uously determined experimentally for B and C;
thus there is some difficulty in assessing the ac-
curacy of @(0) for these atoms. However, for N,
O, and F the GF results are 63, 87, and 242% too
high and the UHF results 91, 71, and 81% too
high. On the other hand PUHF leads to a Q(0)
21% too high for N and 11 and 38% too low for O
and F. Similarly it appears that GF and UHF
lead to too high a value of @(0) for B and C and
that PUHF leads to more nearly correct values
for these systems. This better agreement for
PUHF is probably just due to a peculiar canceling

of errors in the contribution to @(0) from the 1s
and 2s shells and may not occur for atoms in
other rows of the periodic table.

The difference between the experimental and
Hartree-Fock values of @(0) is said to be due to
core polarization since the primary change from
the Hartree-Fock wave function is an incorpora-
tion of spin density into the atomic core. We see
here that for B, C, N, O, and F, correlation effects
not included in the GF and UHF wave functions
must have an effect on @(0) comparable with the
effect which are included. This is in contrast
with the case of the Li atom where the correla-
tion effects were small.

Even poorer results have been reported'® for
Q(0) of the P atom using UHF wave functions; in
this case the calculated @(0) had the wrong sign.
On the other hand, for some transition metal
ions® % rather good agreement had been obtained
between the UHF-calculated and experimental
values of @(0). This may indicate that the GF and
UHF methods will treat core polarization for d
electrons more accurately than for p electrons.
On the other hand, this agreement may be just a
coincidence and of no general significance.

We should point out that because of the extreme
sensitivity of @(0) to basis set, one must be care-
ful to use large appropriate basis sets to ensure
that @(0) has converged with respect to further
increase in the basis set. Because of the large
basis sets required for only fair convergence of
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be sheer folly to expect the @(0) from calculations
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of the cusp condition for spin densities, it would
lated to the correct @(0) without extensive cal-
culations and comparisons to atomic results.
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However, the nu-

Because of the apparent importance
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Q(0) it would seem appropriate to solve the SCF*
equations numerically if a reliable value for the
SCF value of Q(0) is desired.

merical approach would be far more difficult for

molecules.
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TABLE XIII. Properties for N. All quantities are in Hartree atomic units.

Energy p(0) Erd Q(0) ay,
N% HF - 54.400 92 206.126 12.080 0.0000 0.000
UHF —-54.40453 206.026 12.073 0.1853 0.517
PUHF —-54.40577 206.027 12.064 0.1179 0.329
GF —54.406 42 205.975 12.067 0.1579 0.441
EXPER —54.612 ob oo see 0.097 0505 0.271015€

2Using basis set N17.
bsee Ref. b, Table VI.

For C, N, and O we obtain rather similar val-
ues of Q(0) from the UHF and GF calculation.
This is in agreement with the proofs by Marshall?®
and Bessis et al.*? that Q(0)UHF = 9(0)GF through
first order in the splitting of the orbitals. On the
other hand we find that @(0)PUHF igs quite different
from Q(0). This should settle speculations?®!3—16
that for the first-row atoms Q(0)PUHF rather than
Q(0)UHF would be closer to the Q(0) obtained by
orbital optimization after spin projection [i. e.,
Q(0)GF].

In summary we have the following results for
Q(0). If for the atoms B through F we consider
the HF wave function, we calculate that the spin
density is zero. Allowing the exchange terms to
split the core electrons (to obtain the GF wave
function) induces a net positive spin density at the
nucleus, referred to as core polarization. This
core polarization is accompanied by only a small
decrease in energy. Accounting for the remaining
instantaneous correlations of the electrons de-
creases the energy sharply down to the experi-
mental energy and also must lead to a significant
reduction of the spin density at the nucleus.

More pictorially one can consider the change
from HF to GF as primarily that of allowing
triplet character in the 1s and 2s shells (coupled
together to yield a singlet). As expected this
leads to significant changes in @(0) but not in the
energy. Enormously more significant changes in
the energy are obtained by correlation within the
1s shell and the 2s shell and between these shells,
where each is taken to be singlet coupled. Such
effects would not lead to any change in @(0) ex-
cept that they reduce the importance of the core-
polarization terms (since there are now other
avenues for effecting correlation) and thus lead
to a decrease (in magnitude) in @(0) from the GF
value. On the basis of this physical argument we
would expect the magnitude of the GF value of
Q(0) to always be larger than the experimental
value; this has been observed for all calculations
carried out to date, 2% 25

cFrom L.W. Anderson, F.M. Pipkin, and J.C. Baird,
Jr., Phys. Rev. 116, 87 (1959), “N.

Magnetic Hyperfine Radial Constants

The orbital and spin-dipole magnetic hyperfine
interactions are characterized by the parameters*?
(%) and (r=%)4, respectively (see Appendix B).
The accuracy of these parameters depends on the
quality of the wave function over the whole atom;
hence all of the wave functions lead to somewhat
similar values for these parameters.

The HF wave functions for these atoms lead to
(r73)=(r~%) 4, as do the UHF and PUHF wave
functions for B, C, and N and the LRUHF wave
functions for O and F. However the experimental®?
value for this ratio (»~3) ;/(»"%);is 1.133 for O
and 1.074 for F, which are close to the ratios ob-
tained from the UHF, PUHF, LRGF, and GF cal-
culations.** Since the UHF, PUHF, and GF wave
functions allow p orbitals of the same spin but dif-
ferent m; to split, the above agreement would
seem to indicate that the 10% splitting in {(7~3) is
due to an orbital exchange effect quite analogous
to the spin exchange effect leading to nonzero spin
densities for these atoms. However the LRGF
calculations also lead to good values for {r~%);/
(7~3%) ] despite the fact that such splitting is not
allowed. In this case the (7~%)4 differs from
(r~3) 1 because in an expanded LRGF wave function
each orbital is sometimes associated with an up
spin and sometimes with a down spin. Thus since
the spin-dipole operator involves the product
[(32%-72)/7%]s,, we obtain a different weighting
of variousA terms than is the case for the orbital
operator [,/#3. From this analysis it appears
that the correct (#~3) splitting is a natural result
of considering general SCF wave functions which
have the correct spin symmetry. However recent
limited configuration interaction (CI) calculations?*s
indicate similar (#~3) splitting for B and C, where-
as the GF wave function leads only to a very small
splitting here (the splitting has not been deter-
mined experimentally for either atom).

Since the magnetic moment of !'C is not known
experimentally, ¢ we could not compare our cal-
culated hyperfine constants directly with the ex-
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perimental values.*® However, we may use the
calculated and experimental aj, to deduce the
magnitude of uy for *C. From the HF, UHF,
PUHF, and GF calculations of a,, we obtain
1.056, 0.906, 0.967, and 0.903 for | uyl, re-
spectively. Comparing the errors in the calcu-
lated ay, for other atoms, we estimate up=0.97
+0.06 for !C. This is similar to a value of

lupl =0.997 obtained by Schaefer et al.*® from
the limited CI calculations. Previously Bessis

et al.'® obtained | ppy| =1.0563, 0.8856, and
0.9591 for HF, UHF, and approximate PUHF cal-
culations, respectively, and Haberstroh et al.*®
obtained |uprl =1.027 using a privately communi-
cated wave function from Moser.

Electric Hyperfine Interactions

The effective (#~%) labeled as (7~ 3); and (r"%) 4
in Tables XI and XII are related to the orbital and
spin-dipole hyperfine constants, q; and a4 in ex-
actly the same way as would be the case for the
HF wave functions. For all the wave functions
(HF, UHF, PUHF, and GF) discussed here, the
(r=%); is similarly related to the electric field
gradient at the nucleus and <"_3>d is §imilarly re-
lated to the expectation values of 3, (I + $)/78,
which would be required in evaluating the electron-
nuclear part of the fine-structure splitting.

Using the {(#~3); from the calculations best fitting
the observed magnetic hyperfine structure and the
measured?® %47 quadrupole coupling constants
(see Tables XI and XII), we calculate the follow-
ing nuclear quadrupole moments (in barns) 'B: @
=0.037, *C:Q=0.031 (assuming uy for ''C to be
negative), and 1"0:@Q=-0.025. These values
should be good to about 10% and are similar to the
values predicted by Schaefer ef al.*® See Appen-
dix B for definitions relating to the electric hyper-
fine constants.

We have restricted the SCF* orbitals to be
eigenfunctions of 7 ;; we will call this the mj re-
striction. If upon relaxation of the m; restriction
the SCF are still eigenfunctions of /,, then be-
cause of Brillouin’s theorem?’ for HF, UHF, and
GF wave functions, the first-order perturbation
energy is given by the diagonal matrix element,
as has been assumed in discussing the hyperfine
interactions. However, if upon dropping the m;
restriction, the SCF orbitals should change, then
the other part of the first-order energy,?” 2R,
x(°1H 1), may be nonzero (here Hand y° are
the zero-order many-electron Hamiltonian and
wave function and y' is the first-order many-
electron wave function; bear in mind that y° is an
approximate wave function and thus not¢ an eigen-
state of H°), Such corrections are usually re-
ferred to as Sternheimer?*® corrections and have
not been applied in this paper since no reliable
values for these corrections are available.

Comparison with Previous Calculations

Blinder*® and Das and Mukherjee® carried out
early calculations for the UHF value of Q(0) of N.
Blinder’s result has the wrong sign while Das and
Mukherjee used a perturbation approach to ob-
tain the correct sign but only 1/3 of Q(0)UHF,
Goodings!! carried out numerical UHF calcula-
tions on B, N, and F obtaining values in good
agreement with those reported here. As discussed
earlier the numerical approach is probably su-
perior to the analytic approach since it avoids
problems with optimizing basis sets and leads to
accurate values for the wave function at the nu-
cleus. Bessis et al.'?71® carried out calculations
for B, C, N, O, and F using non s-cusp 6/4 basis
sets. Since their basis sets were neither opti-
mized nor of s-cusp type, their values of Q(0)UHF
were not always close to the correct value.

Bessis et al.'?71% found that in all cases the PUHF
led to better values of Q(0) than did UHF. How-
ever, they did not actually calculate the PUHF
wave function. Instead they used

PUHF (5 /(s+1)] @YY | @)

Q(0)
This approximation (see Ref. 12, also see Ap-
pendix A) holds if the splitting of each pair of or-
bitals ¢;, and ¢4 (corresponding to the doubly
occupied orbital ¢; in the HF wave function) is so
small that (¢;, 1 ¢z ) =1. The exact expression
for Q(0) for a spin-projected Slater determinant
is derived in Appendix A® (the expectation values
for spin-independent properties are found with the
expressions given in Ref. 24). We have correct-
ly projected many of the wave functions in Tables
I, II, I, VI, and VII and found that (2) is a
fairly good approximation for large basis set cal-
culations (see Tables XI, XII, and XIII). Note
that for approximate PUHF it was not at all clear
how the spin dipole term

(1T, lGz2 =)/l |

was to be obtained for the projected wave function.
The expression in Appendix A obtains the exact
value for this property also, and values for B, C,
O, and F are given in Tables XI and XII.

Nesbet® has recently carried out calculations on
N using generalized Bethe-Goldstone equations.
The calculations for @(0) were only through third
order and it could be that higher-order terms are
important; however, the calculated @(0) was
0.1008 which is in excellent agreement with ex-
periment. In addition Schaeffer, Klemm, and
Harris*® have recently carried out single-excita-
tion configuration interaction calculations which
account for a large fraction of the correlation
energy but lead to @(0) somewhat less than the
experimental values. After submission of this



182 CORE POLARIZATION AND hfs OF B, C, N, O, F 57

manuscript, a calculation on B by Kaldor ap-
peared®® which used the spin-polarized extended
Hartree-Fock (SPEHF) method (which obtains
wave functions equivalent to the GF wave func-
tions). This calculation used a restricted basis
set, B7, and thus obtained a @(0) about 33% too
large (see Table I). Other approaches have re-
cently been applied to Li by Larsson® and
Lunell. 58

A recently developed method® combining various
G;Y operators has given even better results for
Li than GF and promises to do well on larger sys-
tems also since this method generally leads to
smaller @(0) than GF. Work is now in progress
in applying this method to larger systems.

CONCLUSIONS

The GF and UHF methods do not lead to partic-
ularly good values of spin density for B, C, N, O,
and F, not even when very large basis sets are
used. This means that correlation effects are im-
portant here and that they decrease the magnitude
of @(0). In addition the usual type of basis set
leads to slowly converging @(0). For these rea-
sons most published calculations of the Fermi con-
tact contributions to the hyperfine splitting in
atoms and molecules are not expected to be very
reliable.

APPENDIX A. SPIN-DEPENDENT PROPERTIES

Expectation values and matrix elements for
spin-independent operators are quite simple and
have been treated before.?*™%% If F=3, .f(i) is a
one-electron spinless operator, then®’

(A-1)

(F) =( G 2x I?f(i)lcféx)/(Gfd’xIGf@m .

But
(Gf<I>x IZ)if(i)leq’x)

-Ec 'rs<o B0z X |2f(t)l FRUsX) (A-2)
and, since J;f(i) commutes with w and O we obtain

(ex |2,r@)0 ey O f;wsfx). (A-3)

Thus
<G & | 2,1 @) |G &x)

-f7<<1>tzf<z>| FEXXIOFEX)

where fy is the number of terms in the sum over
7. Hence?®

(F <<I>|Z)f(z)| <I>)/(<I>| (A-4)

which can be evaluated from the density matrices
given in III.?* Now consider the operator

M=Eim(i)§z(i), (A-5)

where m(i) is independent of spin. Here we can-
not carry out the steps taking (A-2) to (A-3) since
w and O do not commute with M, Thus we will use
a different approach. From Appendix C of I (Ref.
57) we have®®

= L4 -
Gfrbx =(N1/87) @(@w, X), (A-6)
where @ is the antisymmetrizer,
@=01/NZD ¢ 7.
Thus (M) = A/2B, (A-1T)
ON! 0\?2
where A=2— " (N!) (Gf{>x |M|Gf<I>x)
26N
=aiml (@ dw,,X |M|G<I’wux)
ON!
=m ( dwyX |2M| Cdw,X) s (A-8)
since @G = @ . Similarly
_ _ON!
B= o TmT <N1> (Grax|Goax)  (A-9)
6N!
=TT 2onX |@®w,,x) .

The numerical factors introduced in A and B are
for later convenience. Expanding @ and separating
the integrals over spatial and spin coordinates,

we obtain

] 6
B =Z)T(q>| T@) grm (wllx |‘rw11x) (A—].O)

Now &= 05, aPip P by (A-11)
where®® <¢ia|<%a>=6z]
(A-12)

LRI

(9301950 =205 -
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Thus the sum over 7 in (A-10) may be restricted
to permutations which do nof interchange elements
of different columns of the tableau in Fig. 1. The
group of such permutations is called®® 9,, the
group on the columns. Now consider

{wyX ’Twux> =(x |w117w11x>

and expand 7,

B B
Z Urs‘r Wys * (A-13)
6,7’8
Using A-13 we obtain
@ a_ a o o a o«
@11 711 Ui “11 “i1 “Viir @nn

1 -
But  6(x|w,,x) =20 U, (x[ox)

=Z}U

0e®,

—n!m!,

where® @, is the group on the rows of S, in Fig, 1.
Thus

2 (s|lrde Vi1 (A-14)
TEﬁll
Now we rewrite A as
A=2 T (&|m@) |'r<I>)V , (A-15)
i TEW,
where
Pe b (o xl2s @) e %)
T pim! ST 11 z 11
1
“nlm] g-razg Ui10
€SN
x(xIU'I[Zsz(i)]olo'lrwnx). (A-16)
N
But 2 o= 23 2 oN_li(j,i), (A-17)
O'ESN j=1lgo -1,
[ ] | 2 .« e e m
n,m| _
SI -
n+l |n+2 |-+ | N
FIG. 1. The first Young’s tableau for the shape

[n,m]. This is the tableau used for w.
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where 05, _ 1,3 is a permutation over the N-1
elements not including ¢, and since

0"[28z(i)]0=2sz(j),

we have

i1 N
7 — >

T n!m!gr Z U110

1o, . Moy y ;010

x(x|2s ()], D)o STw X0

N-1,i
However because of the form of ¥,

x=a)a(2)--am)pl+1)-gN), (A-18)

)

we have

las,(Dlow, 00 =5 T Uy, xlas,Glx).

TEP
Thus
i 1, X
Ve =7%¢% .Z_>10 z U11oN ;1)
S
XUy oo G afx12s D10
1 n N
=5t LA~ 2 A (A-19)
j=1 y ]=n+1]
1 N
==t | DA -2 2 A4},
0°T ,
j=1 j=n+1
where
A= 2 U
J 11 (7,1 Witro (4,1) .
oN—li N-1,1 N-1:0
But ]EIA EUuoUum U4+

(from the orthogonality theorem on group rep-
resentations),

thus

i 2 |
Ve =t Vs 7 ) 2 Aj
j=n+1

Now consider ¢=N, in this case

U . =U , forj>n,
oy 3 yU:M 10y
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thus

N
V'r =% (Ull-r

2m E >
L U U .
6 on_ 1,N 11°N-1,N 11Ton_ 1,N

Since i =N we have

a a*
"oy _ 1 x " Vlloy_y

where a* is the shape obtained from a by de-
leting N, thus

z U U =6*U
110 1170 117
N_LN N-1,N N-1,N

(by the orthogonahty theorem for 8, _ 1), where
* is the 6 for a*. Hence

=¢ TU11 (1-2m6*/6). (A-20)

But m6*/8 =(n+1-m)/(n +2-m),

and if 7 involves 7 disjoint transpositions, then®”
U117, =1/@).

N___ n-m)

Thus V = (A-21)
T, m+2-m)@)
A related analysis yields
n_ m+2+7) N
V'r Rl ver V . (A-22)

v ‘V

From (A-18) we see that for i >#n, we haye

Vet =Ve,N; andfori<n, we have Vi =V 2,
if ¢ 1s not included in 7,.. However if ¢ is in-
cluded in 74, the derxvation proceeds just as for
i=N, and we obtain V7 ?

If in (A-5) we take m() 6(1'1;) we call the ex-
pectation value of 2M the spin density, @(0). Thus
(A-21) and (A-22) are sufficient to exactly evaluate
the spin density.

In the past the spin density has been obtained'?—!¢
by approximating { ¢y, | ®jp) as

0 | ¢].b) =5ij- , (A-23)

that is, »;=1. In this case (&| 7®) =1 for all
Teq, (see A-14) and

ml L e=n!  (+1)
BT Z tnen)l “Gi-ms)

Similarly if 7 does not include ¢, then
(& |m@)|r®) = |q§i(0)|2

(see A-15), and if 7 includes i,
(8|m@)| 79 =9,0)¢,(0),

where i’ =i+n if i<n, and i’ =4 —n if i>n. Using
these values and (A-21) and (A-22) we obtain

Q) =[(e-m)/n+2-m)(n+2-m)]

m
i=1

- -m+1)[ ¢ib(0)]2] E [¢ (0)] }

t=m+1

We will refer to the part of Q(0) involving ¢, and
¢ip with i up to m as Q(0)°O¥€,  Thus within the ap-
proximation (A-23) we obtain

core n-m)
Q(O)PUHF “m+2—m) Q(0) core

n-m)
y Z‘[cp 0)-¢, (0],

+ m+2-m)n+2-m
where
core =
- 2 2
QOyup = El{[%“’” - [0, (@]%}

is the core part of the spin density for UHF wave
functions. Since

n-m)/n+2-m)=28/(25+2)=S/(S+1),
this leads to

core . core
Q(O)PUHF S +1 Q(O)UHF ’

which has usually been used*2~1 to obtain approx-
imate values for Q(o)P Fcore
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APPENDIX B. THE HYPERFINE SPLITTING CONSTANTS

(1) The Magnetic Hyperfine-Splitting Constants.

We take the magnetic hyperfine interaction operator as?®

uBgNuN[( )E(l 23(8 DE.D-r2@-1) 8”26(1’)(r I)]

75
and we take the matrix elements to be*3

(TM 1M, lyhﬁ | M, 1M,y =A FMMy (IMIM H o |- 1, M IM ) =A

JUI J,J-1

In addition we define the reduced hyperfine constants, a;y and a J,J -1

A7=8shpENPNYy Ay 7o 17EsPBENPNT T - 1
and define

a,=(1/LXLSLS|Z (@, /r*)|LSLS),
a_ =S"XLSLS IZ)ea(r)gz |LSLS) =(25)1Q(0),
a,=[SL@L - 1)]"(LSLS|Z [(322~2)/7°] §  |LSLS),

where @(0) is called the spin density at the nucleus. Then for 2P states we have

239 =%[2(2/gs)al +a, +ac] =3[(2/gs)(7"3> 1= $(r3) d] +(87/9)Q(0),
@ 1 =4[4(2/g )a;~ 100 ~a ] =§-[(2/gs)(1’">l+(7‘3> d] - (87/9)Q(0),

/9 1/2" H [(Z/gs)al +fa,-a ]=3 [(2/gs)<r'3> - 3(r73) 41 = 81/9)Q(0),

where the (7-%); and (»~3); parameters have been introduced for convenient comparison of terms.

For 3P states we have

%[(2/g )a +a,+a ]—2[(2/g )R¢ 7’") +3(r3) ]+(217/3)Q(0),
a,=:[(2/g )a,~5a,+a ] = sle/e JTT =) ;1 + (21/3)Q(0),
L= (1/2VBN(2/g Day +2a,-a ) =(1/20F)(2/g ) (), + §r-2) ;- (4m/3)Q0)],

ay o= @/30712/g )a - Fay-a ) = @/31((2/g )r2), ~ £ ) ;- (4n/3Q00)],

4 - —
For S states we have a3 /974, = (87/9)Q(0).

2 _ 2)1/2
(J M, ) M, .

182

(B-1)

(B-2)

(B-3)

(B-4)
(B-5)

(B-6)

To convert a; from atomic units to Mc/sec, we multiply by C =95.519gg5,.2°6 For comparison to ex-
J 8&N

perimental results we have used the following values of I gN"2 and C:
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uB:  2.68852, 171.205; 3C: 0.702381, 134.183; MN: 0.40371, 38.562;
170; -1.89370, - 72.3543; °F: 2. 62850, 502.147.

(2) The Electric Hyperfine Constants

We take the perturbation to be
-1 Q.4 -
Q. = - R2 q = —a2 5
where Qij En(sRiRj R Gij ), q; Ee(3rirj % 6ij )/v®
and R and 7 represent nuclear and electronic coordinates, respectively. Then for an atom

(JIFMy, |Hq IJIFMF) =[b, /2021~ 1027 = DI[KT- J)?+ 31 J) 1T +1)J(T +1)] (B-8)

where (I-J)=3[F(F+1) =TI +1)-J(J +1)].
The quadrupole coupling constant, b 7, can be written as

bJ=—qJQ) (B‘g)

where the nuclear quadrupole moment, @, is

Q=(I |2, 32* - R*|IT) (B-10)
and the electric field gradient, g, is
q,=(IT |G B2 -7*)/r*|7J) . (B-11)

We will evaluate electric field gradients for | LMy SMg) type wave functions, for which we define

q, =(LLSM |Ee(3z2—'r"’)/'r5|LLSMS) . (B-12)

In this case q;= CJqLSqL , (B-13)
where (see Appendix C)

chLS (&KL - TY2=3(L - I = 2L(L +1)J (74 1)]/LRL - 1)(J +1)(2J + 3) (B-14)

and (Ledy=%[d(J+1)+L (L +1)-S(S +1)]. (B-15)

For maximum J, we obtain C Jqu =1, and for °P we obtain Cy,'' =- 3. For the states and wave functions
considered in this paper we have

= 2(,-3 2 3p . = 2(p3 2 3
9;= 2r )lfor BP3/2 and O°P,; and ¢, +3(r >l for FP3/2 and C°P,,.
If in Eq. (B-9) by is in M., gz is ina.u., and @ is in barns, then
by (M) =234.974%Xg ; (a.u.) Q (barn), (B-16)

where the conversion factor is based upon®® 1 cm™'=4.556 336 X107° hartree = 2. 997 925 x10'° Hz and
1a,=0.529167 A.



62 WILLIAM A. GODDARD III 182

APPENDIX C

The relationship between gy and gy, is derived as follows.

Using the Wigner-Eckart theorem®* we have

- - L
(LMLSMsv]qij |LM, sM, ) =lq, /L(2L - 1)(LM, SM [Tz.]. | LM, sM), (Cc-1)
where f..L =3@T.L +L T.)-1%.,
i 1] g i’
and (M, |q |JM> =lg /727 - DKoM, |T ]JM) (C-2)
where 7.7

But for LS coupling we can expand |LSJMJ) in terms of |L

-> -~ L
(LSIM,; ]qij |LsIM,)=lq, /L(2L - 1)(LST M, |Tij

In order to evaluate the right side of (C-3),

~ L = J
(LSIM, |Tz.]. |LSTM,) =C(LSTM, |Tz.].

Next we note that

wsam, |Z T, Ly J |LSIM, = C(LSIM, IZ} T,
ij
with the same constant C as in (C-4).

-

But Z)T L I 3@. T D g (. 7)- T3>, and

lj 17

|LSIM,) .

MLSMS) to obtain

|LSTM,). (c-3)

we use the Wigner-Eckart theorem to write

(C-4)

ILSM ) (C-5)

and |LSJM J) is one eigenstate of both of these operators. Thus

C=[6{L-J)2-3{L.J) =2L(C+1)J (T +1)] /T +1)(2J-1)(2J +3) ,

where the number (L« J) is given in (B-15).
(B-14).

1% 7% 7o op5 35
3T 7Y i 27
)
Hence we obtain g, =C T qu 1 With C J S as given in Eq.

A similar approach is used to relate ey and a;, a4, and . as given in Ref. 26

*Partially supported by a Grant (GP-6965) from the
National Science Foundation.

TAlfred P. Sloan Research Fellow.

!s. M. Blinder, Advan. Quantum. Chem. 2, 47 (1965).

’A. J. Freeman and R. E. Watson, in Magnetism,
edited by G. T. Rado and H. Suhl (Academic Press, Inc.,
New York, 1965), Vol. IIA, p. 167.

’B. Bleaney, in Hyperfine Interactions, edited by
A. J. Freeman and R. B. Frankel (Academic Press,
Inc., New York, 1967), p. 1.

‘R. E. Watson and A. J. Freeman, in Hyperfine
Interactions, edited by A.J. Freeman and R. B. Frankel
{Academic Press, Inc., New York 1967) p. 53.

5C.M. Moser, in Hyperfine Interactions, edited by
A.J. Freeman and R. B. Frankel (Academic Press, Inc.,
New York, 1967) p. 95.

€A, Abragam, J. Horowitz, and M. H. L. Pryce, Proc.
Roy. Soc. (London) A230, 169 (1955).

'G. W. Pratt, Jr., Phys. Rev. 102, 1303 (1956).

8V. Heine, Phys. Rev. 107, 1002 (1957); J. H. Wood
and G. W. Pratt, ¢bid. 107, 995 (1957); M. H. Cohen,

D. A. Goodings, and V. Heine, Proc. Phys. Soc. (London)
73, 811 (1959).

R. E. Watson and A. J. Freeman, Phys. Rev. 120,
1125 (1960); R. E. Watson and A. J. Freeman, J. Appl.
Phys. 32, 118S (1961); D. A. Goodings and V. Heine,
Phys. Rev. Letters 5, 370 (1960).

0L, M. sachs, Phys. Rev. 117, 1504 (1960).

"D, A. Goodings, Phys. Rev. 123, 1706 (1961).
2y, Bessis, H. Lefebvre-Brion, and C. M. Moser,
Phys. Rev. 124, 1124 (1961): N atom.

By, Bessis, H. Lefebvre-Brion, and C. M. Moser,



182 CORE POLARIZATION AND hfs OF B, C, N, O, F 63

Phys. Rev. 128, 213 (1962): B and O atoms.

N, Bessis, H. Lefebvre-Brion, and C. M. Moser,
Phys. Rev. 130, 1441 (1963): F atom.

BN. Bessis, H. Lefebvre-Brion, and C. M. Moser,
Phys. Rev. Mod. Phys. 35, 548 (1963): Q€ atom.

'°N. Bessis et al. Phys. Rev. 135, A588 (1964): P atom.

ror example, the UHF wave functlon for N is a
mixture of S 6S and ®S states rather than just ’s.

8p. 0. Lowdin, Advan. Chem. Phys. 2, 207 (1959).

1‘(’Ac'cua.lly except for Li! these calculatlons (Refs.
12-16) just approximated the PUHF wave function.

2% . Marshall, Proc. Phys. Soc. (London) 78, 113
(1961).

p. 0. Lowdin, Phys. Rev. 97, 1509 (1955).

This method is sometimes referred to as spin~-
polarized extended Hartree-Fock, or else just extended
Hartree-Fock, or else projected Hartree-Fock. For a
recent review see P. O. L3wdin, in Quantum Theory
of Atoms, Molecules and Solid-State (Academic Press,
Inc., New York, 1966) p. 601.

®W. A. Goddard T, Phys. Rev. 157, 81 (1967), re-
ferred to as II.

%W, A. Goddard III, J. Chem. Phys. 48, 450 (1968),
referred to as III.

®W. A. Goddard III, Phys. Rev. 157, 93 (1967).

26W. A. Goddard I, Phys. Rev. 176, 106 (1968).

'W. A. Goddard III, J. Chem. Phys. 48, 5337 (1968),
referred to as IV.

%@, C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
29A Slater orbital is a function of the form ¥,,,,, =N, 73
~&r Y1, where ¢ is a variable parameter called the

orbltal exponent and N, is a normalization factor.
$Using this definition of the spin density, the Q(0) for
an UHF wave function is just the density at the nucleus
for up-spin electrons minus that for down-spin electrons.
$1The following notation is used to refer to published
basis sets: CR: E. Clementi and D. L. Raimonde,
J. Chem. Phys. 38, 2686 (1963), minimum basis set;
CDZ: E. Clementi, J. Chem. Phys. 40, 1944 (1964)
[see also IBM Technical Report No. RJ-256, 1963 (un-
published)] double zeta; BGCR: P.S. Bagus, T.L. Gil-
bert, H.D. Cohen, and C.C.J. Roothaan, to be published;
CRY: E. Clementi, C.C.J. Roothaan, and M. Yoshi-
mine, Phys. Rev. 127, 1618 (1962); BLM: N. Bessis,
H. Lefebvre-Brion, and C. M. Moser, Ref. 11-15.

When referring to a basis set we use the notation
(ny/ny) to indicate a basis set with n, different s basis
functions and #, different sets of p basis functions. An
asterisk next to an orbital exponent means that the
orbital exponent was not reoptimized for this basis set.
Note that the orbital exponents are not generally opti-
mized to the last place quoted.

331,MSS atomic program No. 3. Laboratory of Molecular
Structure and Spectra, University of Chicago.

3c. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131,
1177 (1963).

55The virial ratio is V/2E, the total potential energy
divided by twice the total energy. V/2E is 1.0for the exact
wave function and should be within 0.00001 of 1 for a
fairly well optimized basis set. Scaling of the wave

function could have been used to assure V/2E=1; how-
ever we felt that this would hide flaws of the basis sets
and would not necessarily lead to properties closer to
the theoretical limit.

%$The N double zeta set has been reoptimized starting
with the CDZ orbital exponents. The orbital exponents
change a great deal but the HF energy drops only 0.000 05.
However Q(0) changes sign; this indicates just how
sensitive Q(0) is to this type of basis set.

37By accurate here, we of course mean a good approxi-
mation to the value we would obtain with a complete
basis set.

33 The experimental hyperfine constants were recalcu-~
lated from the experimental data using the relations in
Append1x B. For !B and ''C we had to assume ('r“ M
= (r~%); since the ag, g have not been measured.

$p, S. Bagus and B. Liu, Phys. Rev. 148, 79 (1966).

e used the term SCF meaning self—cons1stent field
to collectively refer to any or all of the HF, UHF, or
GF methods.

“Gaussian functions [S. Huzinaga, J. Chem. Phys. 42,
1293 (1965)] have the form Ne 57 2 ¥},,,(0, ¢), and thus
a finite number of them cannot lead to a cusp. Such
functions are being used in polyatomic calculations be-
cause the many-center electron repulsion integrals are
far simpler than for Slater orbitals.

2we let (7"3) 1 represent the effective (7"3) for the
orbital operator, Efz/'r3, and (7’3)d represent the
effective (1"3) for the spin-dipole operator, = [3(s « )z
—7%s,1/7%; see Appendix B.

83.8. M. Harvey, Proc. Roy. Soc. (London) A285,
581 (1965).

“Note that for O and F the GF and UHF wave functions
are not eigenfunctions of J2 and 12. As is the usual
practice for UHF (where the wave function is also not
an eigenfunction of SZ) we calculate the wave function
for My =L and Mg=S to obtain a7,aq4, and Q(0) and use
the usual relations connecting these to a;.

“H. F. Schaefer I, R. A. Klemm, and F. E. Harris,
Phys. Rev., 176, 49 (1968).

R, A. Haberstroh, W. J. Kossler, O. Ames, and
D. R. Hamilton, Phys. Rev. 136, B932 (1964).

“'G. Wessel, Phys. Rev. 92, 1581 (1953).

4R, M. Sternheimer, Phys. Rev. 164, 10 (1967), and
references given therein.

‘*s. M. Blinder, Bull. Am. Phys. Soc. 5, 14 (1960).

7. P. Das and A. Mukherjee, J. Chem. Phys. 33,
1808 (1960).

SiThe program which evaluates Q(0), the energy, and
other properties for PUHF wave functions is rather
simple and could be made available for distribution if
there is any demand for such a program.

R. K. Nesbet, in La Structure Hyperfine Magnétique
des Atomes et des Molécules (Centre National de la
Recherche Scientifique, Paris, 1967), p. 87.

%y. Kaldor, J. Chem. Phys. 49, 6 (1968).

*s. Larsson, Phys. Rev. 169, 49 (1968).

%S. Lunell, Phys. Rev. 173, 85 (1968).

%R. C. Ladner and W. A. Goddard J. Chem. Phys. (to
be published).




64 WILLIAM A.

'W. A. Goddard III, Phys. Rev. 157, 73 (1967), re-
ferred to as I.

%The wq4X here should be WFF X, but the tableau as-
sociated with the f tableau of a two-columned shape is
the 1 tableau of the associated two-rowed shape. This
is shown in Fig. 1.

%As was shown in III (Ref. 24) we may take a unitary
transformation on the GF orbitals such that all ex-
pectation values are invariant but such that ($;,1¢;p)
= )‘i‘sij for the new orbitals.

®p."E. Rutherford, Substitutional Analysis (Edinburgh

GODDARD III 182

University Press, London, 1948).

flwe will generally delete the shape symbol & on Ona,
wlla, and Ull-,-a.

®N. F. Ramsey, Molecular Beams (Oxford University
Press, London, 1956), p. 172.

E. R. Cohen and J. W. M. Dumond, Rev. Mod. Phys.
37, 537 (1965).

%B. R. Judd, Operator Techniques in Atomic Spectros-
copy (McGraw-Hill Book Co., Inc., New York, 1963);
V. Heine, Group Theory in Quantum Mechanics (Pergamon
Press, Ltd., New York, 1960).

PHYSICAL REVIEW

VOLUME 182, NUMBER 1 5 JUNE 1969
Dispersion Calculation of Resonant Photo-Ionization Line Shapes:
Application to Helium

William P. Reinhardt*
Department of Chemistry, Havvavd University, Cambridge, Massachusetts 02138
(Received 16 January 1969)

For resonant photo-ionization of spherical atoms, unitarity and simple assumptions about
the analytic properties of inelastic scattering amplitudes allow calculation of the photo-
ionization line shape from the elastic final-state phase shift. Explicitly, the Fano shape fac-
tor, g, is given by coté™, where " is the nonresonant elastic phase shift for the final
state. This result predicts that if 6"F is constant for a series of resonances below an in-
elastic threshold, the values of g will be constant for the series and independent of the type

of resonance. For photo-ionization of helium, values of ¢ calculated from the elastic phase
shifts are seen to be in fair agreement with those calculated from wave functions.

I. INTRODUCTION

In atomic and molecular physics it is usual to
assume that the Hamiltonian is known. This
means that, in principle, one can determine wave
functions appropriate to processes of interest
and, using these wave functions, calculate or
predict experimental results, However, in many
cases of interest the wave function is not im-
mediately available or would be difficult to cal-
culate to the necessary accuracy. It is thus of
interest to investigate the use of mathematical
techniques which do not depend directly on the
use of wave functions, but rather on the symme-
tries of the Hamiltonian and on simple conjec-
tures as to the analytic structure of certain am-
plitudes which describe processes of interest,
These techniques® have been developed for use
in high-energy particle physics where even the
existence of potentials (in the ordinary sense) is
in doubt and thus theories must be based on uni-
tarity (conservation of probability) and conjec-

tures as to symmetries of the unknown equations
of motion.

In atomic and molecular scattering processes,
as in particle physics, it will prove useful to
consider determining the scattering amplitude
directly, rather than calculating it through the
intermediary of the wave function, Rather than
directly making use of the Mandelstam double
dispersion? relation which provides a dynamical
framework for direct calculation of the scattering
amplitudes, and, thus, is equivalent to the fa-
miliar Schrédinger dynamics,® we will concentrate
on those aspects of the theory which point to re-
lationships between the results of different experi-
ments, For example, in the case where an in-
elastic process is doniinated by a single final-
state interaction we shall see that the phase of
the inelastic amplitude is determined by the phase
shift for elastic scattering in the dominant final
channel. This result is known as Watson’s the-
orem? and is often useful because the phase of
the inelastic amplitude determines the discontinu-



