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We remember that the full validity of the present
treatment fails if the radiative energy losses are
appreciable. Nevertheless, even at an initial energy of a
few MeV, a substantial decrease in asymmetry can be
avoided by the use of sufBciently thin target foils, as
can be deduced from the calculations by Blunck and
Westphal, ' and by Schultz. '

APPENDIX

The presented calculations of energy straggling with
allowance for spin can be easily extended to particles
other than electrons. The case of helical muons has
been considered. As can be derived from the cross
section given by Backenstoss et a/. ,

" in this case the
coefficient a, is still expressed by Kq. (15), while

~ = (1/~) L
—h" —1)/~'~f (p-/m. ~') (1/~)j,

1 1 tm 1 6~ 1
v= — — &f +

j=0,
9 O. Blunck and K. Westphal, Z. Physik I30, 641 (1951).' W. Schultz, Z. Physik 129, 530 (1951).
"G. Backenstoss, B. D. Hyams, G. Knop, P. C. Marin, and

U. Stierlin, Phys. Rev. Letters 6, 415 (1961).

where the maximum energy transfer ~, is given by

mp 2(y' —1)
&ma~ =m~C 2

m„1+(m p/m„) (2y+m p/m„)

In the above formulas neo and m„are the electron and

muon rest masses. In order to take into account the
density effect, the definition (9) of the reduced variable

p must be modified by the addition of a corrective
term. 'P Numerical calculations for f= 0 gave very good

agreement with the results obtained by Vavilov. " In
the case of a magnetized target (f 0.06), a very low

parallel-antiparallel difference was found in every

realistic condition. This fact is due to the very great
number of single scatterings which occur in a foil which

is thick enough to give a mean energy loss comparable

with the resolving power of an actual experimental

apparatus.

"R.M. Sternheimer, Phys. Rev. 145, 247 (1966).
"P. V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957)

LEnglish transl. : Soviet Phys. —JETP 5, 749 (1957)j.
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Torrey's theory for nuclear spin relaxation by translational diffusion has been extended to take into

account the effect of the radial distribution function. By suitable expansions, the frequency dependence

of the intermolecular relaxation rate has been made explicit and shown to be more significant than pre-

viously suspected. Measurements of self-diffusion and of the intermolecular relaxation of protons in liquid

ethane have been made over a wide range of temperatures and at three frequencies in order to test the

theory. Good agreement is obtained with the assumption of an rms flight distance which varies mono-

tonically from about 0.8 to 1.3 times the molecular diameter over the liquid range.

I. INTRODUCTION

""X his classic paper on nuclear spin relaxation by
- ~ translational diffusion in 1953, Torrey pointed out
that the essentially microscopic character of nuclear

spin relaxation would reRect details of the process of
random Rights of which diGusion is only the limiting

*Acknowledgment is made to the donors of the Petroleum
Research Fund administered by the American Chemical Society
and to the Society of Sigma Xi for partial support of this research.
This work is based upon a thesis submitted to the University of
Wyoming in partial fulfillment of the requirements for the Ph.D.
degree.

f Petroleum Research Fund Fellow 1963—1966; National
Aeronautics and Space Administration Trainee 1966—1968.

f Present address: Department of Physics, University of Utah,
Salt Lake City, Utah.

macroscopic approximation. ' He predicted that studies

of relaxation would allow the independent measure-

ment of (r'), the mean-squared flight distance, and r,
the mean time between Rights. He well understood that
measurement of the self-diff'usion constant D would

provide the familiar combination

D = (r')/6

and he foresaw that the spin-lattice relaxation time T~

would be a function of these parameters also.
To our knowledge, no one has yet experimentally

investigated in detail these suggestions as they relate
to motion in liquids. The 16-yr delay between Torrey's

' H. C. Torrey, Phys. Rev. 92, 962 (1953).



182 NUCLEAR RELAXATION B Y D IF FUSION I N LI QU I D C2Hg 40i

theory and the kind of study we wish to report is
principally due to the difficulties of (1) preparing a
sample sufFiciently free of paramagnetic impurities to
allow the measurement of intrinsic relaxation times,
and (2) separating reliably the intermolecular con-
tribution to relaxation, to which Torrey's theory
applies, from the intramolecular contribution, to which
it does not.

Extensive measurements of the proton relaxation
time and the self-diffusion constant in liquid ethane
have been made from 91 to 273'K. This covers most
of the liquid range, which extends from the melting
point, 89.82'K (Ref. 2) to the critical point, 305.48'K
(Ref. 3). In this paper we report the noteworthy agree-
ment of our data for the intermolecular contribution
to relaxation, EJ3, with Torrey's theory for relaxation
and the consequent measurement of (r') and r as
functions of temperature. To match our data, it is
necessary to generalize Torrey's theory to take into
account the liquid radial distribution function, to
expand the results to include the first-order frequency
term, and to use the Hubbard correction4' for multispin
molecules.

Some of the results of the modified Torrey theory
may be anticipated by physical arguments using the
Bloembergen-Purcell-Pound (BPP) model for inter-
molecular relaxation. ' BPP assumed an exponential
form for the correlation function of the position co-
ordinates of two spins. The correlation time for the
relative translational motion was taken to be the time
it took the two spins to drift a relative distance E if
they were intially separated by a distance E. This time
is rp ——R /12D. The correlation time is seen to increase
rapidly as the distance separating the spins gets greater
as does the number of spins with a given correlation
time. However, the interaction strength decreases as
1/R'. This leads to a relaxation rate Rs proportional to

"4m''dE. ( 7.p 4rp
+

R' &1+co'r ' 1+4co'r pP

in which or is the angular Larmor frequency and 0 is
the molecular diameter. BPP assumed that since
co7p(&1 for the nearest neighbors and since the most
important contribution to the integral comes from
these neighbors, one could neglect (corp)' compared to
1 for all E.. This does simplify the integral, but it also
throws away the frequency dependence. It turns out,
however, that for some cases, for example, low-tem-
perature liquid ethane, there is a range of E. for enough
suSciently close neighbors such that their longer
correlation times are effective in producing an appre-

' L. J. Burnett and B. H. Muller, Nature 219, 59 {1968).' H. B. Palmer, J. Chem. Phys. 22, 625 (1954).
4 P. S. Hubbard, Phys. Rev. 131, 275 (1963).' B. H. Muller, Can. J. Phys. 44, 2511 (1966).' N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.

13, 679 (1948).

ciable frequency dependence in E~. Indeed, the BPP
integral can be done exactly and can be shown in the
low-frequency limit to be proportional to (1—kipco"'/
DP~'), in which k is a constant and e is the number
density of resonant nuclei.

Some insight into the dependence of Ra on (r') can
also be obtained with the help of the BPP model. This
model assumed that the diffusive process takes place
by very small steps. Thus, a very large number of
steps are required to change the dipolar interaction
between neighboring spins appreciably and rp= RP/12D
is the expression for the correlation time for a pair of
spins whatever their distance of separation. However,
if the spin-bearing molecules perform jumps of the
order of a molecular diameter, one jump will be suf-
ficient to change appreciably the dipolar interaction
between the nuclei of neighboring molecules. Thus, for
these molecules the waiting time between jumps,
—',r=(rP)/12D, becomes significant because this time
is a lower limit for the correlation time. As a con-
sequence, the correlation time is larger than vp and it
is a function of the mean-squared Right distance. Since
the nearest neighbors are the most important con-
tributors, the net effect on E~ is appreciable. It will be
shown later that for jump distances equal to the
molecular diameter, Rz is increased by about 40% if a
uniform density is assumed and by about 70% if a
realistic radial distribution is taken into account. This
argument is independent of the Larmor precession
frequency co. Thus, contrary to Abragam's physical
argument, ~ the details of the random-walk motion
can be significant whatever the magnitude of ~r.

It was pointed out by Seiden' that the effect of the
radial distribution function should be included in any
correct theory of intermolecular spin-lattice relaxation.
The radial distribution function for a liquid is char-
acterized by a maximum at the nearest-neighbor
location. This implies that there are more nearest
neighbors than would be expected if the liquid state
were purely random in character. The increased
effectiveness to relaxation due to this excess number of
nearest neighbors is taken into account in the Oppen-
heim-Bloom' theory in a natural way, but in their
papers the diffusive motion is assumed to obey the
Langevin equation in the diffusion-equation limit. We
find this assumption to be incorrect, at least for liquid
ethane and liquid He'. While the dynamic formalism
of the Oppenheim-Bloom theory is more appealing
than Torrey's stochastic approach, and in principle,
jump diffusion could be incorporated in their theory, '
we have found Torrey's theory more tractable.

7 A. Abragam, The Principles of Nuclear Magnetism (Oxford
University Press, London, 1961),p. 461.

8 J. Seiden, Compt. Rend. 245, 1614 (1957).
9 I. Oppenheim and M. Bloom, Can. J. Phys. 39, 845 (1961).
'OM. Bloom, in ProceeChngs of the Seventh International Con-

ference on Lou Temperature Physics, edited by G. M. Graham
and A. C. Hollis Hallett {University of Toronto Press, Toronto,
1961),p. 61.
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Equation(9) is similar to Torrey's Eq. (28); however,
we have retained the radial distribution function.

A. Zero-Frequency I.imit

We must now choose a model describing the diffusive
motion. The usual treatment of intermolecular re-
laxation assumes that the motion of the molecules is
described by the diffusion equation. This assumption
leads to an A(p) of the form

~()=1 Drp'—+o(u') (10)

The above expression for A(p) allows all integrations
over p in Eq. (9) to be performed in the limit (cor)«1,
glvlng

4x-e 1 o' 'g(R)dR
J,(0) = — 1—

45D b 5b', E'

3o' bg(R)dR

andI2(0) =44(0).Using Eq. (1),wefind therelaxation
rate to be

2~ny4A'I(I+1) 1/ o' 3o'
Rs(0) = -i 1— +Iy — I2 , (12)

3D b~ Sb' 5
where

R '"g(R)dR, 4=1, 2. (13)

g(R)=0, R(o.
g(R)=1, R)a. (14)

Equation (12) reduces to the usual expression in this
case, '4 namely,

Rs(0) =(Sme/15aD)y4h'I(I+1). (15)

The validity of using the diffusion equation to describe
motion in the liquid has been questioned elsewhere. ' "
We will show later than neither Kq. (12) nor (15) will

describe the data for ethane or He'.
Quite early, Frenkel" suggested a model for liquid

motion that includes an oscillatory motion about an
equilibrium position followed by a diffusive jump. A
model of this nature has been used to interpret cold
neutron scattering experiments by, among. others,
Larsson and Dahlborg. "Torreyis led to and(p) of the
form

A(p) =(1+Dr@') ' (16)

~4A. Abragam, The PrincipLes of Eeclear 3IIagnetism (Oxford
University Press, London, 1961).

"J, Frenkel, Einetic Theory of Iiqsuds (Oxford University
Press, London, 1946).

16 K.. E. Larsson and U. Dahlborg, Physica 30, 1561 (1964).

Now if 6~0., I~——0. This is just the usual assumption
of a hard-sphere radial distribution function in the
zero-density limit; that is,

Rs(0) =
Svrny45'I(I+1) 5(r')o 5o a')

+—1—
15oD 12b' 4b Sb'/

5 50-( 30'
+ (")aI2+ -IIi— —I2 (18)

5

For the hard-sphere radial distribution function in the
zero-density limit the use of Kq. (14) gives

Rs(0) =
Sn.ep'O'I(I+1) 5(r')

1+
12g'

(19)

as may be found from Torrey's paper with the use of
the Kubo-Tomita correction. The importance of the

jump term (r')/a' in Eq. (19) has been discussed by
Muller'~ and Muller, Harmon, and Finch. ' We will

show later that Eq. (18), which includes both the jump
term and the radial distribution function, gives excellent
agreement to experimental data for ethane with rea-
sonable values for o and (r2)/o'over a good part of its
liquid range.

In order to write Eqs. (12) and (18) in forms that
can be compared with experiment it is necessary to
perform the integrals Iq, using the appropriate g(R).
Unfortunately, experimental radial distribution func-

tions are not known for a number of liquids including
ethane. If this experimental information is available
for a particular liquid, one need only to integrate the
I& numerically. Another approach when experimental
distribution functions are not available is to calculate

g(R), assuming Kirkwoods superposition principle.
Extensive tables exist'9 which allow one to determine

g(R) in thisapproximation for avarietyof temperatures

~' B. H. Muller, Phys. Letters 22, 123 (1966)."B.H. Muller, J. F. Harmon, and E. D. Finch, 3fagnetic
Resonance and ReLaxation (North-Holland Publishing Co.,
Amsterdam, 1967), p. 115.

'~ J. G. Kirkwood, V. A. Lewinson, and B. J. Alder, J. Chein.
Phys. 20, 929 (1952).

by considering the following model: A molecule is
bound in a "well" for a time r—r', then it may jump
out of the trapping site and move about in a random
manner for a time r' before falling into another well.
It is assumed that the motion in the excited state is
described by the diffusion equation and that this
motion does not contribute to the relaxation. It is to
be noted that Torrey's A(p) reduces to Kq. (10) in the
limit Drp'«1 and thus Torrey's theory includes con-
tinuous diffusion as a special case.

In the limiter&(1, Eqs. (9), (13), and (16) yield

Svrnr o' 3o' o')
I,(O) = —+ 1- ~y3aaI,

45a' b' b(r') Sb')

3o' 3o'
+ Ii— I2

~

. (1&)
(r2) 5 J

Using Kq. (2), we obtain
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and pressures. For the noble liquids this procedure
gives a reasonably good approximation for g(R). It is
clear, however, that for a liquid as complicated as
ethane, this approximation is very crude. The integrals
I~ for heptane have been evaluated using both the
experimental g(R) and the results of Kirkwood et at i9.
The results differ by less than 10%, indicating that the
details of g(R) are not important in the integrals Ii,.
That this should be so is not surprising when one
considers the rapid convergence of the integrand due
to the factor 1/R'~, which smooths out quickly the
structure in g(R). All that is important is the first
maximum in g(R) at the nearest-neighbor location.
Since the experiment, at least in the limit co~&&j., is not
sensitive to the details of g(R), an approximate ana-
lytical form for g(R) is now derived. The procedure is
as follows: It is well known' that the radial distribution
function can be expanded in powers of the molecular
number density n'; thus,

g(Ri2) =o &i'«&i~r 1+re' (e i'&+»&i~r —1)

X(e ~~'»&i"' 1)dR—,+O(ii") (20)

where g(R) is the intermolecular potential. A hard-
sphere intermolecular potential is assumed for p(R):

y(R)= ~, R(o
P(R) =0, R)o. (21)

With this assumption, the first term in Kq. (20) will

generate Eq. (14), the usual approximation made in
calculating Rs. Carrying Eq. (20) with p(R) as given
by Eq. (21) to first order in I', one obtains"

g(R) =0, R(0.
g(R) =1/Q(1 ~R/ +,',R'/ '), —&R(20(22)
g(R) =1, R)2o

and

I2—
20' 1

R 4g(R)dR= —(0.292+0.05370), (23b)
03

from which Eq. (18) becomes

87riiy4h'I (I+1)— (r') 5
14(0)=. 1+ —+0.06720)

15oD a' 12

+0.05210 . (24)

Rii' Rii (1+6), —— (25)

where 1+8 is a power series which converges rapidly,

This expression, which takes into account diffusive
jumps and the radial distribution function, should
describe the relaxation in ideal liquids in the zero-
frequency limit. Note that for liquid ethane, the co-
eflicient of the jump term, (r')/a', is about 0.70.

For polyatomic liquids, such as ethane, a further
effect must be considered. Hubbard4 has pointed out
that if the spins are not at the center of the molecule,
the distance of closest approach of two spins will no
longer be 0., the molecular diameter, but something
less. Also one must consider the effect of rotation of the
spin-bearing molecules on the purely translational
relaxation. It turns out that these e6ects compete, the
former tending to increase the relaxation rate, the
latter decreasing it. This last eBect is similar to the
phenomenon of motional narrowing since the rotational
motion averages out part of the intermolecular inter-
action. Muller' has extended Hubbard's treatment in
order that the actual rotational correlation time may
be used instead of a value calculated from the simple
Debye tumbling model, which is not applicable to
ethane. These corrections are included by modifying
the E~ equations as

where 1+4= 1+a (2d/o )'+P (2d/o)'+ (26)
0= —,'m-e'0'.

This form of g(R) gives the required maximum at the
nearest-neighbor location, can easily be integrated in
the Ig, and introduces no new parameters. Furthermore,
the temperature dependence predicted by Eq. (22) in
the II, is in good agreement with that of the more
complicated Kirkwood theory.

YVhat has been done here, essentially, is.to carry the
usual theory for E& to the next order in the molecular
number density. Using Eq. (22) in the Iz integrals, we
obtain

2a'

R 'g(R)dR= —(0.500+0.07390) (23a)

20 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids I'Wiley-Interscience Publishers, inc. ,
New York, 1964), Corrected Printing."J.de Boer, Rept. Progr. Phys. 12, 305 (j.949).

The quantity d is the distance of the proton from the
center of its molecule and n and P are factors taken from
Ref. 5 and a knowledge of the intramolecular corre-
lation time obtained from the experimental results.
While it should be noted that the inclusion of the off-
center spin effect as given in Kq. (25) is purely an
ad hoc correction, 8 is at most 0.09 for ethane. It should
be possible to include the Hubbard e6ect into the Torrey
theory rigorously, as has been done for g(R), but this
has not yet been done.

B. Low-Frequency Limit

Experimentally, 8& is found to be frequency-
dependent in the low-temperature liquid. It is clear,
of course, that Eq. (24) will not describe this effect
since it has been assumed that cur(&i, the "white"
spectrum limit for the motion. The frequency depen-
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dence of the theory is included in the general form of
the spectral density, which may be obtained by com-
bining Kqs. (9) and (16) in a manner very similar to
that by which Torrey proceeds from his Eqs. (28) and
(39) to Eq. (48). We find

162r n J3j2(gp)H3/2&&&(bp)
Ii(~) = Re

15g3/2&g b3/2(2 i&L&r—)

By definition g(b)=1, therefore, the first two terms
cancel, giving for the spectral density

162r'23 g(g-) J3/2(gp)H, /, &'&(gp)

Ji(&g) = Re
15g3/2&g g3/2 (2 —i&gr)

J3/2(gP)H3/2& &(RP)g'(R)dR
(28)

R3/2 (2 i&g r)—

@3/2(gP)+— R 3/2g(R)H5/2&"&(RP)dR, (27)
(2 —i&gr)

This expression is considerably simpler to handle than
Eq. (27) since only the real part of the expansion of
J3/2H3/2('& need be found. After the expansion to leading
terms in the frequency, the integrals containing g(R),
I~, and I2 can be recovered by partial integration. This
procedure is shown in the Appendix. From the Appendix
the frequency-dependent spectral density, to leading
terms in the frequency, is

where
p' = 2&g/D (2 i&dr) .—

The Bessel and Hankel functions in Eq. (27) have
complex arguments as a result of the integration of
Eq. (9). This makes it diflicult to find the real part in
brackets for the general case. However, the observed
frequency effect was small. Thus the Bessel and Hankel
functions can be expanded in a power series of the
arguments and only leading terms in the frequency
retained. The real parts of the resulting expansion can
then readily be found. This procedure has the added
advantage of exhibiting the analytic form of the leading
frequency-dependent term, allowing better insight into
the sensitivity of the relaxation rate to the resonance
frequency. The quantities in the brackets in Eq. (27)
can be simplified considerably by working with the
derivative of g(R), which is written

82rrir g' 3g' g' )
Ii(~)= —+

45g' b' (r')b 5b2)

3&r3 . 3g2
~

g2 &gg2 1/2-

+3g3I2+ Ii— I2
I

(29)
5

which, as is shown in the Appendix, is accurate to
better than 1% for (&go2/D)"2(0. 44, its largest value
in our study of liquid ethane. Note that the frequency
term is independent of g(R). Using Eq. (23) for the I3,
one obtains

g'(R) = (d/dR)g(R).
Sm.mr- 12 O' 00

To simplify Eq. (27), a well-known property of the J,(&g) =—1+— + +(0.16120)
Hankel function" is used: 45g' 5 (r') 8(r')

1 d -H."'(s)

z dz z"

H.+i"&(2)

z"+'

Combination of Eqs. (2) and (30) now provides the
With the aid of this property, an integration by parts frequency-dependent relaxation rate:
can be performed:

P R '"g (R)H5/, &'& (RP)dR = R3/'g(R)H3/2&'& (R—P)

+ R / H3/2& &(RP)g'(R)dR.

Substituting this result into Kq. (27), one obtains for
the term in brackets

-J3/2(gP)H3/2&" (bP) g(b) J3/2(gP)H3/2&" (bP)
Re

b3/2 (2 —i&gr) b3/2(2 i&gr)—
g(g)I3/2(&rp)H3/2"'(gp) I3/2(gp)+ +g'" (2 2g&r)—(2 —i&gr)

' H3/2&'& (RP)g'(R) dR

g3/2

82r/3y'I32I (I+1)— (r') 5
1+——+0.0672Q

0 12

~~2 1/t2-

+0.05210—0.555 . (31)
D

The sensitivity of the experiment to the resonance
frequency can be better understood if the frequency
term is rewritten as

(~g2/D)1/2 —(12&g2/(r2))1/2(r/T )1/2

where Tl, is the Larmor period. If r«TI. , which is
usually the case, it can be seen that there are many
diffusive jumps per Larmor period and the experiment
is insensitive to the magnitude of co. When the ratio
(r/Tr, )' )10, the frequency term is no longer
negligible and a frequency-dependent E& results.
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FxG. 1. Temperature dependence of the self-diffusion constant
of liquid ethane. The solid curve in the range 5.5 &10'/T &11.0/'K
is a least-squares 6t of our data in the linear region. The dashed
curve is that published by Gaven, Stockmayer, and Waugh
(Ref. 25).

2' M. Kisner and R. Mitchell, Bull. Am. Phys. Soc. 6, 363 (1961)."H. S. Sandhu, J. Lees, and M. Bloom, Can. J. Chem. 38, 493
(1960).

III. EXPERIMENTAL RESULTS

The extensive temperature range for which ethane
is in the liquid state makes it a good candidate for a
relaxation study even though it is not an ideal liquid
in the sense described by the theory. The inter-
molecular relaxation rate E~' can be measured re-
liably by the dilution method" once the paramagnetic
oxygen is reduced to small enough proportions.

The starting material for the undeuterated samples
was Phillips Petroleum Co. research grade ethane
described in their catalog as having a minimum purity
of 99.96 mole %. Melting-point studies' of the samples
showed that they contained a liquid-soluble solid-in-
soluble impurity concentration of 0.03 mole%.

Completely deuterated ethane, CDSCD3, was ob-
tained from Merck, Sharp, and Dohme of Canada,
I.td. , who reported that this lot number contained
98.27% CD3CD3 and 1.73% CHD2CD& and very little
air if any. The mixture samples were prepared by
progressively diluting CD3CD3 with CH3CH3. The
concentration of CD3CD3 was measured by observing
pressures, with a Hg manometer, before and after
addition of CH3CH3 in the same volume. This pro-

cedure provided dilution ratios with an uncertainty of
about 1% of the ratio. Then oxygen was removed from
the ethane gas by the misch metal gettering technique"
before it was condensed into small glass sample vials
loaded to approximately critical density, which were
then sealed. All measurements were therefore taken
along the vapor-pressure curve. Detailed comparison'4
of the experimental results reported here and the
results of a study by Gaven, Stockmayer, and Waugh"
on ethane with oxygen impurity allows an estimate to
be made of the upper limit of oxygen in our samples.
Our oxygen content was less than four parts in ten
million and negligible for the purposes of this paper.

Since accurate knowledge of the self-diffusion con-
stant D is clearly essential for an understanding of
relaxation in liquids and since our experimental mea-
surements of the intermolecular contribution to re-
laxation in liquid ethane did not appear to be com-
patible with the values of D in the literature, " we
undertook to measure this quantity. The self-diffusion
data were obtained with the aid of the spin-echo
technique. "The fixed external gradient was calibrated
using the known self-diffusion constant of water as
measured in a careful experiment performed by
Trappeniers et al.~' The temperature is known to at
least 1'K for all these points. The data are presented
in Fig. 1, along with the data of Gaven et al.25 and Wade
and Waugh. "In order to include the data of the other
authors for comparison, we renormalized their data
for the Trappeniers value of the diffusion constant of
water. The agreement apart from a few of their points,
particularly in the inverse temperature region 6(10'/
T(9/'K, is good. The differences in this region led
Gaven et al. to infer a significantly different temperature
dependence for D from ours. We cannot reconcile our
relaxation measurements with their curve, the dashed
curve in Fig. 1. Our value of D at 10'/T=10.94/'K
was done with special care and is clearly incompatible
with their curve. We argue that our data are more
self-consistent. Instead of a changing activation energy
in the low-temperature region, we find that the acti-
vation energy of self-diffusion in ethane is constant
within experimental error and is 0.94 kcal/mole in the
inverse temperature range 5.5(10'/T& 11.0/'K. Using
our curve in the region 10'/T&5.0/'K and theirs in
the region 10'/T&5.0/'K (where our data are sparse),
we believe that we know D with a 6% uncertainty over
the entire temperature range of interest. It may be
noted that all of these measurements are in good agree-
ment with Noble and Bloom's careful measurements in
the vicinity of the critical point. '9

'4 J. F. Harmon, Ph. D. thesis, University of Wyoming, 1968
(unpublished)."J.V. Gaven, W. H. Stockmayer, and J. S. Waugh, J. Chem,
Phys. 37, 1188 (1962)."H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

~7 J. Trappeniers, C. J. Gerritsma, and P. H. Oosting, Physica
31, 202 {1965)."C. G. Wade and J. S. Waugh, J. Chem. Phys. 43, 3555 (1965).

~' J.D. Noble and M. Bloom, Phys. Rev. Letters 14, 250 (1965).
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The spin-lattice relaxation times were measured by
a variety of pulse techniques. The spectrometers used
were incoherent and therefore careful steps were taken
to account for the nonlinearity of the receiving systems.
The major source of nonlinearity was due to the diode
detector. Two approaches were used to correct for this
effect:

1. The signal amplitude at the diode was kept
relatively constant by means of precision attenuators.

2. . The amplitude response of the receiver was care-
fully calibrated and a linear portion of the response
curve was selected as the operating range.
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Both methods gave consistent TI values. The erst
method is probably the best, but is inconvenient for long
relaxation times.

To illustrate the mixture data, the measured re-
laxation rate, R=1/Ti, is plotted in Fig. 2 as a function
of the concentration of CD3CD3 at a temperature of
90.71'K and frequency of 3 MHz. The plots for each
of the Axed temperature points studied were straight
lines within experimental error. The 100% CDpCDp
intercept,

Ri ppy, =R;„t„+(0.0419)Rit',

where the factor (0.0419) takes into account the inter-
molecular relaxation by deuterons, and the 0%
intercept,

Rp% =Rintra+RB

where E.; t„ is the intramolecular contribution to
relaxation, allow one to calculate an experimental E~'.
The uncertainty in the intercepts generated by the
scatter of the experimental data from the least-squares
line was taken to be the uncertainty in Rz'. This
separation procedure assumes that the motion of a
molecule of CH3CH3 is not appreciably affected by the
substitution of molecules of CD3CD3 for its normal
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FIG. 2. Spin-lattice relaxation rate of protons in mixtures of
CH3CH3 "vrith CDqCD3 as a function of the concentration of
CDgCD3.

p,4p
0 5 $0 15 20

A(, , ~)
FIG. 3. Frequency dependence of the intermolecular relaxation

rate of protons in liquid ethane at 90.71'K. The slope of the solid
line is given by the theory and its zero-frequency intercept is a
measure of the mean-squared Qight distance at this temperature.

molecular neighbors. To check this point, the ratio of
the diffusion constant of CHpCHp in 50% CDpCD p to
the self-diffusion constant of CH3CH3 was measured
and found to be unity within experimental error (4%).

To test the frequency dependence of the relaxation
rate, the mixture experiment was performed at 90.71'K
in three diferent magnetic fields at I armor frequencies
of 3, 30, and 73 MHz known to better than 0.5%. The
measured values of the intermolecular contribution to
relaxation, Rit'(&p), at these frequencies are plotted in
Fig. 3 as a function of ~'". The standard deviation in
the measurement of each of these values was about 1%.
The uncertainty shown in Fig. 3 is 3%.Equations (31)
and (25) predict a straight line through these points
with a slope given by

—(4.77X10 ")p(1+8)/DP~'= —3.4+0.2X1P P sec '4.

Note that this slope has no adjustable constants and
that its chief uncertainty originates from the experi-
mental uncertainty in the measured value of D. This
range of slopes and the three measured values of
Rit'(tp) define a range of zero frequency RIi', that is,
Rit'(0)=0.510&0.010 sec '. The line on the figure
through this zero-frequency value with the theoretical
slope just calculated thus illustrates the fit of our data
to the theory. This measurement of Rz'(0) also implies
from Eqs. (31) and (25) a value for the jump distance
in terms of the molecular diameter, (r')/o'= 0.67&0.05.
To calculate this ratio, 8=0.03 is obtained from the
interpretation of the intramolecular contribution to
relaxation' and the molecular diameter was chosen
here and in the rest of our calculations to be the
Lennard-Jones parameter, o =4.38 A (Ref. 20, p. 1213).

This frequency dependence corroborates the Kubo-
Tomita correction, for neglecting it reduces the theo-
retical slope to a value incompatible with our data. As
a further argument for our diffusion data, it can be
observed that the use of the curve of Gaven et al."for
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D at this temperature reduces the theoretical slope to
a value outside our experimental uncertainty.

The temperature dependence of E&' was studied by
measuring R~' with the mixture experiment at eight
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FIG. 4. Intermolecular relaxation rate of protons in liquid
ethane measured at 30 MHz as a function of inverse temperature
and compared to the theory of relaxation by translational dif-
fusion. The lines are the experimental points with their uncertainty
and the solid curve is a computer Bt to these data. The dashed
curves represents relaxation due to very small diffusive steps.
The open circles are calculated from the amended theory of
relaxation due to diffusive jumps whose mean-square Right
distance is 0.67 times the square of the molecular diameter.

temperatures from 90.7i to 273'K at a I.armor pre-
cession frequency of 30 MHz. The solid curve of Fig. 4
is a computer fit of E~' as a function of inverse tem-
perature to these eight points, which are shown on the
graph as bars whose length indicates their uncertainty.
To examine how well the model of self-diffusion by
small steps fits these data, Es' from Eqs. (12) and
(25), with D taken from our measurements given in
Fig. 1, and the radial distribution integrals Ik evaluated
using Eqs. (22) and (23), is also plotted in Fig. 4 as the
dashed curve. It is clear from the figure that even with
the effect of g(R) included, the simple diffusion model
can only be rescued with an unrealistic molecular
diameter. Next, the jump diffusion model is examined
in Fig. 4 by plotting as open circles Es' from Eqs. (31),
(25), (22), and (23) with (r )/Otak. en to be tempera-
ture-independent and equal to 0.67, the value obtained
in the frequency experiment at 90.71 K. Comparison
of these theoretical points with the experimental
points shows unusual agreement for this type of mea-
surement. In the inverse temperature range 5.2(10'/
T(11.0/'K, this theoretical curve fitted with only
one parameter at the low-temperature anchor point
fits the experimental points almost as well as the
computer 6t. At the higher temperatures, the open
circles fall below the experimental values. We interpret
this to mean that the mean-square Aight distance is
increasing in this region in the manner shown in Fig. 5.
In this figure, the temperature dependence of the value
of (r')/0' required to fit the theory to our data is
plotted. Also shown in Fig. 5 is the temperature de-
pendence of the mean time between diffusive jumps r,
evaluated using Eq. (1), Fig. 1, and the mean-square
flight distance just obtained. It is of interest to note
that measurements of cold neutron scattering on
hydrogeneous liquids" have been interpreted as im-

plying diffusive jump times which approach a limiting
value of 1&(10 "sec at high temperatures.
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IV. COMPARISON WITH OTHE.'

LIQUID SYSTEMS

It has already been reported'" that for the other
liquids known to us for which reasonably reliable
experimental measurements have been made of the
intermolecular contribution to relaxation, namely,
benzene, methane, and He', a jump distance of the
order of a molecular diameter will fit the data. With
the correction for a realistic g(E) which has been de-

veloped since then, the comparison of the theory with
the ideal liquid He' can be done in a clearer fashion.
Heal and Hattona' have reported that in liquid He'
from 0.65 to 4.2'K,

FIG. 5. Temperature dependence of the mean-square Qight
distance, solid'line, and the mean time between diffusive jumps,
dashed line, in liquid ethane,

+B= (Tl) bulk=+1 p/D,

'0 B.T. Beal and J. Hatton, Phys. Rev. 139, A1751 (1965).
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where Ci'=2.6X10 ' cm'/g sec' is independent of
pressure or temperature, and is known to an uncer-
tainty of 10%.With the aid of Zq. (24), with o = 2.55 A

(Ref. 31), one can show that these results are compatible
with the theory presented in this paper for (r')/o'
=0.7&0.3.

It is possible to write J3/2(s)H3/2( ) (ks) in an infinite
series'4

—,
' k'/'(2+i(o )J /2(s)H /2(")(ks) =P d s, (A2)

in which

V. CONCLUSIONS

A detailed study of intermolecular relaxation in
liquid ethane has shown that Torrey's theory of re-
laxation by translational diffusion with a simple model
of jump diffusion and the addition of the effect of the
radial distribution function provides an excellent de-
scription of this relaxation. The choice of the one
adjustable parameter needed to fit the theory to the
data, the mean-squared jump distance, then becomes
a measurement of this distance. Thus it has been
demonstrated that the root-mean-squared Right dis-
tance and the mean time between flights of diffusive
motion in liquids can be measured from studies of
diffusion and nuclear spin relaxation. It has also been
shown how the intermolecular contribution to relaxation
can be calculated to reasonable accuracy from a knowl-

edge of the density, the self-diffusion constant and the
molecular diameter. Therefore, attempts to estimate
the intramolecular contribution to relaxation from the
total measured relaxation rate" "can now be done more
reliably.
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Odd P CD =2 a2&b(o+l—2&)/2~
l~

real

even P, C„=p a2)gib( yl—(2)yl)]/2 imag.
L=p

a„= (ik) "/2/3!,

b = LI/(223)!—1/(2m+1)!](—1)".

d„=2(I+iy)C„+2L(i y)/k—jC„„,
with y defiried as

—1P—:~GOT .

The first seven C„are

Cp ——0,
1

C = ——',ik,
Ci——1/30+-'k',

C4 ——ik (1/30+ k'/18),

C3= —(1/840+k'/60+ k4/72),

C3= —ik (I/840+k'/180+ k4/360) .

In general, we find

(A3)

(A4)

(AS)

APPENDIX: FREQUENCY-DEPENDENT
SPECTRAL DENSITIES

With the simplification introduced by the partial
integration of Zq. (27) yielding Eq. (28), only the
expansions of the quantity

ji/2(s)H3/2 (ks)
F =Re

(2 MDr)—
-(2+3(or)J3/2(s)H3/2(') (ks)

=Re
(4+~'r')

(A1)

need be considered, where

s=o.iI and k=1 or k=E/o, .

depending upon which term in Eq. (28) we are con-

sidering.

» K. A. Brueckner, Helium Three, edited by J. G, Daunt (Ohio
State University Press, Columbus, Ohio, 1960), p. 70.

» W. B. Moniz, W. A. Steele, and J. A. Dixon, J. Chem. Phys.
38, 2418 (1963).

'8 M. Bloom, 3Iagnetic Resonance and Relaxation (North-
Holland Publishing Co., Amsterdam, 1967), p. 65.

If now the complex quantities s& are evaluated'4 and
substituted into Eq. (A1) along with Eqs. (A2)—(A4)
we find, upon taking the real part,

F= (y/3)rk"') [I+-33C(5k' —1)—2v3k'C"'y /2

X (y '+-' —(15/8)y .)+ (6/5)43C3"k3

X(1+k ')y"'(y '—2" )+ ), (A6)

in which C=o'/(r') and terms of higher order than
y"' have been neglected. We wish to write Jl((o) only
to the leading term in the frequency which is contained
in the term y'"; thus, we will henceforth ignore the
higher-order terms in y. The equation for the spectral
density, Eq. (28), requires the quantities

g(a)~3/2(~P)H3/2") (~P)
A =Re

o3/2 (2—i(or)

y
— 12C—g(o)+ g(o) —2v3C3/2g(o)y'/2

3X'0 5

'4 Handbook of Mathematical Injunctions, edited by M. Abramo-
witz and j:.A. Stegun (U. S. Government Printing Ofhce, National
Bureau of Standards —National Research Council, Washington,
D. C., 1965).
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and

8=Re (2 i—&ur) i

where

Note that in the limit oi/Devoir —+0 this gives Eq.
(17), the zero-frequency limit of the theory.

A measure of the accuracy of our expansion can be
obtained by comparison with Torrey's numerical

=(y "'/3 )L(1—;C)S, calculations of Ji(&o) using the exact form for the limit
obtained by setting b= o. In t.his limit, Ii and I2 vanish+ ' & ' & and Eq. (AS) becomes

Si= R 3g'(R)dR=b 3 o~g—(a)+3Ig, Ii (co) 1+—
45o' 5 (r') (r') D

5,= R 'g'(R)dR=b ' o'g(o—)+Ii, This can be written in the form

g'(R)dR =1—g(cr),
8vre

Ii(M) = Lf(&»)j~
15fr'co

and the notation of Eq. (13) has been used. Equation;n which the function in brackets is
(2S), written in terms of A and 8 just defined, gives

Therefore,

Ji(oi) = (16m-'e/15'. ~i'oi) (2+8) .
with

[f(n,x)]g= —,'nx'(1+1/5n —x/12n),

Sm.mr 0-' 30-' o-'

ui�(oi)

= —+ 1— +3o'I2
45o' b' b(r') 5b'

x (oio2/D)1/2 & (r2)/1 2&2

For our case, (r2)/o. =1, it follows that a= i~~. Thus,

Lf(A, x)j~= (*'llS) (3 4—*).
+ (Il 5o I2) (AS)

Ef(x'z, ~)j~
0.0267
0.0560
0.0924
0.1333

0.4

5

0.4
0.6
0.8
1.0

This expression is the approximation to Torrey's
numerical calculations of the exact function f(n, x)

7 I K '
1 m arisonof Ef( x)j with Torre 'sf(nx) given in Table I, p. 966, of his paper. Comparison of

Lf(,i„x)]g with f(—,'„x) is given in Table I below.

f(—,'„~) % DiGerence Our largest experimental effect in ethane is when

0.0266 co=2m)&73&10' sec ' and T=90.71'K where a=0.45)

0.0552 &&10 ' cm' sec ' Taking o =4.3S A, we find x=0.44,
0.0890 which means that an error of (1% is made using the
0.1265

expansion.


