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Tomonaga's Model and the Threshold Singularity of X-Ray Spectra of Metals
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Singularities near the threshold of the soft x-ray spectra of metals have been predicted by Mahan and have
recently been calculated by Nozieres et al. using the model of a localized core hole. We show that the singular
behavior can be understood in terms of density waves of the conduction electrons which are excited when, in
the absorption process, the core hole is created, providing an attractive potential for the conduction electrons.
For the description of the conduction electrons in terms of density waves, Tomonaga s model is adopted.

1. INTRODUCTION
' "N the x-ray absorption process, a deep-lying core
~ - electron is excited into the conduction band by an
incoming x-ray photon. The core hole left behind acts
as a one-body potential on the conduction electrons. A
simplified model has been used to describe the
situation'.

1
&=2 okgktgk+Eobtb j Q—Vkk gktgk bb" (1).

k

Here the hole (described by bt, b) is represented by a
single nondegenerate level Ep with in6nite lifetime. It
is assumed to interact with the free conduction electrons
(described by gkt, gk) via a contact potential Vkk = V;
the interaction between conduction electrons has been
neglected.

We confine ourselves to the discussion of the ad-
sorption process. In this case the transition role ac-
cording to the Golden Rule is

Hf(~) =2~ 2 IZ ~k(~)(fl gk'bli) I'b(E+~ —Ef) (2)

For simplicity the matrix elements of the dipole
operator wk(co) will be regarded as constant. In an
equivalent one-body description, the transition rate is
given by

1 2

W(ko) =2m.w' Q f~+i Q gkt &

N k

with the energy E;=E; Eo. The—final states
I f +i)

are the (n+1)-particles eigenstates of the Hamiltonian

V
Hf =Q Okgk gk+ Pg—k gk

k

The final states
l f +i) hold the clue to the problem.

According to Anderson, ' the overlap between the
initial and any final state containing a finite number of
electron-hole pairs is zero in the limit of infinite volume.

So one has the choice of doing the calculations with
finite volume, performing the limiting process to infinite
volume in the end, or of circumventing the problem to
determine the final states by using Green's-function
techniques. However, the physical origin of the singular
behavior of the transition rate near the threshold''
does not seem to be clearly understood.

In this work, we offer another way of calculating the
response of the free electrons to the sudden switching
on of the core hole potential. We will use the Tomonaga
model' by which we can describe the excitations of the
Fermi sea in terms of density waves. On the one hand,
we circumvent the difhculty posed by the Anderson
theorem, and, on the other hand, we have a plausible
physical interpretation of what is going on.

2. FORMULATION OF THE PROBLEM IN
TERMS OF TOMONAGA'S BOSONS

We introduce the density operator

The initial state

I -&=II

X&(E' Ef+Eo+—oo) ~ (3) kD—k

Pk ~ +kg ~kI+k y

k1=0

kD

P kE gki gk—k—k )

(6)

is the e-particle ground state of the Hamiltonian

K=+ Okgk gk,
k
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and consider a band of width D, assuming a constant
density of states within the band. k =0 and AD= k are
the momenta at the bottom and at the top of band,
respectively. The electron energies are given by

ok= (k —k )/pi,

where p is the density of states.
~ P. W. Anderson, Phys. Rev. Letters 18, 1049 (1967).
3 G. D. Mahan, Phys. Rev. 163, 612 (1967).
4 S. Tomonaga, Progr. Theoret. Phys. {Kyoto) 5, 544 (1950).
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Actually, in the Tomonaga model the free-particle
energy has to be proportional to the momentum.
Another important feature of the Tomonaga model is
its one-dimensionality. But the problem considered
here can be looked upon as a one-dimensional one
because it involves only s-wave scattering. So the
summation in (6) over kk is to be understood as a sum-
mation over energy shells. We examine now the com-
mutation relations of the pk's:

fpk, pk]=0 for k, k'&0 and k, k'(0,
k' k~—k+k'

PPk, P k']—= P ok~ ~ky+k k' — 2 &kg &kz+k k'—
g k1=0 g kI=kg) —k

for k&k'&0, (9)

[PkiP—k] 2 &kg akim Q ok' ok( ~

g k1=0 g k1=kg)—k

We adopt Tomonaga's approximation and substitute
these complicated commutation relations by simpler
ones:

(pk, p k ]=kbkk .

For a detailed discussion of this important step we
refer to Tomonaga's paper. In short, the simpler
commutation relations may be used if only a certain
subspace of all possible states has to be considered.
These are the states which do not have unoccupied
levels deep in the bottom of the band or occupied levels
high above the Fermi energy at the top of the band,
such that the parts left out of the commutator do not
contribute very much. In addition, we have to assume
that V be very small compared to the bandwidth. On
the one hand we had to consider a contact potential to
keep mathematics simple, but, on the other hand, a
contact potential causes excitations deep below ahd
high above the Fermi level (or short density waves),
which is explicitly excluded in the model. So we must
expect all our results to be valid only for small V.

With (11) we calculate the commutator

It is convenient to introduce the normalized boson
operators (k&0)

bk=(1Iv'k)pk, bk'=(1/v'k)p k,

which obey the usual boson commutation relations

Pbk, bk']=bkk .

In terms of bosons
k

H, = Q bk"b—k,
k&0 p

and

(15)

(16)

V V ) V'p
~f=g — bk'+ bk+ —

I

——21 (Ig)
»o p g(kE) g(kE))

H; and Hy describe a set of harmonic oscillators. The
e8ect of the potential is a shift of the zero points of the
harmonic oscillators. As the transformation procedure
is only correct up to a constant we will drop the constant
term on the right-hand side of Eq. (18) in the following:
In order to calculate the transition rate (3) we have to
express the operator

k
g't Q gkt

g k1=0
PP k,~']=

gX
for k&0. (20)

We simplify these commutation relations in the spirit
of Tomonaga's approximation, i.e., the matrix elements

in terms of harmonic-oscillator coordinates. This is a
rather delicate problem. First we examine the com-
mutation relations between a~ and the density operators
pk. We find

1 1 kD

Ppk&a~]= a"—— P uk, ~ for k&0, (19)

L~',pk]= (k!p)pk, — (12)
k

n+1 ~k1 &n

g kI=O

1R= P-P kPk.
k&0 p

(13)

The transcription of H~ PEq. (5)] in terms of bosons
also leads to a very simple expression,

1
~f= Q PkPk+-

k&0 p

V
Z (Pk+P-k)
k&0

(14)

where use has been made of the linear energy-mo-
mentum dependence, and we conclude that H; has
the form'

(pk, ut]=(1/+IV)at for all k&0 (21)

instead of the exact commutation relations (Eqs. (19)
and (20)]. De6ning

U=exp(Q nk(bk' bk)], uk real, —(22)

are considered to be small. This is correct within the
Tomonaga model and- means that the energy of the
final states has to be small compared to the bandwidth.
So, we shall use

'The tacit assumption is the completeness of the k, which is
only fulfilled in the subspace of s-wave states. tranSlatiOn OperatOr On any funCtiOn Of bkt and bk,
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namely, with

(23)U'b/, U= b/+ok or I bB, U7=o(BU
(30)Uat= B—=exp (1+Vp) P (bB~ —bB)

B g(kÃ)

1
B(t)=exp (1+Vp) Q

B g(kX)
1

at~ exp Q (bBt b~)—
B g(klV)

(24)

X (b„te+'(» p) 3 bBe —'("/p—)') (31)

This relation is identical to (21), if we put nk = 1/Q(kN)
and' and

3. TRANSITION PROBABILITY IN THE
DENSITY WAVE MODEL

Before calculating the transition rate, let us ask
how to interpret the Golden Rule fKq. (3)j in the new
description. The initial state is the lowest eigenstate
of a set of harmonic oscillators LKq. (17)$—the analog
to the "quiescent" Fermi sea. The Gnal states are all
possible excitations of another set of oscillators with
shifted zero points [see Kq. (18)7. The ground state
of this second set is also the analog to a quiescent
Fermi sea, which is (in the language of the fermion
description) a Slater determinant of scattering waves.
Excitations in both oscillator systems can be pictured
as density waves.

According to (24), a~ acts as a shift operator dis-
torting, say, the initial quiescent Fermi sea. That is,
by injecting the core-state electron into the band, a
local inhomogeneity of the electron density is created,
by which each oscillator is elongated by a small amount.
At the same time, the oscillators have to react to the
core-hole potential V produced in the absorption
process. This is described by the zero-point shift of
the second set of oscillators. As will be seen later these
two eGects are additive. This picture of the problem
has some similarity to the "small polaron, "where now
the real lattice is replaced by the band electrons, and
the real phonons are replaced by Tomonaga's
"phonons. "

Instead of the transition rate LKq. (3)], we calculate
the correlation function

F(t) = (i
~
exp(+iH;t) a exp( —iHrt) at ~i), (25)

which is related to W((B) by

We have
S(t)= (i

~

B'(t)B(0)
~
i), (32)

which is equal to'

1 1
3(e) =e V((1+Vp)'—g —(e '~" ~' —1) ~; (33)

E»ok

converting the sum in an integral, introducing a cutoff'

1 kmax

(e
—e(k/p)1 1)—

E»o k

&&Iemax Ot p)

dx, (34)

we find as the leading term for large t

p(t) ~Lto+vp)3) —1 (35)

lV((B)~ ((B+po)—]2IIB/v (5B/p)3]— (36)

Thus, we have recovered the main feature of Noziere's
result, namely, the singular threshold behavior of the
response function. But in the correct answer 5g is
replaced by 8, the exact phase shift. In this context it
is amusing to note that in the Iuttinger model, ' where
an infinite energy spectrum with a linear dispersion is
assumed from the start, 6g is the correct phase shift.
The Schrodinger equation (for s waves) for a linear
dispersion reads

L- ('/. ) «/d*)+ V( )j31 ( )= (~-~.)~(*), (37)

and the solution is given by

Inserting —Vp=hs/3r, where bB is the phase shift in
Born approximation, we 6nally get for the energy
dependence near the threshold

W(u&) ~ Im— e'("+B')'S (t)dt. (26) O(x) =exp ikx ip V—(x)dx (38)

The canonical transformation

(27)
1

U]v ——exp Vp Q (bBt bB)—
B Q(kÃ)

so that

with

4'(x) ~e'"'+" as x~ (3,

b= —p V(x)dx= —3rpV
0

(39)

(40)

transforms H, into Hy .

Hf = Uy~H;Uy )

so that

&(t) = (i
~
exp(+iH t)a U]vt exp( iH t) U]3at ~i), —(29)

To evaluate an expression of the form (e e ) I compare (32)j
one makes use of the well-known relations e e =e"+ +&'"&&"'

which holds if )A,Bj is a c number, and (el (bt ~))=exp —,'|/12(bt, b) ),
where L is any linear combination of Bose operators.

According to the Tomonaga model, k,~= -,'kf .
8 J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
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for V(x) = 2sr Vh(x), which has been used in the calcu-
lations above.

If one wants to stick to a more realistic model with
a finite energy band, there are diferent ways to improve
our result. The Luttinger model indicates that the
incomplete result is in part due to the linear energy-
momentum dispersion. A more realistic, namely, the
quadratic dispersion leads to anharmonic terms, as can
be seen from Schick's' paper. Another way would be
to use the energy as variable instead of the momentum.
But while this leaves the kinetic-energy term simple,
the potential energy V would be very difIicult to handle,
again leading to anharmonic terms. An important point

' M. Schick, Phys. Rev. 166, 404 {1968).

any way is to introduce a more realistic potential of
arbitrary strength. But whatever one tries for larger U,
one is soon struck. with anharmonic effects. This should
be sufficient to elucidate the situation. As there are other
ways to calculate the exact transition rate,"we did not
try to solve the anharmonic-oscillator problem.
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The semiclassical theory of spontaneous Raman scattering is reviewed. From the semiclassical theory we
identify the parameters and dynamical variables involved in Raman scattering. A classical theory of stimu-
lated Raman scattering is constructed. It is an extension of the theory of Shen and Bloembergen. Vfe show
that the system is a weakly coupled system. Because the driving term contains dynamical variables, the
linewidth of the stimulated Stokes wave should be smaller than that of the spontaneous Stokes wave. Using
Riemann's method, we obtain Kroll's solution rigorously, in a more general form. The steady-state limit is
also derived rigorously. The conditions for the transient and steady-state gains are discussed. It is shown
that for the transient case one may have an abrupt change of the Stokes gain versus incident laser power.

I. INTRODUCTION

HEX a light beam passes through a medium, the
most effective entities in scattering the light are

electrons. The nuclear motion can modify the scattering
of light by electrons. This leads to Raman' and Brillouin'
scattering, with the scattered light shifted by the char-
acteristic frequencies of the nuclear motion (optical and
acoustical phonon frequencies for Raman and Brillouin
scattering, respectively). If the intensity of the incident
light beam is very high, the initially scattered waves can
enhance further scattering of the incident wave, and
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' C. V. Raman, Indian J.Phys. 2, 387 (1928).Raman scattering
is an inelastic scattering of light, in which the scattered light is
shifted by the frequency of a vibrational, rotational, or electronic
excitation. In this paper we shall be concerned only with the
vibrational excitation. The scattered light with frequencies shifted
down are called the Stokes lines; those with frequency shifted up
are called the anti-Stokes lines.

2 L. Brillouin, Ann. Phys. (Paris) 17, 88 (1922). Inelastic scat-
tering of light, in which the frequency shift is the frequency of an
acoustic phonon, is called Brillouin scattering.

lead to an exponential growth of the total scattered
wave. This further scattering, enhanced by the initially
scattered wave, is called stimulated scattering. In the
past few years stimulated Raman scattering has been
one of the most interesting topics in the field of nonlinear
optics both experimentally and theoretically. ' It is now
clear that in order to have an appreciable stimulated
Raman scattering, one requires the incident laser power
to be at least several megawatts. For comparison with
the experimental results, one usually assumes a steady-
state spatial gain for the exponential growth, and good
qualitative agreement is found. ' There are several
remarkable features in stimulated Raman scattering.
The stimulated Stokes waves are emitted in the forward
or backward directions with linewidths much smaller
than the spontaneous linewidth. The phase-matching
conditions require the stimulated anti-Stokes waves of
diBerent orders to be emitted in diferent coaxial cones. '
Also, in many experiments, it is found that the Stokes
gain of the strongest Raman line is anomalously high

3For a general review see N. Bloembergen, Am. J. Phys. 35,
989 (1967).

4 R. Y. Chiao and B. P. Stoicheff, Phys. Rev. Letters 12, 290
(1964); E. Garmire, Phys. Letters 1?, 251 (1965).


