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Scaling of the Specific-Heat Singularity of He" Near Its Critical Point*
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We have measured the specific heat at constant volume (C,) of He® near its critical temper-
ature (T ) and critical density (o o) - Tabulated data are given along seven isochores with
densities in the range —0.10<Ap <+0.15, where Ap=(p -pc)/pc, at temperatures in the range
—0.06<£<+0.13, where t= (T - TC)/TC. Density resolution was 0.001 p, and the resolution
of C,, measurements was 0.00037, in temperature. Resulting values for the critical constants
are T,=5.1891+ 0.0007 K and p,=0.06958 = 0.000 07 ‘g/cma. The data in the one-phase
region may be expressed as the sum of a nonsingular function of ¢ and Ap and a function of
the form 1ap| ™% B f (x), where « is the exponent describing the singularity in C, at density
pc in the one-phase region, 8 is the exponent describing the coexistence curve, and x is the
variable suggested in Griffith’s discussion of homogeneous functions, ¢ |Ap|~ 1/B. m the
two-phase region C,, diverges with an exponent @’ with a’~a ~0.15. In the two-phase region
the singularity in C,, seems to be dominated by d*P/dT* where P is the vapor pressure. If
u is the chemical potential d’u/dT* is less singular than d&*P/dT? and may even be constant
in this temperature range. The singularity in d’p/dT? implies the T'sg helium vapor-pressure
temperature scale is slightly in error. If T5g and its first derivative are assumed correct
at 4.85 K, then T3 assigns a temperature 0.0007 K too high to pressures near the critical
pressure. Where our C, data may be compared to P-V-T data on He! the agreement is gen-
erally good. The possibility now exists of making a complete model of the free energy near

the critical point.

INTRODUCTION

In recent years an effort has been made to de-

scribe the thermodynamic behavior of both magnets
and fluids near their critical temperatures in terms

of scaling laws. These laws have been suggested
by both the Ising model and the requirement that
the thermodynamic functions be in some sense the

simplest of the class of functions which could
possibly describe the singularities that experi-
ments suggest are present at a critical point. 13
The scaling laws lead to an important prediction:
The singular parts of all thermodynamic functions
near a critical point, which ordinarily would be
functions of two variables (say temperature and
magnetization or temperature and pressure) are
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in fact functions of a particular combination of
these variables and thus essentially a function

of a single variable. Some experimental confir-
mation that real systems obey scaling laws has
been given by recent analyses of equation of state
data for both magnets?; 5 and fluids.® We have
attempted a direct test of the scaling of the ther-
mal equation of state by measuring the specific
heat at constant volume (C,) of He* along several
isochores and correlating the resulting data using
the variable suggested by scaling law ideas. Since
P-V-T data have recently become available for He*
close to the critical point, ’s ® the possibility now
exists of making a complete model of the singu-
larity in the free energy of He®,

DESCRIPTION OF APPARATUS

The design of our apparatus was dominated by
efforts to avoid two problems frequently encoun-
tered in measurements near a liquid-gas critical
point. To overcome the long thermal relaxation
times found in fluids near their critical tempera-
ture (T .) we attempted to keep thermal conduction
paths through the helium in the calorimeter to a
minimum. To avoid density gradients resulting
from the pressure gradient in the fluid arising
from its own weight we have restricted the height
of our calorimeter.

The general design of the calorimeter and
exchange-gas can was adopted for these measure-
ments from the apparatus used by Fairbank,
Buckingham, and Kellers® !° for their measure-
ments near the X transition of He*. The calorim-
eter itself (see Fig. 1) consisted of two parts,
both made of OFHC copper. The two parts were
sealed together with an indium O ring. The slots
in the lower part were 0. 1-mm wide and 3-mm
deep, and contained about % of the helium. The
rest of the helium was between the two parts of
the calorimeter, thus extending over a range of
12 mm in height. The thermal relaxation time
of the filled calorimeter was a few seconds far
from the critical point, but became as long as
several minutes close to the critical point.

The lower part of the calorimeter was wound
with a heater and had a carbon resistor thermom-
eter cemented in a hole through it. Supercon-
ducting leads were used to the heater and ther-
mometer. The calorimeter was supported on
nylon threads in an evacuated chamber. Thermal
contact to the helium bath outside the chamber
could be made by lifting the calorimeter until it
contacted three copper fingers. A stainless-
steel capillary led from the calorimeter to a
needle valve. This arrangement allowed the
quantity of helium in the calorimeter to be changed
without warming it to room temperature. Heli-
um gas was measured in a specially designed
Toeppler pump and then condensed into the calo-
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FIG. 1. Calorimeter and exchange gas can.

rimeter. The initial filling was measured as
well as each subsequent addition or subtraction.
At the conclusion of the experiment, the quantity
of gas removed was measured. This differed by
0.07% of the total quantity measured from that
expected and serves as an important check of
many independent instrument readings.

To measure the volume of the calorimeter,
enough helium was condensed to be sure it was
full of liquid below the A point. Then the valve
was closed and the helium above it was pumped
away. Next the valve was opened and the helium
in the calorimeter was pumped out and measured
as gas with the Toeppler pump. This procedure
was reproducible to +0.05% suggesting that the
calorimeter did indeed fill. The liquid-density
data of Kerr and Taylor!! were used to convert
these measurements to the calorimeter volume:
0.694 cm®. We believe our density measurements
are accurate to within +0.1%.

At the conclusion of the experiment, helium gas
was admitted to the vacuum space. The carbon
resistor was calibrated in the range 4.37 to 5.17 K
by measuring the pressure above the He? bath and
making hydrostatic head corrections. Pains were
taken to assure that the bath was in temperature
equilibrium. The T, scale was used to convert
pressures to temperatures. A resistance-tem-
perature relation of the form

log,, (resistance) _ ]Ev log.  (resistance) (1)
= = 2 a log, (resistance

n=0

was fitted to the calibration data. This relation



344 M. R. MOLDOVER 182

was extrapolated to measure temperatures as

high as 5.27 K and it was differentiated to com-
pute heat capacitites. The derivative, particular-
ly in the extrapolated region, depends sensitively
on which algebraic form is fitted to the calibration
data and probably leads to the largest systematic
errors in the specific-heat measurements. A
polynomial with three constants differed in deriv-
ative from one with four constants by 0.1% at 5.0
K; 0.7% at T; and 1.2% at 5.27 K, the highest
temperature at which data were taken. We have
used the three constant polynomial which is equiv-
alent to the widely used Clement-Quinnel formula.?
The difference between these polynomials would
not significantly alter our measurements of the
temperature dependence of C, near the critical
point, only its absolute value.

On independent runs this calibrating procedure
has yielded values of T, of He* (as observed by
the specific-heat anomaly) differing by as much
as 0.0005 K. Should a variation of comparable
magnitude exist in the temperature calibration
between one end of the calibrating interval and its
center, a 0.1% variation in the temperature deriv-
ative and in the values of C, would be introduced.

The capillary leading from the calorimeter to
the needle valve probably led to the principal ex-
perimental difficulties in obtaining the data re-
ported here. In preliminary experiments the
needle valve was located above the calorimeter.
The capillary connecting them was a stainless-
steel tube about 5 in. long with an i.d. of 0.006
in. The volume beneath the seal of the needle
valve, but above the calorimeter, was 0.8% of the
volume of the calorimeter., It proved to be impos-
sible, because of large irregular heat leaks, to
take data close to the critical temperature unless
the capillary was bent. Even with a U-shaped
- bend, a large decrease in the apparent heat leak
between the calorimeter and the helium bath al-
ways occurred as the calorimeter was warmed
through temperatures close to the temperature
where the helium inside it became a single phase.
This decrease in apparent thermal conductivity
occurred whether the bath was only slightly below
the critical temperature or as cold as 2.3 K, It
is reasonable to assume the very effective con-
vective heat transfer observed'® near the critical
point was responsible for this effect. To take the
data reported here the needle valve was redesigned
and placed more nearly beside the calorimeter.
In addition the capillary was shortened to 2 in. in
length and a 0.004-in. stainless-steel wire was
placed inside it. The volume between the valve
seat and above the calorimeter was then 0.07% of
the volume of the calorimeter. Large changes in
apparent thermal conductivity still occurred. We
then adopted the procedure of monitoring stray
heat input to the calorimeter several minutes be-
fore and after each data point. At most 20 min

were used per point. The changes and irregular-
ities in this heat input limited the precision of the
data taken close to the phase boundary. When
they were present, the normally abrupt drop in
C, at the phase boundary was rounded. On some
occasions we have seen drops in C,, in a temper-
ature interval 0.0003 K wide, but unfortunately in
the data reported here the phase boundary is
0.001~0.002 K wide, hence this must be consid-
ered the limit of temperature resolution of the C,
data.

In order to compare the data taken at different
densities the stability of the thermometer resis-
tor must be examined. Earlier experience!* with
this particular thermometer, using the critical
temperature of He* as a fixed point, showed that
it drifted towards higher resistance at an initial
rate exceeding 0.001 K /week, but this drift rap-
idly decreased. We assumed the same drift oc-
curs in the present data. Strong support for this
assumption comes from the data itself. The ad-
justment of the temperature scale required to
make the data at p=0.0690 g/cm?® coincide with the
data taken at p=0.0694 g/cm® is exactly that sug-
gested by the assumption the thermometer drifts
in a reproducible way upon being cooled to liquid
helium temperatures. This assumption has led to
Table I in which we suggest temperature correc-
tions to be applied to the specific-heat data on
each isochore. We have used these corrections
in our own analysis of the data, but they have not
been applied in Table II. Drifts in carbon resis-
tors of a similar nature have been observed by
others!®; however, no explanation has been offered.

ANALYSIS OF DATA

The problem of interpretation of published data
is particularly acute in the case of experiments
seeking to observe asymptotic behavior of various
phenomena near critical points. One set of mea-
surements of the index of refraction of He* near
its critical point has been the principal subject of
five papers.® Questions such as: What should
be considered a parameter determined by this

TABLE I. Temperature drift of thermometer.

Density Estimated drift, to be subtracted
(g/cm®) from temperatures in Table III (mK)
0.0694 1.4

0.0766 1.0

0.0623 0.4

0.0660 0.3

0.0690 0.2

0.0732 0.2

0.0805 0.1




182 SPECIFIC-HEAT SINGULARITY OF He* 345

TABLE II. Experimental values of (density) X (spe- TABLE 0. (cont.)
cific heat) at various temperatures along seven iso-
chores of He!, Temperatures are on Ts; scale and not Temp Sp Heat
corrected for thermometer drift. (XK) (J/em®K)
Temp Sp Heat 5.0708 0.635
(K) (J/cmsK) 5.1111 0.667
5.1438 0.708
p=0.0694 g/cm? 5.1613 0.747
4.9129 0.549 5.1690 0.773
4.9771 0.572 5.1748 0.801
5.0392 0.601 5.1784 0.822
5.0934 0.636 5.1806 0.853
5.1585 0.724 5.1822 0.864
5.1661 0.745 5.1843 0.889
5.1708 0.764 5.1849 0.912
5.1754 0.788 5.1853 0.919
5.1794 0.816 5.1857 0.922:
5.1822 0.845 5.1860 0.916
5.1842 0.870 5.1862 0.905
5.1859 0.908 5.1864 0.909
5.1874 0.950 5.1867 0.921
5.1884 1.006 5.1870 0.690
5.1890 0.977 5.1877 0.368
5.1892 1.013 5.1885 0.353
5.1896 1.049 5.1898 0.354
5.1897 1.041 5.1916 0.337
5.1899 1.011 5.1944 0.330
5.1900 1.011 5.1986 0.318
5.1901 0.859 5.2051 0.305
5.1903 0.753 5.2137 0.294
5.1905 0.653 5.2270 0.283
5.1907 0.556 5.2526 0.270
5.1910 0.528 3
5.1913 0.483 p=0.0623 g/cm
5.1918 0.451 4.8544 0.514
5.1926 0.419 4.8929 0.526
5.1936 0.396 4.9334 0.539
5.1952 0.375 4.9766 0.557
5.1978 0.353 5.0217 0.578
5.2013 0.333 5.0665 0.600
5.0935 0.620
5.2063 0.316 5.1094 0.635
5.2185 0.293 5.1318 0.660
5.2383 0.272 -
5.2572 0.261 5.1398 0.672
5.1520 0.694
p=0.0766 g/cm® 5.1546 0.700
5.1833 0.876 5.1622 0.721
5.1841 0.895 5.1699 0.750
5.1850 0.917 5.1763 0.784
5.1855 0.905 5.1805 0.815
5.1858 0.915 5.1815 0.831
5.1859 0.858 5.1819 0.834
5.1861 0.904 5.1827 0.840
5.1862 0.884 5.1829 0.832
5.1864 0.863 5.1836 0.852
5.1866 0.750 5.1837 0.885
4.9894 0.592 5.1842 0.811
4.9912 0.592 5.1846 0.714

5.0323 0.611 5.1850 0.722
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TABLE II. (cont.) TABLE 1. (cont.)
Temp Sp Heat Temp Sp Heat
(K) (3/em’®K) (K) (J/cm’K)
5.1854 0.599 5.2154 0.283
5.1858 0.737 5.2307 0.267
5.1860 0.584 5.2583 0.250
5.1864 0.523 $=0.0690 g/cm®
5.1866 0.459 5.1748 0.775
5.1872 0.329 5 1773 0.808
5.1878 0.323 5 1809 0.852
5.1881 0.319 5 1835 0.885
5.1893 0.312 5.1854 0.927
5.1911 0.303 5 1866 0.971
5.1940 0.293 5 1874 0.978
5.1974 0.285 5 1880 1016
5.2018 0.276 5 1884 1052
5.2086 0.267 5 1888 1043
5.2188 0.257 5 1894 0.660
5.2330 0.246 5 1902 0.496
0=0.0660 g/cm® 5.1913 0.423
4.8334 0.516 5.1931 0.382
4.8825 0.531 p=0.0732 g/em’
4.9344 0.549 4.8458 0.541
4.9892 0.570 4.9057 0.554
5.0461 0.598 4.9680 0.577
5.0925 0.629 5.0284 0.604
5.1166 0.650 5.0754 0.631
5.1308 0.673 5.1090 0.659
5.1426 0.686 5.1344 0.688
5.1513 0.703 5.1500 0.714
5.1607 0.726 5.1586 0.734
5.1696 0.758 5.1639 0.750
5.1758 0.790 5.1691 0.773
5.1801 0.830 5.1742 0.796
5.1824 0.862 5.1781 0.822
5.1839 0.881 5.1813 0.858
5.1849 0.908 5.1835 0.895
5.1857 0.910 5.1851 0.931
2.1857 0.915 5.1862 0.956
5.1863 0.942 5.1866 0.966
5.1868 0.951 5.1868 0.985
5.1868 0.972 5.1872 0.983
5.1873 0.961 5.1875 1.000
5.1876 0.945 5.1876 0.968
5.1878 0.993 5.1879 1.027
5.1881 0.954 5.1883 0.927
5.1884 0.917 5.1883 0.948
5.1884 0.744 5.1887 0.555
5.1887 0.834 5.1890 0.500
5.1891 0.529 5.1894 0.432
5.1892 0.538 5.1898 0.400
5.1899 0.447 5.1909 0.399
5.1910 0.383 5.1909 0.392
5.1927 0.353 5.1931 0.368
5.1953 0.339 5.1967 0.346
:'1991 0.320 5.2020 0.325

-2056 0.300 5.2096 0.307
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TABLE II. (cont.)

Temp Sp Heat
() (3/cm®K)
5.2219 0.291
5.2396 0.276
5.2656 0.263

p=0.0805 g/cm®

4.8512 0.552
4.9128 0.582
4.9722 0.594
5.0295 0.624
5.0797 0.650
5.1151 0.681
5.1354 0.705
5.1482 0.727
5.1594 0.753
5.1664 0.779
5.1738 0.805
5.1756 0.818
5.1768 0.815
5.1770 0.867
5.1774 0.831
5.1781 0.735
5.1781 0.847
5.1783 0.737
5.1788 0.464
5.1793 0.355
5.1797 0.383
5.1815 0.324
5.1844 0.310
5.1888 0.305
5.1952 0.298
5.2213 0.280

experiment and what should be used from other'
experiments ? How should the data close to the
critical point which are more representative of
asymptotic behavior, but more scattered, be
weighted relative to other data? What are the
limits of resolution of the experiment?, do not
have unambiguous answers. Hence we consider
the table of data (Table II) with the suggested
temperature corrections (Table I) to be the only
unbiased presentation of our results. Also we are
careful to state our assumptions in the analysis
below,

Our primary effort has been to find a relatively
simple algebraic form meeting “reasonable” cri-
teria with a limited number of parameters which
could be adjusted to fit all the data at once. Such
a form would be a useful summary of the data
even if it had no fundamental significance. Since
all the data are to be fit at once we are assured
there will be unique values for T, and p.. The
drop in C,, at the coexistence curve is on the or-
der of 0.001-0.002 K wide; therefore, the data in

_this region could not be used. It is still reason-

able to require that these drops fall on a smooth
curve of the form ¢|Ap |~ 1/8= %, since both di-
electric constant” and index of refraction® mea-
surements on He?* have led to this result. Here

t is the reduced temperature measured from the
critical temperature, ¢=(T'- T.)/T¢; and Ap is
the reduced density measured from the critical
density, Ap= (p—pc)/pc. We also did not use the
data at p=1.16 p in the analysis of the one-phase
region, assuming it was too far from p., to be
useful. However we do show it in the results,

It is frequently assumed that sufficiently near
the critical point the free energy may be repre-
sented by a constant plus some simple singularity
located at the critical point alone. This singular-
ity reflects itself quite weakly in the specific heat.
The largest value of C,, we observed (see Fig. 2)
is about 5 times the ideal-gas value. This occurs
within a few tenths of a percent of p, and a few
hundredths of a percent of T',. In contrast, the
analysis of Roach suggests the isothermal com-
pressibility is about 60 times the ideal-gas value
where the isochore p=1.16 p, crosses the coex-
istence curve. This isochore is our most distant
from p, and crosses the coexistence curve about
0.002 T below T.. The weakness of the singular-
ity requires that we assume C; has nonsingular
terms including an additive constant (B’ in the two-
phase region and B in the one-phase region). We
have also included terms linear in the temperature
and density for reasons stated below. We have
considered the critical region to be defined by
1£1<0.015 since it is in this temperature range
that the coexistence curve of He?* is well described
by a power law. To fit out data at temperatures
below these, we have included a term proportional
to the temperature (the constant of proportionality
is called E). The introduction of this term slight-
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FIG. 2. The specific-heat anomé.ly of He® near its
critical temperature. Data are shown near the critical
density, 10% below the critical density and 16% above
the critical density. The ideal-gas value of pC,, at the
critical density is also indicated.
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ly improves the fits to the data above T';, but does
not significantly change results for the critical
parameters or exponents,

Yang and Yang!” have emphasized that every-
where in the two-phase region the pressure and
chemical potential are functions of temperature
alone (and not volume). Then

SdT =~ Ndu + VdP

leads to

ZP dz
pC, =NT Z—F—NTp;lFI;-. )

Thus in the two-phase region pC, is proportional
to p. This is evident in Fig. 3, where we have
plotted pC,,/p R for three densities as a function
of the reduced temperature ¢=(T - T,)/T, mea-
sured from the critical temperature in the two-
phase region. An examination of the “constant”
of proportionality, NT(d?u/dT?) as determined
by this data, relatively far from the critical tem-
perature indicates the temperature dependence of
NT(d?p/dT?) is certainly weaker than that of C,,
itself. Accordingly we have assumed a term DAp
(D =a constant) to be part of pC, in the two-phase
region. If this term with the same value of D is
assumed to be present in the one-phase region,
the remainder of pC,, in the one-phase region has
a symmetrical density dependence about p=p..
This is illustrated for our data in Fig. 4. A sim-
ilar observation has been made earlier about data
taken on argon.'® Thus we are led to assume DAp
is present in the one-phase region as well. We
emphasize that a weak temperature dependence of
D (e.g., DxT)is not excluded by our data.

We have chosen to state our results in terms of
pC, rather than C, itself, primarily because pC,,
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FIG. 3. Normalized specific heat in the two-phase

region at three densities versus the reduced temperature,

measured from the critical temperature. The linear
dependence of pC,, on p is evident. The weak power
law divergence as —¢ — 0 is also evident.
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FIG. 4. Normalized specific-heat data in the one-
phase region versus reduced temperature measured
from the coexistence curve. The linear dependences
of pCy, on p and ¢ have been removed. The size of the
linear dependence on p is indicated by the sketch showing
how far the data points at two densities have been dis-
placed. The data are now symmetrical about p=0.0696
gm/cm®.

is more commonly compared with results of cal-
culations on lattice gases. It is also true that
pC, comes from the raw data in a slightly more
direct way than C,, itself.

As terms singular at the critical point we have
chosen

- " - a’
pCv/pCR—A (-2 (3)
in the two-phase region and
pCv/pcR=A[Ap|-a/ﬁ(1+ sgnxlxlN)—a/N (4)

in the one-phase region with x=¢|Ap |~ 1/ B, Equa-
tion (3) is appropriate for the two-phase region
since the assumption D = constant leads in the
same temperature dependence on all isochores.
The data reported here are not significantly dif-
ferent from those we reported earlier at the crit-
ical isochore.'?>2° Then we stated C, was well
approximated by a singularity of the form

- A’ln(-¢)+ B’ in the two-phase region although
small (~1%) systematic deviations were evident

in the center of the temperature range considered.
Now, since the same deviations occur on each
isochore, and they cannot be ascribed to a slight
modification of the temperature scale we are
forced to abandon the idea that the function

- A’In(- )+ B'+ Et describes the data in this tem-
perature region although such a function might be
adequate for data still closer to the critical point.
Our choice of Eq. (4) in the one-phase region was
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suggested by the proposal of Widom? and Griffiths®
that the thermodynamic function belong to a par-
ticular class of homogeneous functions, although
Eq. (4) is not completely consistent with their
ideas. For example its expansion in density about
the critical isochore starts with the term |Ap IN/ B
(N/B=2.4 in our case), not (Ap)2 which would be
expected from a function analytic in the one-phase
region. Equation (4) is useful because it reduces
to At~ @ on the critical isochore, has few param-
eters, and fits the data.

RESULTS

The results stated below are based on a fit of
selected data to Eqs. (3) and (4) with the addition
of the nonsingular terms described above. The
constants in Table III resulted from this fit and
were used for plotting the deviations for all data
on Fig. 5. The fact that many significant figures
are given is not intended to imply the constants
are uniquely determined to high precision, but
only that this combination of constants will lead
to Fig. 5.

TABLE III. Critical constants resulting from a fit of
selected data to Eqs. (3) and (4), with the extra terms
B’ +DAp+ Et added to the right-hand side of Eq. (3) and
the extra terms B +DAp + Ef added to the right hand side
of Eq. ). This is the combination of constants which
leads to Fig. 5.

pe 0.06958 g/cm? A’ 1,546
T, 5.1891 K o' 0.159
D 1.05 B’ 1.563
E 43 A 1.197
B 0.3724 o  0.127
%, 0.30 B -0.330
N 0.891

1. Critical Constants

Our estimates for the critical constants are T,
=5.1891+0.0007 K and p,=0.069 58 +0.00007 g/
cm®, These error estimates are based on the
accuracy of our temperature and density mea-
surements, They do not include statistical uncer-
tainties arising from the multiparameter fit to the
formulas listed in Table III. Such “statistical”
errors are often misleadingly small. Both crit-
ical constants were sharply determined by the
various functions we tried fitting to the data; the
values gotten by various choices always fell within
the ranges given. The value of T, agrees with
that we stated earlier'®s2° and with the more re-
cent results of Edwards” and of Roach.® The val-
ue of T occurs 0,0009 K above the temperature
of the specific-heat maximum at densities near
pce This is consistent with the idea that the C,
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FIG. 5. The percentage deviation of the data from the
equations summarized in Table III are plotted against
the reduced temperature measured from the coexistence
curve. All data except a few points close to the co-
existence curve which fell off the graph are plotted.
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data have an inherent resolution slightly greater
than 0,002 K. The value of p,, is equal within com-
bined experimental error to that found by Edwards.
It falls outside the range of values Roach used in
the analysis of his data; however, he did not es-
timate the absolute accuracy of his density mea-
surements.

The agreement between the critical temperature
determined from C, measurements and that de-
termined from P-V-T measurements is much bet-
ter in the case of He* than in the cases of O,, Ar,
and one set of measurements on Xe. It has been
suggested the discrepancies result from large
gravitational gradients in the C, apparatus.?®
Recently additional C, measurements have been
made on Xe with a calorimeter of height compara-
ble to ours. Reassuringly, T, determined from
these C, measurements agrees with T, determined
from P-V-T measurements about as well as it
does for helium, 22

2. The Critical Isochore

The isochore p=0.0694 g/cm?® is within 0.3% of
pe- This isochore and the data taken as a whole
in the range 0.013> |£] >0.0004 are consistent
with a power law divergence of pCy on the critical
isochore with the exponents a ~a’~0.15 giving the
best fit. If one is committed to a power law and
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this temperature range, « and o’ will vary about
25% with different reasonable choices of E. These
exponents are very sensitive to the choice of 7.
If for some reason the optimum value is not
chosen, much wider variations will result with
one exponent increasing and the other decreasing.

If data closest to T, were excluded, the re-
maining data would be best fit by values of a and
a’smaller than 0.15, This fact might suggest
that our values for these exponents are smaller
than asymptotic values at T -T,. On the other
hand, the data which are closest to T, are most
subject to the effects of limited resolution; there-
fore we have assumed this dependence of @ and
a’on the choice of data is not significant.

3. Scaling of Data in One-Phase Region

In Fig. 4 we have plotted pC,, in the one-phase
region after two nonsingular functions were sub-
tracted. The symmetry about P, is evident as
well as the effects of limited resolution very close
to the coexistence curve. In Fig. 6 the data in
Fig. 4 at the five highést densities (the rest are
omitted for clarity) have been reduced by a con-
stant B, and have been multiplied by |Ap |a/8,

To the extent that the data at different densities
now fall on a single smooth curve when plotted
against the variable x one may say the data “scale”
experimentally. In principle this graph could

have been made without any prior knowledge of the
function of x to which the data scale. This is our
major experimental result. As a practical mat-
ter we have chosen a particular f(x) to approxi-
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FIG. 6. Scaled specific-heat data versus “scaling law”
variable. 1.00 has been arbitrarily added to the variable
X to permit use of semilog paper. Coexistence curve
occurs at 1.00+x=0.70.

mate this curve so we could numerically separate
out the nonsingular contribution to pC,. The fact
that our approximate f(x) does not satisfy all of the
conditions of Widom and Griffiths does not weaken
the conclusion. To examine in greater detail how
well the data fall on a single curve we have plotted
in Fig. 5 the deviations of the data on all seven
isochores from our choice of f(x). Most of the
data fall within a few tenths of a percent of this
particular f(x). The most notable exceptions are
the data at p=1.16 p, which were not used to find
the parameters in f(x),

4, The Coexistence Curve

The parameters x, and 8 which determine the
coexistence curve are found from both the location
of the jump in pC,, and the scaling factor |Ap|@/B,
Values of B with different choices for f(x) (for ex-
ample requiring N=1.0) differ from the one cited
by as much as 4%. The coexistence curve indi-
cated by this data falls between that of Edwards
and that of Roach in most of the temperature
range, although our value of 8 is about 4% greater
than the §’s they get.

5. The Isothermal Compressibility

The slope of the isotherms where they intersect
the coexistence curve is related to the jump in
Cyp at the coexistence curve by

se, L) (&

Thus we may compare pC,, data with the compres-
sibilities (x7) derived from P-V-T measurements.
To extract AC, from our data it is necessary to
extrapolate approximately 0.001 K to coexistence
curve itself. This may be done with excellent
reliability in the two-phase region with the help

of Table III or a graph like Fig. 3. The tempera-
ture dependence of pC,, is similar on each iso-
chore, hence information from the critical iso-
chore may be used on the other isochores until

the temperature gets to within the temperature_
resolution of the pC, measurements from T,. In
the one-phase region the extrapolation problem

is more complex. Figure 4 suggests the approach
of pC, to its maximum value in the one-phase re-
gion may be well resolved on the isochores p
=0.0623 g/cm® and p=0,0766 g/cm®. We would
expect the isochore p=0.0805 to be even more
clearly resolved, but apparently it is not. The
other isochores cross the coexistence curve with-
in 0.001 K of T, hence are not expected to be re-
solved. We have used the functions and constants
in Table II to estimate pAC,, on the three iso-
chores furthest from p. and then have calculated
(8P/3p)y. The errors cited are based on esti-
mates of the extrapolation errors in the one-phase
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region. They do not allow for the effects of er-
rors in x,, B, and p, which enter into the calcu-
lation of (8P/8p)p: Our results are:

Density (g/cm®)  (8P/dp)p (Torr cm®/g)

0.0805 431 +40
0.0766 101+10
0.0623 93 +10

We may use our coexistence curve to convert p
to ¢ and then plot

Xp= (Pc/p cz)( pdp/ BP)T

versus ¢{. If we neglect nonsingular terms and as-’
sume

—cen-?
xT-G( t)

we estimate from these three points y’=1.15 in
this temperature range.

To derive X, from AC,, we had to use values of
B and x, to calculate (dp/dT)?. It seemed reason-
able that P-V-T measurements which look at the
coexistence curve itself at many points would
yield more reliable values of (dp/dT)? than our
C, measurements which cross the coexistence
curve at seven points. However, at the three
densities in question (dp/dT)2 derived from Ed-
wards’ and Roach’s data differ from each other
by about as much as they differ from our values
(up to 20%). Thus we do not have a clear reason
to prefer P-V-T derived values, and have used
our own.

Our values for X agree with those of Roach.
Our estimated error is much smaller, even if the
uncertainty in (dp/dT)? were included. Our value
of ¥’ is midway between the values Roach gets
from his p>p, and p<p, data. Our values of Xp
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are about one-half those Edwards’ data indicates
at the same densities. Our value of v’ would
equal his (1.26) within combined error limits.

6. Implications for the 7’53 Temperature Scale

The T, temperature? scale relates the vapor
pressure of liquid He? to the absolute temperature.
This scale is the internationally accepted scale in
the range where vapor-pressure measurements of
He* are possible. The singularity in C,, at the
critical point implies a singularity in the second
derivative of the vapor pressure [Eq. (2)] which
was not considered in the preparation of T;3. To
estimate the importance of the singularity we as-
sumed that at 4.85 K (near the lowest temperature
at which we have data) T, gives the true vapor
pressure and that the derivative of T, gives the
true value of dP/dT. We assumed the values of
d2P/dT? derived from our C, data were correct
and integrated them to find a new temperature
scale P*(T). We used the P*(T) scale to re-eval-
uate our resistor calibration and recalculate our
C, data. This process was iterated until it con-
verged. The net effect was to assign to pressures
near the critical pressure (1705 Torr) tempera-
tures 0.0007 K below those listed in T';;. An ef-
fect of the same magnitude would result if dP/dT
in T, were in error by 0.3% at 4.85 K. It is in-
teresting to note that d2P/dT? at 4.85 K on Ty, is
1.6% larger than our value.
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A thermodynamic relation between the isentropic velocity of sound # in the zero frequency
limit and the heat capacity for He' near the superfluid transition temperature T, is presented.
The validity of the calculation depends upon the logarithmic temperature dependence of the
heat capacity. The effect of the gravitational field on » in samples of finite height is calcu-
lated. The minimum measurable velocity in real samples exceeds the velocity at T by at
least 48 cm/sec. The major contribution to the velocity arises from a term whose temper-
ature dependence is Cp'l. However, there are additional appreciable contributions whose
temperature dependence is Ty =T and (T) =7) In|Ty —~T|. Comparison with the measure-
ments of Barmatz and Rudnick shows that the present treatment quantitatively explains all
the features of the experimental data. The calculation can be used to determine the contri-
bution from dispersion to measured velocities at nonzero frequencies.

1. INTRODUCTION

In this paper a thermodynamic relation between
the isentropic sound velocity # in the zero-fre-

quency limit and the heat capacity at constant pres-

sure Cp for liquid helium in the gravitational field
and near the superfluid transition temperature T
will be derived. The calculation will be based on
the assumption that Cp depends logarithmically on
Ty - T, and will be restricted to the temperature
range T, + 5x1072 °K over which this dependence
is experimentally verified.! Detailed calculations
of u for isobars and general expressions for iso-
chores will be presented. Comparison of these
predictions with the measured low-frequency
velocity? at saturated vapor pressure is very in-

structive. The sound velocity has been measured
with sufficient precision to reveal interesting de-
tails of the thermodynamics of the superfluid
transition, and the agreement with the present
prediction indicates that these details can be un-
derstood on the basis of thermodynamics as pre-
sented here. The general results of the calcula-
tion also are applicable to other systems with
A-lines and logarithmic specific-heat singularities.
The method used here can be applied equally well
to the calculation of other thermodynamic proper-
ties.

In addition to explaining the behavior of the
sound velocity near T,, the present results can
be used also to extract the dispersion contribu-
tions from measured sound velocities at nonzero
frequencies.



