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The theory of electron tunneling from metals into vacuum is investigated. Certain ambiguous conclusions
reached in previous theoretical treatments are reconsidered. It is found that band-structure information is
contained in the total energy distribution of field-emitted electrons. The problem of electron tunneling from
narrow energy bands with a high density of states, well described in the tight-binding approximation, is
treated. Expressions for the tunneling matrix element of electrons in tight-binding d bands tunneling to free-
electron states outside the metal are obtained within the field-ionization approximation of Oppenheimer.
Calculations are then given for the energy distribution of field-emitted electrons coming from a model of a real
metal in which the band structure is a superposition of a free s-like band and a tight-binding d band. This is
a reasonable qualitative model for the band structure of a noble metal. The relationship between the energy
distribution and the band structure is established.

where the surface integral is done over a constant-
energy surface. In this case, v,p does not equal a
constant and thus, since the tunneling current is pro-
portional to z,-p, some sort of density-of-states or band-
curvature information should be obtainable from
tunneling current characteristics.

Stratton4 has given an expression for the tunneling
current and TKD from "a conductor of arbitrary band
structure. '" The expression given by Stratton is valid
for arbitrary Fermi surface shapes but only within the
spherically symmetric KMA, that is for conduction
bands in which E is proportional to k'.

It is felt that band-structure effects which might play
an influencing role in the Geld-induced tunneling cur-
rent can be placed in one of the following categories:

I. INTRODUCTION

HK theory of field emission of electrons from
metals, as usually formulated, is applicable to

free-electron metals, ' ' interacting electron gases, ' and
superconductors, ' structures with no static band
effects. Attempts to include band-structure-type effects
in expressions for the total energy distribution (TED)
of field-induced tunneling electrons (6eld-emitted elec-
trons) have appeared. ' ' Frequently, band-structure
effects are handled within the effective-mass approxima-
tion (EMA), still retaining a parabolic E versus k rela-
tion. Stratton has dealt with band effects which
manifest themselves in radical departures from free-
electron Fermi-surface shapes. 4 Itskovitch has con-
sidered the influences of Bragg reflections as well as
Fermi-surface shapes to a limited extent. ' BenDaniel
and Duke have worked within the KMA in treating
certain tunneling phenomenon. '

Harrison has presented a formulation of the tunneling
problem in which certain band-structure effects are
treated. ' He shows that in his theoretical expression
for the tunneling current, there is a "conspicuous
absence of the density of states factor. "But, as Harrison
next points out, his conclusions are "a direct con-
sequence of the resultant reciprocal relation between the
particle velocity and the density of states. " The prob-
lem is that such a reciprocal relation results from treat-
ing only the component of momentum normal to the
barrier. The one-dimensional density of states is pro-
portional to (BE(8k.) ' and the particle-arrival rate is
proportional to BE/Bk„ the product of the two being
some constant. On the other hand, in a three-dimen-
sional system, the density of states is given by

,=y (V,E)—'dS,

(1) different effective mass but still parabolic band
shapes, treated by Stratton;

(2) effects arising from Fermi-surface topology,
treated by Stratton4 and also discussed by Swanson
and Crouser';

(3) Bragg reflections at Brillouin-zone faces, treated
by Itskovich';

(4) nearly flat bands such as tight-binding or d
bands in which k/mVl, E, large density of states over a
limited range of energies such as in transition metals,
treated in this paper;

(5) tunneling matrix elements or probabilities much
different depending on whether the tunneling electron
comes from a free-electron-like s or p band or a tight-
binding or d band, in which "conduction" occurs
through hopping integrals, treated in this paper.

As noted above, the present paper is concerned
mostly with the fourth and fifth effects. In Sec. II, a
general expression for the tunneling current is derived
along the lines followed by Stratton. 4 However, the
assumption of a free-electron band structure is not
invoked. The tunneling current and TKD are then cal-
culated for a model noble metal with the following
approximate band structure. A single, wide, free-
electron-like s band with a parabolic E versus k rela-

~ R. H, Good and E. W. Miiller, in Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1956), Vol. 21, p. 176.

2 R. D. Young, Phys. Rev. 113, 110 (1959).' J. W. Gadzuk, Surface Sci. (to be published).
4 R. Stratton, Phys. Rev. 135, A794 (1964).' F. I. Itskovich, Zh. Eksperim. i Teor. Fiz. 50, 1425 (1966); 52

1720 (1967) )English transls. : Soviet Phys. —JETP 23, 945 (1966);
25, 1143 (1967)j.' D. J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1966).

~ W. A. Harrison, Phys. Rev. 123, 85 (1961). ' L. W. Swanson and I, C, Crouser, Phys. Rev. 163, 622 (1967).
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tion and a single, narrow d band cross and possibly
hybridize to form some composite band structure. For
many purposes, it is meaningful to view this band
structure as the superposition of two independent
bands. ' The d band is approximated by E=bk, a
reasonable first approximation to a tight-binding band
with only nearest-neighbor-hopping integrals. "The re-
sulting TKD of field-emitted electrons is calculated in
terms of the tunneling probabilities of electrons from s
or d bands. In Sec. III, a description of tunneling from
tight-binding bands is presented. Specific calculations
for the tunneling matrix element between a d-band
electron and free electrons are given. Within the con-
text of this tunneling matrix element, numerical results
for the TKD from this model "noble metal" are given
and it is then seen how one can go backwards from the
TKD to band-structure information. General con-
clusions, discussion, and hopes for the future appear in

Sec. IV.

II. BAND-STRUCTURE EFFECTS

The traditional approach in field-emission theory is

to write the expression for the TKD of field-emitted
electrons as a product of a supply or incident Aux func-
tion =1V(W,E) whic—h may depend on the total energy
of the particle and on the momentum (usually referred
to as normal energy W) normal to the surface multiplied

by the barrier-transmission probability—=D(W), de-

pendent on the normal energy and then integrated over
all "normal energies" such that the total energy is a
constant. ' The TKD is thus

mentum to directionally dependent energy variables or
important physics will be glossed over. Critical points in
density-of-states functions and phase velocities rather
than group velocities are examples of this.

At this point, we will rederive the TKD with band-
structure results of Stratton without introducing the
parabolic band assumption. In analogy with Eq. (1)
and Refs. 2 and 4, the number of field-emitted electrons
with total energies between E and E+dE is given by

dj E,E+dE

dE=2ef(E)
dE'

D(E,kg, p) p, , (2)
(2vr)'

where f(E) is the Fermi function and p. is the group
velocity in the s direction of an electron with energy E
and k vector k=k~+k„where kr is the transverse
component and k, is the normal component to the sur-
face. The transmission or tunneling probability D is, in
general, a function of three dynamical variables. In the
free-electron models, D depends only upon the normal
component of momentum and thus "normal energy, " a
concept which is of vanishing utility in the three-
dimensional case. Since we are considering tunneling of
electrons at a given energy, the conserved quantity E
should be one of the variables. Furthermore, the
transverse k vector is usually assumed to be a con-
served quantity in tunneling. ' Thus, kz and p the angle
of kz in the plane of the surface are taken as the other
variables. This choice of variables specifies the state of
the tunneling electron. The group velocity in the s
direction is written

dj
1V(W,E)D(W) dW.

p, = (1/k) (BE/Bk,) .

Also, the differential volume element in k space between
the energy surfaces E and E+dE is

This result has also been obtained in a general many-

body tunneling theory approach. ' However, it is again
unfortunate that the commonly used terminology has
been adopted. The free interchange of vector momentum
and directionally dependent energy can be easily
effected only for simple systems such as a free-electron
metal in which E=uk'. In order to maintain generality,
most quantum-mechanical calculations are usually
carried out with respect to canonically conjugate
variables, say position and momentum. However, in

order to maintain some similarity with previous work,
we shall try here to work with the "pseudo-canonically
conjugate variables, "position and energy. This actually
is not too bad a problem when the information required
from the dispersion relation is the value of energy at a
given wave number. On the other hand, when density-
of-states or group velocities, which depend upon the
local slope of the E-versus-k relation, are needed, ex-
treme care must be taken in passing from vector mo-

'L. Hodges, H. Khrenreich, and N. D. Lang, Phys. Rev. 152,
505 (1966).' J. Callaway, Energy Band Theory (Academic Press Inc. ,
New York, j.964), p. 102.

E,E+dE

d k~dE
dS

~ ~ ~

I v~EI

where the surface integral is done over the constant
energy surface E. With these entries, Eq. (2) becomes

2ef(E)

dE A(2m. )'

BE/Bk,
D(E,kr, pp) dS.

I v~EI
(3)

2ef(E) P~ ar--(z, ,)

d q D(E,kr, y) krdkr . (4)
dE A(2pr)' p p

If we define an angle 0' which is the angle between the
vector dS and the s axis, then dS can be expressed in
terms of its projection in the plane transverse to the k,
axis, call it ds, through cos8'dS=ds. Conveniently, 8'

also satisfies

x V~E=costt'I V~EI =BE/Bk. .

Consequently, Eq. (3) assumes the more tractable form
with ds=kgdkzdq .
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Kith the preliminary remarks of the preceding
paragraph we can write

krdkr (m/A2)(dErFa/dW)dW k

kez r r
(o) (b) (c)

p(E)
(d)

realizing that the total energy is held constant. Since
dE=O=dW+dEr, we can substitute dW= dEr—and
introduce the effects of transverse band curvature
through

m dErFn m dErFE dEr)
krdkr ——— dEr—= —— idF'r .

h2 dE, k2 dkr dkr/

dj
=Kf(E)

dE
D(E Er)G(Er—)dEr 1

Flo. 1. Model band structure used in the calculations. {a) The Consequently Eq. (5) can be written as
complete structure formed by the independent bands of (b) and
(c) crossing and hybridizing. (d) The resulting density-of-states E
function.

(6)

Equation (4) is still an exact result as we have not yet
made any assumptions as to the functional form of the
E-versus-k relation. The ky integral can be written as
a sum of a spherical energy surface term and a small
correction integral which contains some of the informa-
tion of the constant energy surface topology, somewhat
related to the so-called "band-structure integral" of
Stratton. 4 We obtain

dj k f(E) ( /krm'*(1)

D(E,kr) krdkr
dJ: A2m' 4 p

2' p

bky (E,y)

D/E, k, k)k kk ), /k)
kz ($,p)

with bkr(E, i/1) =kr ' (E)—kr '"(E,22) the difference
between the maximum transverse k vector of the shadow
of the spherical and the true constant energy surface.
The second integral will usually be much smaller than
the first.

To continue in the spirit of past work, the k~ in-
tegration should be transformed to some sort of energy
integral. This is not as straightforward as in the free-
electron theories. Only in a free-electron metal does
Er =k'kr'/2m or krdkr=(m/b, ')dErFE, where the
superscript FE refers to the fact that the particular
energy is relevant only for a free-electron metal. In
order to proceed, we now make two assumptions as to
the nature of the energy bands, first that E=f( ~

k ~), so
that bkr(E, 22) =bkr(E, O) and thus the second integral
in Kq. (5) is zero. Second, we assume that E can be
written as E=fi(k.)gi(E)+f2(kr)g2(E). This is always
true if E is given by k raised to some power. As an ex-
ample suppose a linear E=bk relation. Since k=k, 2/

(k 2+k 2)1/2+k 2/(k 2+k 2)1/2 and E—b(k 2+k 2)1/2

the separation in this case is possible. The total energy is
often written as a sum of normal and transverse
"energies" E=W+Er in the field-emission litera-
ture. ' "With the present separation scheme we can
make the identification W =fi(k.)gi(E) and Er =f2(kr)
Xg2(E). Furthermore, we take D(E,kr) =D(E—Er)
=D(W).

where K= (mk:/22r2k2)
k G(Er) = (dEr FE/dkr)/(dEr/dkr)

k

and the limits of integration go from E;„=E(k=0) to
E. Equation (6) can be rewritten as an integral on W:

dj
=Kf(E)

dE Emin

D(W)G(E —W)dW. (7)

Equation (7) is the final expression with which to work.
Note that 6 is in some senses the ratio of the real metal
to free-electron metal two-dimensional density of
states resulting from degeneracies in the transverse
direction. If the real metal has a parabolic band and is
thus free-electron-like, then there is no density-of-
states information obtainable from the shape of the
energy distribution as concluded by Harrison. ~ Qn the
other hand, if we have unusual and interesting band
structure departing radically from the free-electron
model, then G will be dramatically different from
unity. In this case the result of Eq. (7) shows that there
is some sort of band-curvature information in the TED
due to the presence of the "two-dimensional density-of-
states factor. "

To see how these ideas manifest themselves in numeri-
cal results, a simple model calculation is performed.
Consider a theoretical noble metal in which the band
structure consists of a single free-electron-like s band
hybridized with a single narrow rs-fold degenerate d
band as shown in. Fig. 1(a).' The basic components of
this band structure are shown in Figs. 1(b) and 1(c) and
the total density of states appears in Fig. 1(d). The point
is that the true band structure can be envisioned as the
sum of a parabolic and linear band. The parabolic band,
with E'= aik2 and ai =52/2m, has a transverse structure
Ez'=a~k~'. The narrow linear band of width 8, E"=Ep'
+bi'k, has a transverse structure Er"=b12(kr2/E),
where bi=8/ks. , ks. is the k vector at the Brillouin-
zone face in the direction of emission and thus in the
transverse direction for a cubic crystal, and E; is the
energy for kz =0 for a given total energy E.

The general point of view now is to calculate the
TED twice, the first time for electrons tunneling from
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a, metal with the band structure of Fig. 1(b) and the
second time for electrons tunneling from a pure tight-
binding d-band metal with the Fig. 1(c) structure. The
hypothesis is that the current from the theoretical noble
metal with band structure shown in Fig. 1(a) is reason-
ably well approximated by the sum of the two non-
hybridized bands.

First, the s-band contribution is determined. In this
case, the tunneling probability D,(W) =ewi", where
d=heF/2(2m')'i', F is the applied 6eld, and iii is the
metal work function. ' ' For the values of electric fields
in field-emission experiments, d=0.1-0.2 eV. For a pure
free-electron s band, G=1 for all values of E. Thus the
s-band TED takes the usual form

(8)

( CK'CD~
l

ik

V

M Ant'1+ VVJ

with the Fermi-surface topology integral in Eq. (7)
set equal to zero. Jo is some function of the system
parameters but not of energy. This of course is the usual
free-electron result.

Next we must consider tunneling from the tight-
binding d band. The writer was unable to find in the
literature any treatments of tunneling from tight-bind-
ing bands. In Sec. III a model tunneling probability of
electrons from d bands into the vacuum is calculated.
For the time being we can characterize d-band tunnel-
ing by taking the tunneling probability De(W)
=e~'sF(W), where F(W) is a relatively slowly vary-
ing function of 8' whose magnitude is entirely un-
specified at this point. However, F(W) is calculated
in Sec. III.

With the assumed d-band structure, dEr "/dkr
=2bi'kr/E. Hence G(Er) =(k'ks. '/2mb)(E/b) for E;
&E&EO+b and G=O otherwise. Consequently, the
d-band TED becomes

Fzo. 2. Schematic diagram of the wave functions for d-band
tunneling. (a) The periodic potential with the surface barrier
and the tight-binding d orbitals. (b) The final-state electron wave
function in the linear Beld.

ment factor B(E). Now all that remains to be done is

to obtain a solution to the d-band tunneling probability
factor F(E).This is done in Sec. III.

III. TUNNELING FROM TIGHT-BINDING BANDS

We have now come to the point where a detailed
microscopic analysis of electron tunneling from tight-
binding d bands must be provided in order that our
study can proceed. Physically the picture is shown in

Figs. 2(a) and 2(b). Figure 2(a) is a schematic diagram
of the metal potential, unperturbed by the applied
field, on which the assumed tight-binding d electrons of
I'i2 symmetry are also shown. In Fig. 2(b), the free-
particle wave function in a constant electric field is
shown. In the propagating region, the function is an

Airy function while in the classically forbidden region,
the solution is of the form + e'"r»e~" where k(s)
=t (2m/k')F(sr —z)j'" and ss is the classical turning
point with respect to some arbitrary origin. The tunnel-

ing problem for electrons going between the tight-
binding d band and the free state is shown in Fig. 3.
Note that for the fields used in 6eld emission, sr =(1/F)
&&(Es+p, E) is usually gre—ater than 20 A when con-
sidering electrons states in the occupied portion of the
conduction band in which E(Ep, the Fermi energy.
The point to be made is that sz))r, where r is some
effective d-orbit radius of the order of atomic dimen-

sions. Later we consider overlap integrals of the d orbital
with exponential tail of the free-particle wave func-

tions. If we take the s=0 point at an atomic center in

the last layer of the metal, the d orbital is quite localized
within

~

s
~

&r,. Thus, the significant overlap will occur
in this region. Since k(s) = (2mFss/k2)'i2(1 —s/sr) 'i

and s/ss &0.1, we can neglect the s dependence of k(s)

A'kg, ' E 1j' (E) = (Jo/d)f(E)n —— e~'"F(W)dW
2mb 8 d

for E; &E&Eo+b. Since F(W) is slowly varying, it is
set equal to F(E), removed from the integral, and
integrated to give

je'(E) =Jof(E)(5'ks, '/2mb) (En/b)
&& (es« ee~i~is) (9)—

with 0 the usual step function. Using Eqs. (8) and (9),

j '(E) =j,'(E){1+(k'ks,'/2mb)(nE/b)F(E)
)((1 e(dmin Ei/e)

XL0(E—E;.)—|i(E—E;„—b)g)
(1o)

i'(E)&(E), —
where Eq. (10) defines the band-structure enhance-

within the given limits on E. The complete TED is
given by

j '(E) =j *'(E)+j'(E)Le(E E-..) —e(E—E--—b)j—
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I'io. 3. Schematic diagram of the overlapping wave functions in the
presence of the applied field at the surface.

to a first approximation and

Another technical point to note before proceeding is
that the portion of the overlap integral between 0' and
the d orbital, for 0& ~x, that is for s(0, is smaller than
that part for 0(—,'m, for s&0, by a factor at least of
order e '~" by virtue of the exponential decay of the
free-electron tail as it progresses towards more negative
s. In the cases of real metal d bands which lie 5—10 eV
below the vacuum potential, k 1 A and r 2 A so the
exponential decrease e '~" 0.02. This feature allows
us to make some simplifying mathematical approxima-
tions on the d orbits which do not a6ect the end
physical results, namely, that they possess the same in-
version or reQection symmetry about the s =0 plane in
the surface region as they would in the cubic crystal
6eld. Past theories of surface impurities have suc-
cessfully utilized idealized surface symmetry properties
to simplify calculations. ""The present case should be
an even better approximation because the errors in-
troduced by this ansatz, which are of order less than.
unity, are reduced by a factor of order 10 '. The
mathematical simplifications which result are well
worth it.

According to the accepted theories of tunneling, the
phenomenon can be characterized by a tunneling
Hamiltonian

Tg k. —— d'r %g.*(r)Tbg(r)

with the following physical significance. " " Particles
are localized in two distinct regions of space, the "left-
hand side" and the "right-hand side, " each character-
ized by some wave function. If the particles in each side
are allowed to become aware of the other sides exist-
ence, through some coupling Hamiltonian T, then the
wave functions of each side will leak into the forbidden

"J.D. Levine, Phys. Rev. 140, A586 (1965)."J.W. Gadzuk, Phys. Rev. 154, 662 (1967)."J.Bardeen, Phys. Rev. Letters 6, 502 (1961).
'~ M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.

Letters 8, 316 (1962)."R. E. Prange, Phys. Rev. 131, 1083 (1963).

intermediate region and overlap. The strength of the
coupling and thus transmission function for a particle
going from one side to the other is given by the matrix
element of Eq. (11). In the case of field emission into
vacuum from a metal, the left-hand side wave func-
tion bq(r) is a Bloch function in the metal with an ex-
ponentially damped tail in the barrier region. The free-
particle function has been discussed. The coupling term
T is the surface barrier with the applied field. " If the
tunneling problem was considered for s-type metal
electrons, then the transmission function given by
Eq. (11) would be very similar to the usual WEB
transmission function. ' '

To proceed, it is more expedient to consider linear-
combination-of-atomic-orbital-type wave functions for
the tight-binding bands. It is assumed that there exists
some form of a Kannier-type representation for Qat
band states in the surface region. ""Then the metal
state is written as

bk(r) = (1/QÃ) P e' "'a(r'Ri)—, (12)

where the sum is formally over all E lattice sites of the
metal. The functions a(r —Ri)=f„,~(r —Ri)V2 (H, p)
are atomic-type functions with /=2 for d-band states.
We will return to this point shortly. Putting Eq. (12)
into Eq. (11) yields

Tg, g
——(1/QX) Q e'~'R&Hp(R, ),

Rg

where we have defined

(13)

Hp(Ri) = d'r 4'„,*(r)Ta(r —R,) .

H p = d'r 4'~*(r)Ta(r) .

In this development, we have assumed that the twofold
degenerate Fi2 d state will dominate in the tunneling as
opposed to the threefold degenerate I'25 states. Under

'6 J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).
'~ J. W. Gadzuk, Surface Sci. 6, 159 (1967)."D. M. Newns, Phys. Rev. 178, 1123 (1969).

In a tight-binding band in which only hopping integrals
between nearest neighbors exist, it is also reasonable to
expect tunneling to occur only from orbitals centered
on atom cores in the surface layer. Furthermore, if the
atomic states have m=0, then kz =0 in the final state
and the phase factor in Eq. (13), accounting for
interferences between electrons emitted from various
centers will equal unity. Within this picture,

Tg, g =(1V,/+IV)Hp,

where E, is the total number of surface atoms and we
have called Hp ——Hp(Ri ——0). The big problem now is
to calculate
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with c1 a normalization constant.
Note that in the simple case of tunneling from a free-

electron hand, the metal wave function bk(r) —+ (1/0"')
Xg(E)e kz*e'kT'T, where 0 is the crystal volume, and

g(E) = (a function of energy of order unity)

2 [r.+2 —(4'/i' n) 4,'j)"'
(~.+ET)

%ith the tunneling Hamiltonian T= —I' s, the s-band
tunneling matrix element from Eq. (11) becomes

7' = (A /0'/2)sTg(E)c&e "*"(
22Fs

—
T) . —(16)

This result will be useful later.
The free state can be expressed as a series expansion.

It is well known that

e4"'=Q [42r(2)+1)] z(g)(kr)Y/, o(8) e

where j& is a spherical Bessel function of order /.

Since j&(ikr) =e(' "&'j1(kr),"we can write

4'k(r) =c1e kzT P L42r(2)+1)]'/2e4(«2&«+» j/l(kr) Ir/ o(8)
t

The potential in the barrier region is T= —Ps=Pr
Xcos8. Also, cos8=(42r/3)'/'Y1, o(8).

Combining the above thoughts, the tunneling matrix
element becomes

HTk=c1e 2'T p L4 (s2r+t1)]'" &e"z&+"
l

X[—F(4r/3)'/2] r' j/(kr) f„,2(r)

the assumption that the emitted electron has momen-
tum only in the s direction, this is rigorously true.
Furthermore, of the F12 states, the -'2LF2, 2+F2, 2] state
produces a vanishing matrix element, Eq. (15), under
the same assumptions on the 6nal state. Thus the only d
state of signi6cance is Y2,0. Physically, this is reasonable
also since V2, 0 has a big lobe extending in the s direction
out into the barrier. Thus the d-orbital state has the
form a(r) =f,2(r) Vo, o(8, (o).

The final state, as discussed earlier, is to a reasonable
approximation

k(r) = C1e /cere/ezz

on /, and doing some manipulation,

HTo c1e——"'T r'f„2(r)La j1(kr)+b jo(kr)]dr (18)

a= —(2+15)F and b = (so+15)F Ne.xt note that j&(kr)
=(sr/2)'/ (1/gkr) J&+1/2(kr), where J1+1/2 is the regular
Bessel function of half-integer order. Also we take the
radial part of the d orbital to be a Slater function, "
f„,2(r) =Cr"' 'e '", Where S=(Z—S.)/22*ao, Z iS the
nuclear charge, s, is the screening factor, e* is an effec-
tive principle quantum number, C is a normalization
constant, and a,0 is the Bohr radius. Typically, s is
1.3—2 A '. Equation (18) can thus be written as

HT2 —c1Ce /eeT(sr/—2k)1/2 e errnz+3/2—

F(a+1) F(b+1) F(c) ab
2F1(a,b; c; s) 1+— x=1+—s

F(b) F(c+1) c1'(a)

as an adequate approximation. "Then Eq. (20) becomes

HT/e~c1Ce /eery~(1 k) (s2+k2)——(n"+4& /2

F(rs*+4) k'
L2(~*+4)(2~*)(o)]

1'(-', ) (s'+k')

r(m*+ 6)
+b (-'k)'(s'+k') '

r(-;)

X2+Jo/2(kr)+b JT/2(kr)]dr. (19)

This is just the sum of Laplace transforms of a Bessel
function multiplied by its argument raised to some
power, of which the standard solutions are given in
terms of Gaussian hypergeometric functions. "For the
sake of completeness, the integrated form of Eq. (19)
is presented as

HT"=c&Ce 2 T+esr(-'k)(s'+k') (""+'&"

X(a[r(&*+4)/r(-,')]2F,p(~*+4),—-', ~*; -'„

k'/(s'+k')]ybPr(&*+ 6)/r(o)](-'k')(s'+k')-'
TF1L12(n*+6), —',(2—12*) -' k'/(s'+k')]}. (20)

Since k'/(s'+k') is always considerably less than unity,
we are justice. ed in taking the first two terms in the ex-
pansion of 2F1,

Since

dQ1'/, o(8) l 1,o(8) Fo,o(8) dr. (17)

+15 3 2
d~l, 0~1,0I 2,0 ~t, 3 '.~l, 1 )

5+4)r Q7 v3

k2 2
x e+ (-'(z"+e))(l(z-z")) —

j (zn

Returning to Eq. (16) and comparing with Eq. (21),
we can see how the d band transmission function is

upon using these results in Eq. (17), performing the sum

"Handbook of M athemati ca/ Functions (U. S. Government
Printing Ofhce, Washington, D. C., 1965), p. 439.

'0 J. C. Slater, Phys. Rev. 36, 57 (1930)."G.E. Roberts and H. Kaufman, in Tables of I.apIace Tpgyg-
forms (W. B. Saunders Co., Philadelphia, 1966),p. $0n

"Reference T9) p. 566.
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s= l.5A
E= 7.5e

'll'e= 4.5 eV

F=.5 V/A

E(eV) Relative to vacuum potential
-8 -7 -6 -5 -45 This is the important end result of this section, the

ratio of d-band to s-band tunneling probabilities at a
given energy, which will allow us to determine the band-

structure enhancement factor B(E) in Eq. (10) and

thus permit us to understand the TED of Geld emitted
electrons from our model noble metal. The numerical

implications appear in Sec. IV.

F=.3 V/A

I I I I

4 5 6
E (eV) ~(Relative to bottom of band)

lEF

Fio. 4. d-band tunneling probability reduction factor as a function
of energy. The applied field is treated parametrically.

T k Tk

X 2 $($2+122) (n "+4)/-2

sag(E)(Ep+q, E)—
I'(22*+4) k'

X a 1— (—,'o (22*+4)22*)
I'(2) — (~'+&')

r(~*+6)
+b (1$)2(S2+l'22) I

F(-;)

k2 (22*+6)(2—22*)q
X 1+

~

. (22)
(s2+k2) 18 J

The big term in brackets multiplying T, is just the
square root of the slowly varying function F(E) re-
ferred to in Eqs. (9) and (10). Note that we have now
called T~,i, =Td~ in order to distinguish between s-
and d-band tunneling. To go farther, we must specify
an effective principle quantum number m*. In this first
study, we simply take m*=2 as this choice has most of
the qualitative features of a more complicated system.
With this choice, there is an outer orbital, node at
some finite radius, and an inner core shell. The atomic
normalization in this case is C=s'"/(32r)'~'. Using the
appropriate values for t2 and b we thus get from Eq. (22)

F(E)= (Td/T, )2 = (N,/A. )2(0/N)
F'k' s'

Xprg(E)(E~+2. E)p'—
20 (s2+k2)'

542k'
X —180 . 23

(S2+k2)

given by the s-band tunneling probability multiplied

by a slowly varying function. In fact, substituting
Eq. (16) into Eq. (21) and Zq. (14) gives

Iv. RESULTS, DISCUSSION) AND CONCLUSIONS

The Grst object of interest is the numerology related
to the slowly varying part of the d-band tunneling
probability, the preexponential factor F(E). Recall that
Dq(W) =F(W) l~ sD, (W), where D,(W) e~'" in the
equation for the TED. Equation (23) gives the d-band
preexponential in terms of the parameters of the system.
The factor N/0 is the atomic density in the metal which
we take to be 10"atoms/cm'. N, /A, is the density of
atoms on the surface plane taken to be 2X10" atoms/
cm'. The relationship between the classical turning
point sz and the wave number k to other parameters has
already been stated. We take &.=4.5 eV and EI;——7.5
eV. The parameter s in the Slater function Z/22*a2

~n*/r, where r is approximately some sort of shell
radius. "For tight binding d-band orbitals, this radius
should be less than half the lattice constant. With
22*=2, as we have assumed, s) 1.3 A '.

With the above-mentioned choice of parameters, the
preexponential tunneling factor F(E) is drawn as a
function of energy for several different values of elec-
tric field used in Geld-emission experiments with
s =1.5 A ' in Fig. 4. In Fig. 5, s is treated parametrically
with a constant field F=0.5 V/A. The slope of the
linear FN line is also shown for comparison. As ex-
pected, in all cases the value of F(E) is much smaller
than unity refl.ecting the fact that tight-binding elec-
trons are not only tightly bound with respect to conduc-
tion processes but also with respect to tunneling. Al-

though numerical significance should not be given to
these results to better than an order-of-magnitude
estimate, the relative trends as parameters are varied is

physical within the marked limits. The field strength
used in experiments falls mostly between 0.3 and 0.5
eV/A. Figure 4 shows that there is nothing wrong with
the qualitative ideas presented here in this range of
fields; that is, F(E) is well behaved and relatively
slowly varying with energy below the Fermi surface

compared to the exponential s-band result. Of greater
interest are the results shown in Fig. 5. Here it is seen
that the tunneling probability at a given energy is

extremely sensitive to the choice of s, but once s is
chosen F(E) varies slowly with E for 1 A '(s(1.5 A '.
Upon reQection, this is also quite expected. The parame-
ter s is a measure of how tightly bound the d electron is
with smaller s implying less tightly-bound electrons

2' K. S. Pitzer, Quantgm Chemistry (Prentice-Hall, Inc. ,
Englewood ClifFs, N. J., 1953),p. 82.
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which should be much more free to tunnel. In fact, at a
given energy we would roughly expect the F(E) factor
to vary as an inverse exponential of s as it indeed seems
to do. From previous arguments, we would expect the
value of s for truly tight-binding bands to be somewhere
in the range 1.3 A '« 1.5 A '. As can be seen in
Fig. 5, within this small span of s, F(E) varies by a
factor of 10, falling in the range 2X10 4&F(E)&2
)&10 '.

I See note added in proof. ] Consequently, our
estimates of d-band tunneling current will be uncertain
by this amount. In any event, we can see that the
tunneling probability for a given d electron will be
roughly 10 ' times that of an s electron at the same
energy. The total d-electron tunneling current will be
increased by the density-of-states type factor, but not
in the dramatic manner in which we had hoped, as a
result of the small tunneling probability. We should also
note that the wide basically d bands in transition metals
such as tungsten are not so tightly bound and thus the
s parameter would tend to be a bit smaller than in the
model noble metal. '4 Consequently, the appropriate
value for F(E) could be greater than 10 ' and it might
then be possible to unambiguously observe certain
band-structure effects. However, the tight-binding ap-
proximation breaks down in this case and another

E (eV) (RELATIVE TO VACUUM POTENTIAL)
—II -IO -9 -8 -7 -6

IO- e

F=,5 VtA

EF=7,5 eV

ge= 4.5 eV

d =.2

IO-'
S=I,48 I

F(E)

io-4

IO '

. I I I I I I I

I 2 3 4 5 6 7 EF
E (eV)~(RELATIVE TO BOT:CM OF BAND)

FrG. 5. d-band tunneling probability reduction factor as a
function of energy. The tight-binding parameter s is treated
parametricatly. Also shown is the slope of the s-band tunneling
prpbability. The region of questionable validity is cross-hatched.

'4 L. P. Mattheiss, Phys. Rev. 139, 236 (1965.)

I.5

-5.8
E (eV) (REI ATIVE TO VACUUM POTENTIAL)

-5.6 -5.4 -5.2 -5
I I T I T I I I

U)~ I.OZ
D

IZ

I-
m
K

0
6.0 6.4 6,6 6.8

E (eV) (RELATIVE TO BOTTOM OF BAND

7.0

FIo. 6. Band-structure enhancement factor B(E) and the
TED as a function of A for 8 =1.0 eV.

method must be devised. We return to this point when
we discuss the "anomalous" tungsten data obtained by
Swanson and Crouser.

Next we consider the band-structure enhancement
factor B(E) given by Eq. (10). It is here that the en-
hancement from the density-of-states eKects is weighed
relative to the decreasing factor of the d-band tunneling
probability. To get a quantitative feel for the problem
some tenable parameters must be assigned to the band.
structure. Consider the model metal band to be such
that the band width 8=1 eV and let E; =6 eV, so
that the top of the d band lies 0.5 eV below the Fermi
level. Also consider the case when E; =6.75 eV and
8 =0.25 eV. The distance in k space from F to the zone
face, ks„ is of the order of 2m/a with a the lattice con-
stant. As an estimate, we take ks, ——2 A '. Other values
used are s =1.4 A ', F=0.5 V/A, and d =0.23 eV. Since
we are really considering a twofold degenerate F» band,
which we assume is not split by the crystal Geld away
from F, the degeneracy parameter e is set equal to two.
Spin degeneracies have already been included in Jo.

From Eqs. (10) and (23), B(E) is drawn as a function
of E for the chosen parameters in Figs. 6 and 7. The
sharp cutoff at E=E; +8 is an artifact of the model
and in reality would be rounded. Also shown in Figs. 6
and. 7 are the predicted shapes of the TED. It is seen
that the hump in the TED, for the very narrow band,
a manifestation of density-of-states and band-structure
effects, could certainly be detected experimentally al-
though in not as obvious a manner as might be expected
from looking at a density-of-states curve. This band-
structure effect has arisen from density-of-states effects
and not Fermi-surface effects discussed by others. 4' '
Certainly the Gnal treatment will have to include both
contributions. However the purpose here has been to
demonstrate that density of states and nonparabolic
bands give effects that are just as, if not more, im-
portant in determining the TED than Fermiology
considerations.
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FIG. 7. Band-structure enhancement factor B(8) and the
TED as a function of 8 for 6 =0.25 eV.

In actual practice, the best way to get information
from observed TED is to divide this by the s-band
tunneling probability thus giving the band-structure
enhancement factor B(E). Any structure in B(E) can
then be interpreted within a band-structure framework.
There are many technical problems though in this pro-
cedure. With the present integral energy analyzers com-
monly used in experiments it is only possible to measure
a TKD down to 0.5 eV below' the Fermi energy. In
this region the FÃ expression for an s-band TKD is
reasonably valid. However with the eventual adaption
of differential energy analyzers, it will be possible to
accurately measure a TKD to several volts below the
Fermi energy. As Plummer has pointed out, when one
looks below 0.5 eV from the Fermi energy, the asymp-
totic expansions used in the derivation of the IiE
tunneling break down dramatically. 2' It will be very
important to retain higher-order terms in the s-band
tunneling probability so that a meaningful separation
between j.'(E) and B(E) can be eRected in the total
energy distribution j&,&'(E) =j,'(E)B(E). Thus one
must have an accurate theoretical estimate of j,'(E)
in order to infer values of B(E) from measured values
of j...'(E).

Unfortunately it is not a very straightforward pro-
cedure to go from values of B(E) to a unique statement
about the d-band structure. Probably the only thing
that will be able to be said about the band structure from
measured values of B(E) is that in the energy region in
which B(E) displays some hump, there is a reasonably
Qat nonparabolic band. It will be hard to obtain quanti-
tative information from either the magnitude or the
energy dependence of the hump in B(E). In the final
analysis, it appears possible that we will be able to see

"E.W. Plummer (private communication).

some sort of band-structure effects in the TED but it
will not be very easy to obtain much quantitative in-
formation from the observed effects, at least as far as
band-structure information is concerned. This situation
results from a number of factors. The first is related to
the relative uncertainty in an accurate description of
d-band tunneling. The extreme sensitivity of F(E) on
our choice of s illustrates this problem. The second
problem arises from the fact that either we must be able
to unfold B(E) so as to separate the energy-dependent
tunneling probability from the energy-dependent two-
dimensional density-of-states factor. Alternatively, we
can fold together an assumed band-structure factor
with an assumed tunneling probability and adjust
parameters until the measured and predicted values of
B(E) coincide. Both procedures suRer from the same
deficiencies. We must have a pretty good idea as to what
the answer is before we start. Actually, this is not so
bad. though since most other band-structure and Fermi-
surface experiments such as photoemission, optical
studies, and de Haas —Van Alphen effects require much
the same conditions. Second, even if we are able to
reproduce the B(E) factor with a particular choice of
tunneling probabilities and density of states, there is
little guarantee that we have hit on a unique solution
to the problem.

Next we should make some comment with regards to
the "band-structure hump" in the TED of electrons
emitted from the (100) face of tungsten observed by
Swanson and Crouser. ' They observe a hump in the
TED, qualitatively similar to the hump in the theoreti-
cal TKD shown in Fig. 7, from about 0.2-0.5 eV below
the Fermi energy for electrons emitted in the (100)
direction or along VII in the Brillouin zone. In the cal-
culated band structure of 5', Mattheiss and Watson"
have considered various spin-orbit splitting parameters
b&, where the I'» band of symmetry 67 crosses the 67
band of F25, at a position roughly 0.4 eV below the
calculated Fermi energy. The splitting causes a band gap
whose magnitude depends upon the strength of $5q.

- Also the position of the Fermi energy relative to the
band gap depends upon (~d, Swanson. and Crouser argue
that the influence of the gap on the topology of constant
energy surfaces whose energies fall within the gap may
be related to the TKD through Stratton's Fermi-
surface integral. They then suggest that the presence
of the hump or excess emission current is related to the
splitting, the subsequent energy gap, and the resulting
Fermi-surface shapes. On the most naive level, one
might expect that the presence of an energy gap would
suggest a decrease in current for energies within the gap
due to the absence of allowed states. Thus, the TED
would show a depression rather than a hump.

In light of the Swanson and Crouser interpretation,
an alternative point of view which follows from the

' L. F. Mattheiss and R. E. Watson, Phys. Rev. Letters 13, 196
(1964).
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ideas put forth in this paper is offered. In Fig. 8, the
relativistic energy bands along I'H, calculated by
Loucks, are shown. '7 Note that the originally un-

hybridized dz band emanating from A7+ is quite Rat
for k&0.3 k&, at an energy about 0.4 eV below the
Fermi energy. For the cubic crystal FH is both normal

and transverse to the emission direction for certain
values of the angle y. The tunneling from this portion
of the d band could be qualitatively very similar to the
type of tunneling described in this paper. The electrons
might be somewhat tightly bound but the Rat band
gives a bigger transverse density-of-states-type factor.
Extremal points in this band occur at about 0.3 and
0.5 eV below the Fermi surface resulting in BE/Bkr
going to zero and thus another large density-of-states
type factor. Consequently, in the range 0.3&8&0.5 eV
below the Fermi energy, the range in which the hump
in the TED is observed, there are large band-curvature
or density-of-states-type factors moderated by a smaller
tunneling probability. The observed behavior has just
the characteristics that would be expected from a
material with the band structure calculated by Loucks,
when interpreted in terms of the present analysis.
Although these ideas are quite speculative, their in-
tuitive appeal seems to warrant presentation as
another way of looking at the Swanson and Crouser
data.

In summary, we have reformulated the theory of
field emission to allow for some new band-structure-
type effects not present in parabolic energy bands. The
theory has shown that in some senses, density-of-states-
type information is obtainable from the TED of field-
induced tunneling electrons. The small amount of ex-
perimental data which possibly contains such band-
structure information is quite consistent with the ideas
put forth here, although it is not claimed to be positive
proof of the theory.

There are, however, a number of weaknesses in the
theory which might be dealt with in future work.
Although it is not felt that these points invalidate any
of the qualitative conclusions given here, quantitative-
ness may suffer. An enumeration of some of these points
is as follows. First, it might be more desirable to include
tunneling matrix elements from electrons centered on
lattice sites other than surface atoms As Wood points
out, at least for the case of d electrons in iron, it is not
at all obvious that linear-combination-of-atomic-orbital-
type wave functions are a good approximation for all d
states. "Some of the d states have wave functions nearly
as extensive as the s-band states. However, the ques-
tion of the nature of d electrons in transition metals is
still an open question with regards to energy-band
calculations and magnetism theory. Until this question
is answered, it will be quite dificult to get a truly ac-
curate picture of tunneling from d bands.

2' T.L. Loucks, Phys. Rev. Letters 14, 212 (1965).
~' J. H. Wood, Phys. Rev. 117, 714 (1960).
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Fio. 8. Portion of the tungsten band structure along
FH and near the Fermi energy.

Another dificult point is concerned with the form of
tunneling matrix elements. There exist several problems
in doing tunneling theory as a result of the fact that
tunneling, as usually formulated, is not a mathe-
matically well-posed problem. " We have used the
Oppenheirner formulation of tunneling matrix elements,
originally intended for treating 6eld ionization of
isolated atoms. "Although this is not a rigorously cor-
rect from the mathematical point of view due to the
over completeness of the sets of states used, more ac-
curate calculations of the field ionization of isolated
atoms" ' and atoms in the presence of a surface"
have shown that the Oppenhemier or rearrangement col-
lision" point of view seems to provide reasonable results.
Fundamentally, field emission from metals is very
similar to field ionization of isolated atoms, the major
distinction arising only from the choice of initial states,
whether they are Bloch functions or atomic functions.
Since the Oppenheimer theory is reasonable for atoms,
we assume that. it is an adequate first approximation for
atomiclike d states in metals. Furthermore, since we are
only calculating the ratio of d- to s-band tunneling
within the Oppenheimer approximation, we might
imagine the errors to be even smaller.

Still another problem is related to the difhculty in
doing three-dimensional tunneling problems. In most
cases, some sort of artificial decoupling must be assumed
to transform the wave functions into a product form
4(r) %i(y&)%'2(s) as was discussed by Bennett and
Duke. "The present work has not been able to come to
full grips with this problem. In order for calculations to
proceed, we had to assume a band structure in which

energy was a function of the magnitude of k but not of
the direction. This assumption is equivalent to a one-

"C.Lanczos, Z. Physik 68, 204 (1931)."M. H. Rice and R. H. Good, J. Opt. Soc. Am. 52, 239 (1962)."D. S.Boudreaux and P. H. Cutler, Phys. Rev. 149, 170 (1966)."T. Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1962), p. 211.

"A. J. Bennett and C. B. Duke, Phys. Rev. 162, 578 (1967).
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dimensional tunneling assumption although it is not as
blatantly apparent. We were able, however, to avoid
the parabolic band restriction and in this sense some
interesting band-structure effects could enter.

Lastly, when all is said and done we really considered
only tunneling from d-band states of 7~2 in which m =0
and thus k~=0, at least in evaluating transmission
functions. One of the advantages of the Oppenheimer
formulation is that three-dimensional tunneling matrix
elements can be handled. Although by considering the
easier m=0 state, we in effect did not treat all the
ramifications of transverse momentum, this is only a
technical point which can be straightened out by a more
exhaustive calculation within the framework of the
theory presented here.

In spite of the limitations just cited, it is felt that the
basic physics illustrated by this model calculation is
sound. All the qualitative and even semiquantitative
conclusions should stand up under the test of a more
accurate calculation or experimental data. We have seen
that band-structure and density-of-states information is
present in the TKD of 6eld-emitted electrons. Due to
the assumed tight-binding character of the d electrons,
a reduced tunneling probability lowers the magnitude
of the density-of-states peaks in the TKD such that the
structure is not as pronounced as it would be if the
d-band tunneling probability was the same as the

s-band probability. However this work, with its in-
herent weaknesses, should serve as a useful guide in
future theoretical work and may provide some useful
insight into the interpretation of new experimental
data.

Pote added in proof Du. e to an inconsistency in the
normalization of the d electron wave function, the ratio
of the d to s electron tunneling probability, Ii (E), given
by Eq. (23) should be multiplied by kr. It is then noted
that the d-band tunneling probability is about 10 '
times the s-band probability. These results are in good
agreement with the ion-neutralization experiments of
Hagstrum in which he noted that d-band tunneling to
the incident ion is suppressed by a factor of order
10 '—10 ' compared to s-band tunneling at the same
energy, ""for reasons similar to those noted in the
present paper.
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