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ions. At higher chromium concentrations oxidation and
reduction experiments'® show that the dominant optical
absorption in the vicinity of 5500 A is due to several
percent of the total Cr concentration which is in the 4-
valence state.

In conclusion, the transverse Zeeman patterns of the
purely electronic transition of the 8000-A fluorescence

0 B. W. Faughnan (private communication); see B. W,
Faughnan and Z. J. Kiss [Phys. Rev. Letters 21, 1331 (1968)]
for a similar effect in SrTiOs:Fe.
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can be consistently interpreted as the transition from
the 2E, state to the %4,, state of the chromium ion.
Below the cubic to tetragonal phase transition at 107°K
the v component of the 2E,, state lies highest in energy,
indicating that the tetragonal distortion at the chro-
mium site is tensive in nature. This result is consistent
with a ¢/a ratio >1 in the tetragonal phase.

The authors wish to acknowledge helpful discussions
with B. W. Faughnan and R. Klein and the technical
assistance of C. J. Kaiser and W. W. Prindle.
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The energy-loss process of a helical negatron or positron beam of a few MeV in a thin magnetized foil
was studied. The straggling distributions were derived, taking into account spin-dependent terms of the
Mboller and Bhabha cross sections. These terms affect the shape of the straggling distributions by an amount
which increases with increasing energy losses. Numerical calculations were carried out in some typical cases,
which are of interest with a view to using the spin-polarization effect as a means of measuring the helicity

of B rays.

1. INTRODUCTION

HE energy-loss straggling of a helical electron
beam passing through a thin magnetized foil
depends on the relative polarization of the beam and of
the absorber. Recently, Braicovich! suggested that this
effect could provide a new powerful method for B-ray
helicity measurements. Since the available theoretical
evaluations of the straggling? are valid in the absence of
any spin-polarization effect, it has been considered
worthwhile to carry out an analysis of the energy-loss
process of negatrons and positrons in magnetized
matter, taking into account the spin-dependent terms
of the single-scattering cross section. This investigation
provides the means of obtaining an evaluation of the
magnitude of the polarization effect under conditions
which are realistic with a view to using the effect for
B-ray helicity measurements.

2. ENERGY STRAGGLING CURVE

Landau,® in his theory of the straggling, has shown
that the straggling distribution f(A,x), giving the
probability density of an energy loss A suffered by a
particle passing through a layer of thickness x, may be

1 L. Braicovich, Letters Nuovo Cimento 1, 340 (1969).

2See R. D. Birkhoff, in Handbuch der Physik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1958), Vol. 34, p. 53.

3 L. D. Landau, J. Phys. USSR 8, 201 (1944).

obtained from the following expression :

1 +100+0
fam= [ Cermodp, @)
27”: —iwto
where
g(p)= W (e)[1—e ]de. @

0

In Eq. (2), W(e) is the probability density (per unit
path length) of an energy loss e in a single collision, and
€max 15 the maximum energy transfer in a single collision.
It is assumed that the total energy loss in the path «
is small compared with the initial energy, so that the
scattering process can be considered to be adequately
described by the same function W(e) throughout the
whole succession of scatterings which cause the slowing
down.

In order to apply Eq. (1) while allowing for the spin
effect in the present treatment, the following approxima-
tions have been made.

(i) The “‘soft collisions,” in which the energy transfer
is of the order of the atomic binding energies, are
treated in the same way as in Landau’s work, and no
spin effect is considered. The integration interval in
Eq. (2) is accordingly split into two parts: 0, e and
€1, €max, Where € is the separation energy defined by
Landau. The integral in the first interval is calculated by
replacing the exponential e~?¢ with 1—pe. As a con-
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sequence, only the first moment of the cross section for
bound electrons contributes to g(p). In this connection
it must be remembered that Blunck and Leisegang? also
took into account the second moment ; such an improve-
ment is not always necessary, unless the scattering foil is
very thin, as has been pointed out by Knop ef al.®

(ii) In the collisions where the effect of atomic
binding can be neglected (“‘intermediate” and ‘‘hard
collisions,” with e>e¢;) the free negatron-negatron and
positron-negatron scattering cross sections dependent
on spin polarization are considered. The following
approximate expression of the single scattering law
W (€) has been assumed:

+1
VV(G) = Z aye” (élS GS 6max) . (3)
n=—2
The term with #= —2 corresponds to the single-scatter-

ing law used by Landau. The coefficients with #>—1
depend on spin polarization and are specified below.
For the purpose of the present work, the assumed
representation of W (e) is sufficiently accurate, and it is
discussed later.

(iii) The longitudinal depolarization suffered by the
beam while slowing down is neglected, on the basis of
the known phenomenology.® This approximation is
reasonable, since the total energy loss is assumed to be
small with respect to the energy of the incident beam,
and since the depolarization is small even when the
relative energy loss is large.”

(iv) The energy loss due to bremsstrahlung emission
is neglected, as in Landau’s work. Thus, the present
treatment is valid for primary energy not greater than
a few MeV.

Remembering the above assumptions, we obtain the
following expression for g(p):

g(p)= / W (e)de+ +Z an / men(l—e—wme. (4)

n=-—2 1

Accordingly as in point (i), the first integral is taken
from Landau’s work. The other integrals can be
calculated in an elementary way; the result is put in a
simpler form by remembering the condition €< émax-
We point out that the approximation €max—> %, which
is made in Landau’s work, has not been retained here.
By choosing the imaginary axis as integration path in
Eq. (1), one obtains for the straggling distribution the
integral representation

da 1
¢(A,p)=f(A,x)—d—}\~=— / Qtp)®B(tpNdl.  (5)

™

4 0. Blunck and S. Leisegang, Z. Physik 128, 500 (1950).

8 G. Knop, A. Minten, and B. Nellen, Z. Physik 165, 533 (1961).

6 L. Braicovich, B. De Michelis, and A. Fasana, Nucl. Phys.
63, 548 (1965).

7L. Braicovich, B. De Michelis, and A. Fasana, Phys. Rev.
164, 1360 (1967).
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The functions @(#,p) and B(¢,p,\) are given by

@(t,p) = exp{ — [ 3w+ Si(tp)— (1—cos(tp))/tp]
—u[C+In(tp)— Ci(tp) ]— v[1—sin(tp)/1p]
— &5+ —cos(tp))/ (tp)*—sin(tp)/tp]}  (6)

®(t,0,\) = cos{t[A—In¢+sin (¢p)/tp— Ci(tp) ]
—u[37+Si(tp) J—v[1—cos(tp) 1/ tp
—&[sin(tp)/ (to)*—cos(tp)/tp]} ,  (7)

where Si and Ci denote sine and cosine integrals, and
C is Euler’s constant. The variables p and \ are defined
by

p= fmaX/a—2x (8)

and
A=A/a_xx—In(a_x/)—1+C, 9)

In€' = In[ (1— )12/ 2m@* 462, (10)

with I representing an average ionization energy of the
atoms in the absorbing foil.
The coefficients u, », £ are defined by

where

H=ao1X, (11)
V= QA0X€max , (12)
£= 01X max - (13)

Note that Eq. (5)'is an extension of Landau’s results
and that it reduces to the universal function ¢(\)
obtained by this author when u=»=£=0 and the limit
p— o is taken. In the present formulation the result
depends not only on the dimensionless variable A but
also on the dimensionless variable p and on the energy
of the incident beam through the explicit expressions
for u, », and £.

3. SINGLE-SCATTERING LAW

When the magnetization of the absorbing foil is along
the direction of the helical beam, the function W(e)
may be obtained from the single-scattering differential
cross sections for the parallel and for the antiparallel
spin cases, (do/de), and (do/de),. It is given by

W(e)=3iNZ{[ (do/de) p+ (do/de)o]
=+ fL(do/de) p— (do/de).]}, (14)

where NZ is the number of atomic electrons per unit
volume and f is the oriented fraction of target electrons.
The upper (lower) sign holds when the helicity of the
beam is positive (negative) in respect of the magnetiza-
tion of the foil.

In both cases, negatron-negatron and positron-
negatron scattering, the expressions of the spin-
dependent cross sections have been taken from the work
of Ford and Mullin,® whose calculations were based on
the lowest-order Feynmann diagrams. The following

8 G. W. Ford and C. J. Mullin, Phys. Rev. 108, 477 (1957);
110, 1485 (1958).
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explicit expressions for the coefficients a_,, u, v, and £
are obtained:

ay=2we*NZ/me? (15)
(negatron-negatron scattering),
r= (1/p) (emax/ T)L(1—27)/4*]1(1x fv) (16a)
v=(1/p) (emax/T)*y [ 2v*—4v+2
=+ f(3y—v*—3)], (16b)
£=(1/p) (emax/T)v2L(1—2v) A fr)+29*] (160

(positron-negatron scattering),

2= (1/p) (emax/T) (Y4 2v3+72) [ — 2v*— 4y 4y+1
=+ f(2y 7y —2v*—v)], (17a)

v=(1/p) (emax/ T)*(V*+2v*+*)[3v*— Sv*— 2v+4
=+ f(—3y*—y*+6y2—y—1)], (17b)

£= (1/p) (emax/ T)*(v*+27v*++2) [ — 2y*+ 67— 672
+2v= f(2y*4-2v"—10y2+6v)].  (17¢)

In the above equations, 7o and e are the rest mass and
the charge of the electron, v is the beam velocity, T
is the kinetic energy, and v is the total energy in msoc?
units (laboratory system).

4. RESULTS AND DISCUSSION

Numerical calculations of the straggling distribution
given by Eq. (5) have been carried out in some typical
cases by means of an IBM 7040 computer. The set of
values chosen for the initial energy of the beam, for
the scatterer thickness, and for the oriented fraction of
atomic electrons were, respectively, y=2.5 and 4.5;
x=22.3, 44.6, and 59 mg/cm?; and f=0.06. The above
values may be considered realistic in view of an experi-
ment with 8 rays. In one set of calculations, the max-
imum energy transfer em.x was set equal to 0.5T,
which is the maximum value in negatron-negatron
scattering and in forward positron-negatron scattering.
In another set of calculations, the value 0.25T7 was
assumed in order to exclude the effects of harder
collisions. The results are nearly equal in both cases,
indicating that a very accurate representation of the
single-scattering law is unimportant in the region of
very great energy transfers; thus the assumed approx-
imate representation for W(e) may be considered
adequate.

As a measure of the spin polarization effect on the
straggling, the relative difference 6=2(¢,—¢a)/ (¢ r+da)
was calculated from the obtained distributions; the
symbols ¢, and ¢, represent the straggling distributions
for parallel and antiparallel polarization, respectively.
The relative difference 6 is plotted as a function of N in
Fig. 1 for negatrons and in Fig. 2 for positrons. One sees
that the polarization effect increases with increasing
values of ), i.e., with increasing energy loss; this increase
should be clearly revealed by means of a suitable
experimental arrangement. As an example, in case ¢ in
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F16. 1. Parallel-antiparallel relative difference 6 of the straggling
distributions for negatrons plotted as a function of A. Curve a:
vy=2.5; p=100 (T'=0.76 MeV; x=44.6 mg/cm?). Curve a’:
vy=2.5, p=200 (T'=0.76 MeV; x=22.3 mg/cm?). Curve b:
v=4.5; p=200 (T'=1.79 MeV; x=59 mg/cm?).

Fig. 1, if one counts the particles which have suffered
energy losses corresponding to A values between 23
and 40, one should obtain a parallel-antiparallel
counting rate asymmetry of the order of 2.5%,. Note
that the number of these particles is an appreciable
fraction of the incident beam: The integral of the
straggling curve between A=25 and A=40 resulting
from the present calculations is equal to 1.69, of the
total area. The set of the results obtained provides a
quantitative basis for the design of a 8-ray polarimeter.

3x102 |-

)

Fi1G. 2. Parallel-antiparallel relative difference & of the straggling
distribution for positrons, plotted as a function of A. Curves a,
a’, and b: same energies and thicknesses as in Fig. 1.
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We remember that the full validity of the present
treatment fails if the radiative energy losses are
appreciable. Nevertheless, even at an initial energy of a
few MeV, a substantial decrease in asymmetry can be
avoided by the use of sufficiently thin target foils, as
can be deduced from the calculations by Blunck and
Westphal,® and by Schultz.1

APPENDIX

The presented calculations of energy straggling with
allowance for spin can be easily extended to particles
other than electrons. The case of helical muons has
been considered. As can be derived from the cross
section given by Backenstoss ef al.,!! in this case the
coefficient a_, is still expressed by Eq. (15), while

w=Q1/p)[— (v*—=1)/v*= f(em/muc?) (1/7)],

Irl / em\2 1 en 1 el
R E R R
oL 2v2\mc? v muc? 292 m,2ct

£=0,

9 0. Blunck and K. Westphal, Z. Physik 130, 641 (1951).

0 W. Schultz, Z. Physik 129, 530 (1951).

1t G, Backenstoss, B. D. Hyams, G. Knop, P. C. Marin, and
U. Stierlin, Phys. Rev. Letters 6, 415 (1961).
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where the maximum energy transfer emax is given by

o 2(yv*—1)
€max =m“62‘—

my 14 (mo/m,,) (2’Y+m0/'mu)‘

In the above formulas mo and m, are the electron and
muon rest masses. In order to take into account the
density effect, the definition (9) of the reduced variable
v must be modified by the addition of a corrective
term.”? Numerical calculations for f=0 gave very good
agreement with the results obtained by Vavilov.®® In
the case of a magnetized target (f=0.06), -a very low
parallel-antiparallel difference was found in every
realistic condition. This fact is due to the very great
number of single scatterings which occur in a foil which
is thick enough to give a mean energy loss comparable
with the resolving power of an actual experimental
apparatus.

12 R, M. Sternheimer, Phys. Rev. 145, 247 (1966).
1P, V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957)
[English transl.: Soviet Phys.—JETP §, 749 (1957)].
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Torrey’s theory for nuclear spin relaxation by translational diffusion has been extended to take into
account the effect of the radial distribution function. By suitable expansions, the frequency dependence
of the intermolecular relaxation rate has been made explicit and shown to be more significant than pre-
viously suspected. Measurements of self-diffusion and of the intermolecular relaxation of protons in liquid
ethane have been made over a wide range of temperatures and at three frequencies in order to test the
theory. Good agreement is obtained with the assumption of an rms flight distance which varies mono-
tonically from about 0.8 to 1.3 times the molecular diameter over the liquid range.

I. INTRODUCTION

N his classic paper on nuclear spin relaxation by
translational diffusion in 1953, Torrey pointed out
that the essentially microscopic character of nuclear
spin relaxation would reflect details of the process of
random flights of which diffusion is only the limiting

* Acknowledgment is made to the donors of the Petroleum
Research Fund administered by the American Chemical Society
and to the Society of Sigma Xi for partial support of this research.
This work is based upon a thesis submitted to the University of
dWyoming in partial fulfillment of the requirements for the Ph.D.

egree.

t Petroleum Research Fund Fellow 1963-1966; National
Aeronautics and Space Administration Trainee 1966-1968.

1 Present address: Department of Physics, University of Utah,
Salt Lake City, Utah.

macroscopic approximation.! He predicted that studies
of relaxation would allow the independent measure-
ment of (#2), the mean-squared flight distance, and ,
the mean time between flights. He well understood that
measurement of the self-diffusion constant D would
provide the familiar combination

D={r*)/67 1)

and he foresaw that the spin-lattice relaxation time 7'y
would be a function of these parameters also.

To our knowledge, no one has yet experimentally
investigated in detail these suggestions as they relate
to motion in liquids. The 16-yr delay between Torrey’s

tH, C. Torrey, Phys. Rev. 92, 962 (1953).



