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Time correlation functions in classical liquids at high frequencies (10 sec ) and short
wavelengths (10 cm) are analyzed using linear response theory of Martin and Kadanoff.
Rigorous expressions, based on dispersion relation, sum rules, and limiting behavior at
long wavelengths and low frequencies, are obtained in terms of damping (or memory) function.
Specific assumptions regarding the damping function then enable numerical results to be ob-
tained which are compared with computer molecular-dynamics experiments and inelastic
neutron-scattering on liquid argon. It is shown that all the known characteristic features of
density and current correlations are reproduced using a Lorentzian frequency dependence of
the damping function. In particular, the frequency wave-number relation for excitations de-
scribed by the longitudinal current correlation is in quantitative agreement with the computer
calculations. Relaxation times are derived from the computer results on transverse and longi-
tudinal current correlations, and the van Hove self-(test-particle) correlation. These times
exhibit significant variation with wavelength, and all have magnitudes of approximately 1 & 10
sec. Present analysis is also applicable to slow neutron-scattering experiments. Coherent-
and incoherent-scattering contributions in argon are computed without any adjustable param-
eter, and the theoretical absolute-scattering intensities are in quite good agreement with ex-
perimental data.

I. INTRODUCTION

In the study of atomic and molecular processes
in liquids, many phenomena can be discussed in
terms of time correlation functions which describe
the decay of fluctuations in an equilibrium sys-
tem. '-' Correlation function analyses are there-
fore of considerable interest because they can be
subjected to a variety of experimental tests. The
basic properties of time correlation functions are
by now well known in the recent literature. These
include expressions for transport coefficients,
molecular formulas for various sum rules, and
hydrodynamic behavior. Correlation functions
are equally suitable for investigating dynamical
processes in a system not in local thermodynamic
equilibrium. Such processes involve wavelengths
and frequencies comparable to interatomic dis-
tances and microscopic relaxation rates, and at
present they are still incompletely understood. In
the language of kinetic theory, this range of fre-
quencies and wavelengths constitute the "transi-
tion" region.

The experimental methods which can provide
information about correlation functions in the
transition region are inelastic neutron scattering
and computer molecular-dynamics calculations.
The density correlation function and the longitudi-
nal current correlation function (see Sec. II for
definitions) are directly observable by coherent
neutron scattering, whereas the van Hove self-
correlation function, which reflects the motion of
a test particle, can be studied by incoherent scat-
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tering. 4-' Early interest in neutron studies was
mostly concerned with the process of self-diffusion
in liquids. For example, neutron experiments
were the first to reveal in detail that atoms in a
liquid actually perform several localized vibra-
tions before undergoing diffusion. More recently,
however, attention is being directed to the prob-
lem of cooperative modes. From a number of co-
herent spectra, dispersion curves have been ob-
served'~' and they provided the initial evidence
that collective density oscillations occur even at
wavelengths comparable to interatomic distances.

The information inferred from neutron measure-
ments, which is often only semiquantitative, has
been put into much sharper focus by Rahman
through a series of computer molecular-dynamics
experiments on liquid argon. '-" Rahman has gen-
erated all the correlation functions of interest
under conditions of known interaction potential and
equilibrium structure. Since the computer data
do not suffer from difficulties associated with lab-
oratory experiments, they are very useful for
testing current theories.

The purpose of this paper is to present a de-
tailed analysis of those correlation functions which
have been obtained by computer experiments and
inelastic neutron scattering. " The calculations
are based on the correlation-function formalism
developed by Martin and Kadanoff'y'~ and involve
specific assumptions which are necessary to ob-
tain numerical results. The validity of these as-
sumptions for liquid argon is examined quantita-
tively using the available computer and neutron

323



C . H. C HUNG AND S. YIP 182

data.
In the present work each correlation- function

calculation is reduced to the problem of deter-
mining a frequency and wavelength dependent
damping function. This is achieved through the
use of a dispersion relation which ensures that
the correlation-function expressions will have the
correct hydrodynamic limits, and which leads
naturally to sum- rule conditions on the damping
function. In addition to the moment requirements
which can be expressed in terms of interaction po-
tential and equilibrium distribution functions, the
damping function is also constrained to give the
proper transport coefficient in the low-f requency
and long-wavelength limit. As we will see, the
advantage of this approach is that even simple as-
sumptions regarding the damping function, so long
as its known properties are not violated, can lead
to quite reasonable results for the correlation func-
tion.

The essential elements of Martin' s formalism
are summarized in the next section where we in-
troduce the necessary definitions and relations for
subsequent calculations. The transverse current
correlation, the van Hove self -correlation, and
the longitudinal current correlation are analyzed
in Secs. III through V. In each case nume rical
results for argon are obtained and compared with
the computer data. In Sec. VI we consider the
density correlation function and the interpretation
of recent neutron- scattering experiments. Abso-
lute intensity calculations which require no adjust-
able parameters are presented and shown to be in
good agreement with measurements. The over-
all results are then discussed in the final section
where a number of concluding remarks are offered.

II, DEFINITIONS AND BASIC FORMALISM

In this section we define the various correlation
and response functions, indicate their properties
and interrelations, and describe the basic approach
used in subsequent calculations. The dynamical
Vari. ables we shall be concerned with are the par-
ticle and current densities. It is convenient to
consider these densities in the form

where A is either n or l, and (X) denotes the
average of X over an equilibrium distribution
function. Because of translational and rotational
invarianc e in a liquid, C depends only on the mag-
nitude of z and not its direction. In the case of
current-current correlation we decompose the
second rank tensor into longitudinal and trans-
verse components,

(j (F, t)j (- F, 0))

K K

J (», »)+(8 ——,) J (», i), (2.4)

C(», (o) =
2 f dte' C(~, t)

1 f dtcos&otC(z, t) .
W 0

(2. 5)

Notice that in classical calculations the correla-
tion function is real and even in time.

The approach we use to evaluate the above cor-
relation functions is essentially a linear response
theory in which one begins with a complex sus-
ceptibility, ' "

(2. 6)

where z is a complex variable. The response
function y" is defined by

X"(~, (o) = f dte

and analyze J~ and Jg separately.
Since a number of different correlation functions

will be considered, we will use a generic notation
in the present discussion and summarize the spe-
cific cases in Table I. Besides the density- den-
sity correlation, S, the current correlations, J~
and jt, we also want to discuss the self- (or test-
particle) correlation function, Se, which occurs in
the theory of incoherent neutron scattering. 4 Having
defined C(z, t) we shall denote by C(z, &o) its fre-
quency spectrum,

inc rf (t)
7

I = 1
(2. l) x(i/2)([A(pT, t), A(- K 0)]p~), (2. &)

iT8 t) N Ig v (t)e'-' l

l = 1
(2. 2) where the bracket [ ] pg denotes Poisson brack-

et. It follows then that as z -~ + ie,

C(K t) =(A(p7, t)A(- F, 0)), (2. 3)

where rf ( t) and vf ( t) are the position and velocity
of the l th particle at time t in an N- par tie le sys-
tem. The time correlation functions are def ined

by

t tf ~ 1

(»~»)=o'f "-, ' +i» '(», rg), (2. 8)

where 8 denotes the principal value integral. With
« = 0, Eq. (2. 6) gives a sum rule which can be
worked out for al) the cases of interest (see
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TABLE I. Notations for various correlation functions and associated quantities.

C(K, t)

C(K, CO)

y" (K, (O)

D' (K, CO)

X{K 0)

Co'«)

Transverse
current

Z& (K, t)

Jt (K, V)

y" t (K, (u)

Dt' (K, O))

mn

Longitudinal
current

Jl (K'~)

y" (K, M)

D' (K, Co)

mn

tpmS(») j

van Hove

(test particle)
gK ~ r)(t) -'K r)(0)

(e e )

8 (K, (O)

'(K~ 47)

D' (K, (u)

Densitya

(n(», t)n(-», 0))/n

S(K, CO)

y" (K, CO)
nn

~ ~ ~

nPS(K)

((u (») ) (&e (»)) ((o (») ) (co (») )

To calculate y" we first obtain y" and then use (2.21).
nn

Table I). Now one writes a dispersion relation
for )((», z),

z'[1 —)((», 0)/)((», z)] '
K

C (»)» t G7 D (» Q7 ), (2. 14)
OQ

= C,'(»)»' —iz»'D(», z), (2. 9)

from which we see

Col(») = lim 2 1—x(» o)
g K~8

(2. io)

( ) ) 4(d D (»~ (d )
gl (d —8

(2. iS)

There are two important consequences of (2. 9).
First, it implies the following relation between
the response function and the damping function
D'(», &o),

"(» (o) =(0» D (», (0) &g —C 2(»)»
)((», o) 0

The complex damping function D(», z) is also de-
fined through (2. 9); however, we will introduce
another function D' which is real and even in v,

As is well known, the frequency moments of X"
are equilibrium properties of the liquid which,
in principle, can be computed given the inter-
atomic potential and the equilibrium distribution
functions. "~" For current correlations, explic-
it expressions have been derived up to ( &o'(») ) .
Since longitudinal current correlation and den-
sity correlation are simply related [see (2. 21)],
this means that the sixth frequency moment of
S(», &u) are known. In addition, the correspond-
ing moment for Ss(», &u) has been given by Nijboer
and Bahman. " Numerical computations of these
moments at finite K have been restricted to the
fourth moments of the density correlation and
the second moments of the current correlation.
The fourth moment of the current correlation is
given by a fivefold integral which presents a con-
siderable computational problem. However, at
K=0 the expression reduces to a triple integral
which has been evaluated in the case of argon. "
For explicit expressions for the various moments
the reader is referred to the literature. Notice
that by defining

+ K2& 8 d+ D K~ + 40K2g)t K

(2. 12)

» '((o '(»)) = G (»)/mn,

» '((o '(»)) = [+G (») +K (») ]/mn

(2. iS)

(2. 16)

& ~'(»))
K

= C,'(»)+ D'(», (o)
m QQ

(2. Is) ~

Secondly, using (2. 6), (2. 9), and (2. 11)and
making a large z expansion, one obtains relations
between the frequency moments of y" and D'. The
first-two relations are

we can identify G (») and K (») as wavelength
dependent high-frequency shear and bulk moduli. "

In addition to frequency moments we have con-
straints on D'(», &o) through the relations between
response functions and transport coefficients.
These may be expressed as'~"
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lim lim, yf "(»,~) = mnDI'(0, 0) =+ '0+i,
&u-0»-0—

lim lim, y "(»,ro) = D'(0, 0) =D, (2. 19)
v-0»-0

where g and g are the shear and bulk viscosities,
and D is the self-diffusion coefficient. Further-
more, we know that

lim, y. "(»,~) =f(~),
K-0

(2. 20)

where f(e) is the spectrum of the velocity auto-
correlation function. '~"

There exist several useful relations among the
various C(», &u) and )t"(», &u). The connection be-
tween correlation and response functions is
most readily established through the fluctuation-
dissipation theorem. " Specifically, we have the
classical relations,

(», (d ) = I)pv(0 S (», 4P )

lim lim, y "(»,ro) = mnD'(0, 0) =ri, (2. 17)
0 K 0 K

III. TRANSVERSE CURRENT CORRELATION

In Sec. II we have reduced the problem of cal-
culating correlation functions to the determina-
tion of the damping function D'(», v). Formally
D' is defined in terms of X", but neither this
definition nor a molecular expression is very
useful for actual computations. Instead we con-
sider a phenomenological approach in which we
postulate a convenient form for the damping func-
tion, and try to satisfy as many as possible the
properties of D' described in Sec. II.

To motivate our approximation we observe that
Df' (», &) can be regarded as the frequency trans-
form of an appropriate time correlation function.
Suppose we assume the latter relaxes exponential-
ly in time, then this implies that Dg is a Lorent-
Zlan,

[& '()&/'] ()
(3. 1)

This simple form enables us to satisfy the sum
rule (2. 13) but not (2. 14). The wavelength-de-
pendent relaxation time, vf(»), is unspecified ex-
cept for its limiting value at » = 0. From (2. 17)
we have

K(, )=p
x,"(»,~)

)( (», (d) = p1T(d S (», (d)s ' s

= (»/m(o)')t "(»,(u),

y "(», (o)
KI(, )=P.„

(2. 21)

(2. 22)

(2. 23)

(2. 24)

;(o)= n/G„(0) . (3.2)

The» =0 limit of (3. 1) is familiar in viscoelastic-
ity where Df'(0, ~) is a frequency-dependent shear
viscosity and 7f(0) is the Maxwell relaxation
time. "~" At the opposite limit of short wave-
lengths one can show that the transverse current
correlation Zf(», ar) should decay like

exp[-&o'/(»v )2], where v = (2k T/m)'I';

In (2.21) the continuity equation

i(gn (», (o) —i» ~ j(», (u) = 0 (2. aS)

has been used to relate X~ and y«".
In what follows we will attempt to evaluate X"

by assuming simple frequency dependence for the
corresponding D'. The assumed form of D'(», &o)

wi11 contain parameters which can be K-dependent
and these will be determined by the sum-rule
relations as well as the constraint at small K and

The advantage of this approach is that we
anticipate that it is simpler to deal with D since
it approaches a constant in the limit of small K

and ~. The dispersion relation form for X guar-
. antees that it will reduce to the proper hydro-.
dynamic limit, and by using the sum rules one is
effectively interpolating between the small and
the large K and ~ regions.

rois the thermal speed of the particles. Thus qual-
itatively we expect vf(») to behave like (m, )

' at
large K. Aside from the limiting behavior, not
much is known about 7f(»)'

The use of (3. 1) leads to a very simple form
for the current correlation function. Combining
(2. 12) and (2. 23) we have

J (», (o) = (»'/cpm)

&, (.)&/;(.)

[(d —&(d (»)& ] + [(d/7' (») ]

If the relaxation time is also specified we can
compare (3.3) with the spectral densities derived
from computer molecular-dynamics experiment.
As a first approximation we might replace v&(»)
by an appropriate constant. If we use (3.2) for
this constant, then it would ensure that the cor-
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FIG. 1. Dispersion in excitation frequency of transverse
current correlations in liquid argon. Theoretical re-
sults obtained with various prescriptions of the shear
relaxation time are dashed curve [constant v'~ given by
K=0 limit of (3.4)], solid curve [v& (K) from (3.5) j, and

the solid curve A [7& (x) from (3.6)]. Curve R is drawn

through the computer points of Rahman, its use is
described in the text.

rect hydrodynamic behavior is preserved. Alter-
natively, the sum rules can be used to estimate
the relaxation time. " Assuming that Dg has a
Gaussian frequency dependence, one can derive
'~om (2. 13) and (2. 14) the relation

&(o '(~)&/z'

t 2 &+ '(v)&/k'- a'[&& ~(z))/z']

Although the molecular expression for (uf'(z)&/v'
is known, it has notbeen evaluated except at z =0."
Nevertheless, the replacement of vf(z) by 7f, the
v=0 limit of (3.4), isnotanunreasonableapproxi-
mation at finite ~ since sum-rule calculations tend
to emphasize the high frequency behavior of cor-
relation functions.

One way of studying the validity of (3.3) is to
examine the frequency where Jg(z, ro) has a peak.
From his computer data on argon at 76'K and
1.40V g/cm', Rahman'v has observed that Zf has
its maximum at a nonzero fiequency, which we
shall denote as (&of)m~, when the wave number
exceeds a certain value. Physically, this cor-
responds to the phenomenon of shear wave propa-
gation in the liquid at high frequencies and short
wavelengths. Figure 1 shows Rahman's data and
the results obtained using (3.3) and various pre-
scriptions for vf(tc) From t. he observed value of
shear viscosity" and the calculated value of shear
modulus, "we find rf(0) =0.298x10 "sec. Put-
ting this in place of 7f(~) in (3.3) leads to (&of)m~
values which are in agreement with computer
data for a~ l. At larger x the peak frequency
becomes too large. Using the transverse current
sum rules computed by Forster et a/. ,

"we ob-
tain from the a —0 limit of (3.4) v&=0. 135x10 "
sec. As shown in Fig. 1 this value leads to a
reasonable Prediction of (~f)m~ for a'&1. The
discrepancy in this region can be partly reduced
by using vg in a simple interpolation scheme, i.e.,

r '(~)=1/r'+(~~ )'.
0 (3. 5)

(0)+(~v )' —2&(u '(z))

1+(~/~, )' (3. 8)

where vo is aparameter. Using a, =1.5 A ' one
obtains the result labeled A in Fig. 1. '

The simplicity of (3.3) makes it possible to
reverse the procedure and use the computer data
to derive the relaxation time 7f(z). From (3.3)
we have

7f '(~) = 2[& ~]'(~)& —(~f)' ] (3. V)

Drawing a smooth curve (labeled R in Fig. 1)
through the computer points and using (3. V) we
obtain the curve labeled 8 in Fig. 2. The various
approximations just described are also shown for
comparison. It can be seen that the optimum
value for the parameter K, in the Akcasu prescrip-
tion should be about 1.5 or somewhat lower.

Once vf(a) is determined we can go back and
analyze the spectral density J~(a', &o) itself and the
corresponding time correlation function,

J (», f) = (~'/Pm) e

x cosQ x t+ sinQ z t1
2T K AK

(3.8)

with A'(~) =&(o '(~)) —,'r] '(a) . —

The theoretical results obtained using (3.5) are
shown as dashed curves in Fig. 3, but in Fig. 4

The fact that the theoretical values deviate appre-
ciably at small wave numbers is not surprising
because we know that as ~-0 our prescription
would give a shear viscosity about half of the
observed value. We conclude therefore that in
the context of the single relaxation-time approxi-
mation, (3.1), vg(tc) ought to have significant wave-
length dependence. It should start 'at about 0.298
x10 "at z = 0, at v = 1 it should decrease
by more than a factor of 2, and it should show a
gradual decrease with further increase in wave
number.

Akcasu and Daniels have recently proposed
a method of computing 7'f(x)." The argument is
essentially based on the requirement that as a - ,
the peak frequency (ef)m~ should vanish like the
free-particle result. This approach yields a
vf(z) having the form

'( )=2& '( )&
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they are drawn as solid curves. The computer
data are denoted by the solid curves in Fig. 3 and
in Fig. 4 they appear as points. The points in
Fig. 3 correspond to 7&(») values taken from the
curve labeled R in Fig. 2. The discrepancy
which still remains when the optimum relaxation-
time values are used must then be attributed to
the assumption of (1)~ In Fig. 4 the dashed
curves correspond to (3.6) with vf(») given by
(3.6), whereas the solid curves are obtained

using (3. 5). From these results we see that (3. 5)
is a semiquantitatively useful approximation for
» &1. At longer wavelengths the initial decay
given by (3. 5) is too slow, which is consistent
with the underestimate of the shear viscosity.

0.30

0
ii 4~a

04

O

—0.20

o
N

4

2 0
ii j-q

0 0
0.10

0
N;(A ')

FIG. 2. Variation with wave number of shear relax-
ation time in liquid argon. Curve R is derived from
the computer (kt) (curve R in Fig. 1). Curve A

corresponds to (3.6), and the solid curve corresponds to
(3.5) with v't equal to 1.35 ~ 10 sec.

(I0I5 -&
)

I.O

FIG. 3. Spectral densities of transverse current
correlations in liquid argon (in units of 10 /x sec),
with Jt (», t=0) =(( /mP. Solid curves are computer2

results while the calculations are denoted by dashed
curves [vt (x) from |'3.5)] and points f7't (v) given by curve
R in Fig. 2].

IV. VAN HOVE SELF&ORRELATION FUNCfION

The correlation function Ss(», (d) resembles the transverse current correlation J'& (», (o) in that both are
characterized by a nonpropagating hydrodynamic mode in the limit of small z and ~ The analog of
shear viscosity in the Ss calculation is of course the self-diffusion coefficient. " To find Ds(», &c) we have
the sum rules from (2. 13) and (2. 14), 's

(a) '(»))//»'= D'(»()c= (Pm) '—,s S (4. 1)

(ra (z))/K =J —ale'(s, ra)+(z/Pm) 3(z/Pm) +(SAn ) '(=V ((r)), (4. 2)
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~ yW-0% ~~ ~~+~(0 ~ ~ ~ '~

.97
~YO &h — =St- —-4h~

4
II

~ 0
~~I.O

0
I.O

~~L,e.~ ~ &+~ ~ ~
~ ~ ~ ~ ~~ ~ ~ ~

1.30

1.65

a I.O

0

I.O

0

2,65

~A~y yA~- ~ + O~0 +~y y 0 ~ ~

0 ~~ ~~'4 — = =Q ~ = --~ ~'% 0
t (IO '~sec)

I'IG. 4. Transverse current correlations in liquid argon. Theoretical results are shown as solid curves fv~(K) from
(3.5)] and dashed curves fat(K) from (3.6)]. The points denote computer data.

with —,( V'p(r)) =nJ d'rg, (r)(K ~ V )'p (r) . (4. 3)

From (2. 20) we can interpret Dz(0, &o)P as f (ur), the spectral density of the velocity autocorrelation func-
tion. ' The single relaxation-time approximation becomes in this case

D'(K, (o) = [T (K)/pm]/[I+(o'T '(K)]

which satisfies (4. 1) but not (4. 2). The long wavelength limit of the relaxation time is given by (2. 19)

T (o)= pmD.

(4.4)

(4. 5)

Compared to (3. 1) the assumption (4.4) is a simpler approximation. This is because Jf is a higher-
order correlation function than Sz. In view of (2. 20) the assumption of (4.4) is equivalent to the statement
that f((o) is a simple Lorentzian. From the results of computer molecular-dynamics experiment this is
known to be a rather poor representation. '~M Although we will investigate the implications of (4. 4), mainly
because of its simplicity, it seems worthwhile to consider more sophisticated approximations.

On the basis of the computer f(&o) obtained by Rahman, we know that any reasonable approximation
should show a resonant behavior at a no+zero frequency. Thus we might consider

D (A, (0) =C(K)T (K)/{[(d —Ql (K)] + [(d/T (K)] }' (4. 8)

a form which has been derived in the study of „f(ru). 278' In order to satisfy (2. 13), (4. 1), and (4. 2) we
need to take

Q(K) = (d (K)/pm T (K)0 s
&g '(K) =3K'/pm+(3m)-'( v'Q(r))

(4.7)

(4. 8)
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In the K=0 limit, (4. 6) gives a qualitatively correct representation of the computer f(cd). Notice however
that in this approximation Ts(K) is still undetermined. A simple approximation which enables us to utilize
the sum rules to determine the relaxation time function is

—Cd T KII
D'(IC, Cd) = [b +b (K)Cd'] T (K) 8 S (4. 10)

where upon using (2. 19), (4. 1), and (4. 2) we find

b =D/T (0), (4. 11)

b (K) = (2/n) T '(K) [ 1/pm —D/T' (0) ]

and T '(K) = (II/2)[(3m) '(V'p(r)) + 2K'/pm] ' .

(4. 12)

(4. 13)

Thus with this approximation we have a complete specification of the damping function.
Computer calculations of Ss(K, cd) for liquid argon at 65. 5'K have been reported by Nijboer and Rahman. "

At any fixed I; the function has a maximum at v = 0 and decays smoothly in a rather uninteresting manner.
However, we can use the half-width at half-maximum of S~ to characterize the behavior of the self-cor-
relation function. We shall denote this frequency by cd», (K). The computer half-width is shown in Fig. 5,
where it is given in units of Da . If the correlation function obeys a simple' diffusion equation, then the
reduced width would be unity for all a. Notice that the half-width shows a dip around v-2, which is the
position of the first maximum in the structure factor S(K). This behavior suggests that spatial correlation
effects manifest even in a test-particle correlation function. Moreover, computer results indicate that
the narrowing phenomenon is associated with the corrections to the so-called Gaussian approximation. "

As in Sec. III we can use the computer data to derive relaxation times corresponding to different
approximations. Combining (2. 12), (2. 24), and (4.4) we have

S (K, Cd) =II '[K'/pmT (K) ]/{(Cd' —K'/pm)'+ [Cd/T (K) ]'],

from which we obtain the relation between Ts (K) and cd»2(K),

T -'(K) = [ (K'/pm)2+ (2K'/pm)Cd, I,'(K) —Cd «,'(K) ] /Cd «,'(K) .

(4. 14)

(4. 15)

Using the computer curve in Fig. , 5 we find the relaxation time labeled A in Fig. 6. The correlation func-
tion in the approximation (4. 6) is

S (K, Cd)=
1

("-
K'D'(K, Cd)

Cd T (K)
[Cd +Cd (IC) + T (K) ]K D (IC, Cd) + [K D (IC, Cd)]S

(4. 16)

which leads to a rather lengthy expression for T (K) in terms of cd», (K),

l.4—

FIG. 5. Variation of half-width of S~(w, v) with wave
number, computer results (curve g, and calculations
using (4.4) with constant v~ at 1.06 x 10 sec (dashed
curve) and using (4.10) (solid curve).

I

2
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2(&o„' —v') [(Pmcu' —cc')Pm&a„'cd' —( Pmcd' —Ic')'e' —(&o„' —e')Ic'] + d&u„'+ 21c'cd WA
(4. 1V)

g —(Pmcd Ic )2cde 2(g) 4(P m2(g 4 3Pmcd 2lc2+31c4)~4

+ sr '(P'm'cd ' —3Pmcd 'z'+41c') cd'+(o 'lc'(Pm(u ' - cc') (4. iS)

The relaxation time function derived using (4. 1V) and the computer half-widths are labeled C in Fig. 6.
The approximation (4. 10) does not permit an analytic calculation of &o,l, because the principal-value in-
tegral in Ss(cc, &o) has to be evaluated numerically. By trial and error we obtain the curve labeled B in
Fig. 6 by requirimg the calculated half-width to agree with Rahman's result.

lt is interesting to observe that approximations (4.4) and (4. 10) produced essentially the same relaxa-
tion time function, whereas (4. 6) gave a quite different result. If one looks at the velocity autocorrela-
tion function, (4. 4) and (4. 10) imply a structureless f(&o) whereas the f(&o) associated with (4. 6) has a well-
defined displaced peak. The fact that 7s(lc) based on (4. 6) is a much more smoothly behaved function sug-
gests that (4. 6) is a higher-order approximation. However, it should be noted that in this approximation
Ss(cc, cd) is quite sensitive to the magnitude of rs(lc) In. Fig. 5 we show the half-width obtained using
(4.4) with rs(cc) equal to a constant (0. 1063 x 10-"sec), and that obtained using (4. 10) with 7s(lc) given by
(4. 13), the fatter being a self-contained calculation based on (2. 19) and the sum rules (4. 1) and (4. 2).

V. LONGITUDINAL CURRENT CORRELATION

By virtue of the continuity equation the longitu-
dinal current correlation function JI (cc, ar) and the
density correlation function S(lc, co) are simply
related [compare (2. 21)]. The results of this
section are therefore also ayplicable to the anal-
ysis of neutron-scattering experiments, which
we will discuss in the fo11owing section. The hy-

drodynamic behavior of J~ and 8 are quite well
known. ' For small Ic and cd we know that JI(cc, cd)

is characterized by three hydrodynamic modes, a
nonyropagating thermal conduction mode and two
propagating sound modes. Martin has suggest-
ed that the simplest interpolation expression for
the damping function, D~'(z, &d), which is consis-
tent with the requirement of hydrodynamics, is"

(y —1) CI0'(0)/(yD T
&')

(

(~~ g+ 0)/mn
1+ &o'v '(0)

l
(5. 1)

—0.15

Al

0

0.10

where y =Cf/C» is the ratio of specific heats,
DT is the thermal diffusivity, and vf(0) is a
Mmrwell relaxation time. %e will assume that
shear and volume viscous effects relax at the
same rate and set 7I (0) = vf (0). With (5. 1) one
can satisfy (2. 18) and the Ic = 0 limit of sum rule
(2. 13).

As a yhenomenological extension we can modify
(5. 1) so that DI'(z, &o) satisfies (2. 13) for all cc.

In the spirit of the previous single relaxation-
time ayyroximations, we yut

0.05—

0
I

6

a '(a)
v& (g) a(lc) v& (cc)

DI(lc&co) =
1 2 I2( ) +1 p 2( ) y ( )

K(& ')
FIG. 6. Wave number dependence of the relaxation

time v~(~). Solid curve denotes (4.13) while dashed
line is a constant at 0.106. Curves A, B, and C cor-
respond to (4.15), (4.10), and (4.17), respectively. All
the labeled curves will give the computer half-width
shown in Fig. 5.

where now because two processes are involved,
the distribution of relative strengths is not
uniquely determined. Notice that a straight-
forward generalization of (5.1) would result in

a(lc) =((of'(cc))/Ic'-y C '(cc),
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r)(K) =[sf '(0)+KV0] ',
a'(K) = (y —1)C '(K),

v'(K) = [1+yD K/V ] (yD K )

(5.3)

Alternatively we could require the relative
strengths ate = 0 be preserved for all z,

a(K)/a'(K) =a(0)/a'(0) . (5.4)

Condition (5.4) gives

(y-l)~, (0) C, '(0)
I

Df+(y-1)C f'(0)~f(0)

x [((u i'(K))/K ' —Cf0'(K) ],
D)

D, +(y-1)C& '(O)~i(0)

x[((o '(K))/K' —Ci0'(K) ], (5. 5)

where Di=(~3 q+g)/mn. Despite the different
appearances of a(K) and a '(K) in the two decompo-
sitions, the resulting damping functions differ
very little because both must satisfy (2. 13) or

between theory and computer is generally satis-
factory. Notice that the computer values do not
vanish at ar =0 for z around 2. This is a numer-
ical inaccuracy since J~ must begin at the origin
as can be seen from (5.7).

The peak position of Jf(K, &u) as a function of K

is of interest because, roughly speaking, it rep-
resents a kind of dispersion relation of the liq-
uid. "1"We shall denote this quantity as (~f)m~.
In Fig. 8the computer results" are given as solid
circles while the crosses and other curves denote
various theoretical estimates. Itis well known that
at small ~ the dispersion relation of a liquid is lin-
ear in ~ and its slope is simply the adiabatic sound

speed, yCf0(0). This is the hydrodynamic be-
havior of the longitudinal current correlation
which can be derived from the linearized Navier-
Stokes equations. ' In the present approach the
result also follows directly from (5. 1). The
thermal conduction term is important at small v

because if ignored one would obtain the isother-
mal sound speed instead. '4 As a increases the
computer results show a maximum in (ei)m~
followed by a minimum at the position where the
structure factor has its first maximum. This
type of behavior has been observed in several
neutron scattering studies. 'y' The computer
results" also reveal the presence of a second
maximum which occurs at about the position of
the first minimum in S(K), and this too has been
observed in the neutron data on liquid lead. '

a(K) +a '(K) =( u&&'(K) )/K' —C10'(K) . (5.6)

xx 1.97 xx 2.50
The longitudinal current correlation function

is given by

J (K, (o) = (K'/Pmv) K'D'(K, (o ') (o' I X»» X

+ [ (d K D (K, (d ) ] (5. 7)

2 D'(K, (u'),
K 2 2 d(d

flmS(~)
+

tr td "—td' )

.57 1.17
X

~X

.90

1.83 xx 2.25

X» g

With Df'(», (u) given by (5.2) the principal-value
integration is again easily carried out. Equation
(5. 7) is directly applicable to the analysis of
computer data. The spectral densities of liquid
argon at 76'K and density of 1.407 g/cm' as ob-
tained by Bahman" are shown in Fig. 7. The
solid curves denote Rahman's results and the
crosses are values obtained using (5.2), (5. 5),
and (5.7). The parameters in this calculation
are D7 =1.68x10-' cm'/sec, y=2. 01, and
7'f(0) =1.35xl0 "sec. The structure factor,
S(K) =[PmCf0'(K)] ', and the sum rule (&of2(K))/K'

are taken from Rahman's work. The agreement

0
L

I 0 I 0
u(IO'~see ')

FIG. 7. Spectral densities of longitudinal current
correlations in liquid argon (in units of 10 sec), with

JE (K, t = 0) = K /mp . Solid curves are computer results
while the crosses denote calculations using (5.5) and

v'~ (f(:) from (5.3) . All curves have areas normalized
to 7r/2.
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The theoretical calculations shown in Fig. 7
give rise to a dispersion relation depicted by the
solid curve in Fig. 8. There is at least a semi-
quantitative agreement with the computer data.
The dashed curve corresponds to the same calcu-
lations except that a constant relaxation time
(1.35x10 "sec) was used for rf(tc). The dif-
ference is an indication of the sensitivity of
((of) to r I(z).

There are several approximate ways of estimat-
ing (~I )max analytically. A well-known result,
based on sum rules and the assumption that S(~, &o)

and JI(z, &o) have single sharp peaks located at
~ =(~l)max~ is

This result, which has been discussed by Scho-
field" and derived by Nossal and Zwanzig, "is
represented by the curve A in Fig. 8. Notice
that if S(v, &o) were a sharply peaked function of
negligible width, (5.8) and (5. 12) would lead to
the same dispersion relation. The difference
between curves A and 8 therefore reflects the
fact that JI(v, v) actually has considerable width,
and this is what we have observed in Fig. 7.

In the opposite limit of large damping we can
also obtain an analytic expression for (u&I)ma .
To simplify the algebra we consider only the vis-
cous effects in (5.2) and write

(arf) = ~[PmS ( «)] (5.8)

which is represented by the curve 8 in Fig. 8.
In terms of (5. 7) the assumption is equivalent to
saying that

Inserting this into (5. 7) and assuming

(oDI'(z, (u)» CI '(~),
C '(a)»(oD'(~, (o) .

10

The sum rules used to derive (5.8) are

d(o S(~, (o) =S(g),

(5.9)
we obtain a cubic equation for (&of)max'. The phy-
sical solution gives

((0I) =(QPI (K)) —
CI0 (K)K — rf (K) (5. 15)

J d(u J'I(a, (o) = ~'jPm .

One may also use the next-order sum rule,
namely (2. 13), and identify

'( )&]"'.l max

~ 8—
Cl
lO

O

I
3

(5. 11) which may be compared with (3.7). If further we
assume that rf (tc) is a constant at l.35x 10 " sec
we obtain the crosses shown in Fig. 8.

Finally we can infer from the computer data the
relaxation time function appropriate to (5. 2). The
result obtained by interpolation is the curve la-
beled R' in Fig. 9, where the transverse relax-
ation time is taken from Fig. 2. If approxima-
tions (3.1) and (5.2) are valid, and if shear and
bulk viscous effects at finite z'~ can be described
by the same relaxation process, then R and R'
will be the same. The general behavior of the
two functions are indeed similar, although R' is
smaller by about 20/g and has a little more struc-
ture in the vicinity of the diffraction peak. The
solid curve in Fig. 9 represents rf(z) as assumed
in (5.3) with rf(0) at 1.35 x 10 "sec.

0
0

pc(A ')

FIG. 8. Dispersion in excitation frequency of longi-
tudinal current correlations in liquid argon. The points
denote computer data while all others aie theoretical
results. Calculations using (5.5) and v~ (tc) from (5.3)
are shown as the solid curve while the same calculations
using a constant v& (x) at 1.35 && 10 sec appear as the
dashed curve. The crosses are obtained from (5.15)
with constant v'~ (K), and curves A and B are obtained
using (5.12) and (5.8), respectively.

VI. INELASTIC NEUTRON SCATTERING

The preceding analyses have been primarily con-
cerned with the behavior of various spectral den-
sities in the range of v of order A ' and v of order
10"-10"sec '. In this region the density corre-
lation functions S(e, &o) and Ss(e, ar) are directly
measurable by inelastic neutron scattering; con-
sequently our argon calculations can be used to
discuss recent neutron experiments. The quan-
tity which governs the scattering intensity is the
double differential cross section, "
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0.20

& '»'D'(» (u)s

I2 2 + K D K~(0

CP

Al

O

O.I0

x(A ')

(6. 3)

with Ds(», &o) given by (4. 10). The neutron-scat-
tering intensity is thus completely specified in
terms of sum rules (equilibrium properties) and
transport coefficients.

In order to compare theory with experiment we
first average (6. 1) over an incident neutron spec-
trum assumed to be a normal distribution

1
(d. —(0.

( )t, ,ht)tX= (2 a.t't) "'ett)t —
)1 z $2 0'.

i

(6.4)

FIG. 9. Wave number dependence of the relaxation
time v~ (K). Solid curve is from (5.3) with v~ (0) at
1.35 x 10 sec while curve R' gives the best fit to
computer (col) when used with (5.2) and (5.5). Curve

H, is taken from Fig. 2.

with a standard deviation oi chosen to correspond
to the actual experimental width. The scattering
intensity then becomes

Z(tt;ht ) fdtX. =)i(ht. , tX ) .d o'

z dAdco i' i

d'g f -Ph(o /2 -PR»2/Bm
d-0 dc'

Z

x[a 'S(», ( )+a. 'S (», (h))], (6. 1)
coh ' inc s

where kf and ky are the incident and scattered
neutron wave numbers, I» = 8'(k f - ky) and Sw
= 8'(~f —

&h)y) are neutron momentum and energy
. c are the coherent and

incoherent scattering lengths. The two terms
in (6. 1) represent, respectively, the coherent
and incoherent scattering contributions, both of
which are important in the case of natural argon
as acoh =3.76x10 ' cm' and ai„c'=0.485 acoh.
The density correlation function follows from
(2.21) and (5. 7)

S (», (o) = (vPm) '»4Df'(», (d)

Df(», (o')
2 K 22 CO

X td —()g()ttdKIP)
+[a&'»'D(»(u)]' (6.2)

S (», (o)

where Df'(K, &o) is given by (5.2) with 7 f (») given
by (5.3) and a(») and a '(») given by (5. 5). For
the self-correlation function we have

In addition there will be other corrections such
as finite instrumental resolution effects and mul-
tiple scattering. We will assume these are small
and can be neglected.

The spectra of neutrons inelastically scattered
from liquid argon have been measured by Chen
et al. ' at 85'K and by Skold and Larsson" at
94.4'K. Other measurements" also have been
made, but they will not be considered here. The
experimental data of Chen et al. were reported
in the form of time-of-flight distributions, the
conversion being

4m 5'x. k.
cPo' cPo'

d()Ch tx h h dQdht )n

where m„ is the neutron mass and X = 2v/0 is the
wavelength. The parameters used in the theoret-
ical calculations are listed in Table II. In addi-
tion, we have used the measured value" of S(»)
at 84'K without any temperature correction, and
in computing ((df'(»))/»' we used the pair distri-
bution functions g,(r) computed by Verlet'~ (mn
=1.42 g/cm' and 2=86 K for the Chen experi-
ment and mn=1. 374 g/cm' and &=94.4'K for the
Skold-Larsson experiment).

The observed and computed neutron spectra at
fixed scattering angles are shown in Figs. 10 and
11. Also shown in Fig. 10 are the calculations of
Desai and Nelkin" using computer data (mean-
square displacement) to obtain Sz(», &u) and a
phenomenological prescription (Delayed-Convolu-
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TABLE II. Data and constants used in the analysis
of neutron-scattering experiments on liquid argon.

mn

Cp/C„

D

Dr
~, (0)

'l (0)

Oz

{'K)
(g/cm )

(10 g/cm sec)
(10 cm /sec)
(10 cm /sec)
(10 ~ sec)
(10-" sec)
(10 sec )
(10 sec )

Chen et al.

85
1.42
2.11
2.16
1.88
8.06
0.106
0.128
4.46
0.314

Skold-Larsson

94.4
1.37
2.16
2.16
2.43
8.14
0.124
0.12
7.38
0.684

tion Approximation) to obtain S(z, &a). Skold and
Larsson have reported their data as constant-~
and constant-m spectra. The variation of inten-
sity with wavelength is shown in Fig. 12, where

&v = (&of- &o; )/2m. The solid theoretical curves
correspond to (6. 6) with the cross section evalu-
ated from (6. 1) through (6.2). The dashed curves
correspond to the same calculations except that
7I (x) has been treated as a constant (1.2 x10 "
sec). It can be observed that variations in the
relaxation time have considerable influence on the
neutron spectra. Since one is comparing absolute
intensities in Fig. 12, the agreement between
a Priori calculations and experiment is quite good.
The variation of scattering intensity with frequency
is not particularly interesting; however, if one
plots the full width at half-maximum as a function of
wave number, the behavior is that shown in Fig. 13.
The narrowing phenomenon at the diffraction maxi-
mum was first predicted by deGennes" using sum
rule arguments; more recently it has been dis-
cussed by Schofield. "

The dispersion relations extracted from the
above experiments'~" are shown in Fig. 14 along
with the theoretical results calculated at 94.4'K.
The latter values are peak positions in &o'S(s, &o)

and are therefore the same as (vf) . We have

!
I

I

, I I

I

I

I

I
I

I

I

l

I

'g 2
Cy

8=60

I

4
I

6

FIG. 10. Neutron-scattering intensity of liquid argon
at 85'K (in units of 10 cm/sr atom) as a function of
the wavelength of scattered neutrons and at 6 = 75',
present calculations (solid), experimental data of Chen
et al. (dashed), and Desai-Nelkin calculations (triangles) .

Theoretical spectra have been averaged over the in-
cident neutron spectrum.

I

X(A)

FIG. 11. Neutron-scattering intensity of liquid argon
at 94.4'K (arbitrary units) as a function of wavelength
and at 8= 60', present calculations (solid curve) and

experimental points of Skold and Larsson (taken from
Pig. 8 of Ref. 35). Theoretical results have been
averaged over the incident neutron spectrum.
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FIG. 14. Comparison of theoretical dispersion
relation for liquid argon at 94.4'K with neutron data,
Skid-Larsson measurements at 94.4 K (crosses) and

Chen et al. measurements at 85 K (bars).

I 0 I

2 3 2 5

FIG. 12. Neutron-scattering intensity J(v, cd) of
liquid argon at 94.4'K [in units of 2.2 x 10 om jlsr
sec atom)], experimental points of Skold arid Larsson
and calculations with z-dependent relaxation time (solid

curves) and with a constant relaxation time (dashed

curves) .

contribution apparently has no effect is that
&o'Ss(», &d) gives a relatively very broad peak.
By analyzing the peak position in (o'Ss(», o&) we
found that it increases monotonically with g and
is in fact quite similar to the ideal-gas result of
(2kf, T/m)' '» It is pe. rhaps interesting to note
that at I(.

- 2 the theoretical frequency in Fig. 14
drops to a value about the same as that found
from ~'S~, or from the above ideal-gas expres-
sion. The same behavior is also evident in the
experimental dispersion curve of liquid lead ob-
tained by Randolph. "

VII. DISCUSSIONS

4

3
Cl

0 I

2.0
~ (L.')

2.5

FIG. 13. Full width at half-maximum of J'(K, M ).
Notations are same as Fig. 12, and the straight ine
denotes the ideal-gas result.

also examined the peak positions in

~'[a' S(», (o)+a. S (», ~)]coh ' inc s

and found that they agree with (&of)m~ to within
a few percent. The reason that the incoherent

In this work we have attempted to generalize
the hydrodynamic expressions for correlation
functions by using a frequency and wavelength-de-
pendent damping function and by requiring that
sum rules containing the two-particle equilibrium
distribution function be satisfied. In the limit of
long wavelengths and low frequencies the damping
function, D'(», &0), is simply related to a trans-
port coefficient or'a linear combination of such
coefficients. Its behavior at finite K and v is
generally unknown, although its frequency mo-
ments can be specified in terms of the sum rules
for the corresponding correlation function. By
assuming simple frequency dependence in D'
without regard to sum rules, one finds that in the

0
transition region with z of order A ' and e of
order 10" sec ' the damping effects are too large.
However, if the damping function is also required
to satisfy the sum rule which involves the equi-
librium pair distribution function, the calcula-
tions then improve significantly. For example,
in the case of density or longitudinal current
correlation, the inclusion of I(."-dependent shear
and bulk mokuli in Df'(», (o) and the use of [S(»)] '
as a generalized compressibility factor enable us
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to reproduce all the qualitative features of the
correlation functions as observed by computer
experiments and neutron scattering. One may
conclude that the elastic properties of a liquid
have an important influence on its response in
the transition region. Also much of the spatial
correlation effects can be adequately treated
through only the pair distribution function.

The results of computer molecular-dynamics
experiments appear to be sufficiently precise to
provide detailed information about the damping
function. This may be seen from the fact that
while a simple Lorentzian frequency dependence
in D'(a', &o) may be a useful approximation, it does
not give a completely satisfactory representation
of the computer results even when computer data
are firstused to determine the optimum relaxation
time function. It would be important to know if
the actual frequency dependence of D'(z, &o) can
be reasonably represented by a simple ana1ytic
expression. To study this problem one can re-
verse the calculation by expressing D'(e, &u) in
terms of the correlation function and using com-
puter data to generate the damping function.
This approach has been discussed for the velocity
autocorrelation function of liquid argon, where

D~ has the interpretation of a frequency-depen-
dent friction constant, and it was found that
D~ has a more smooth frequency variation than
the correlation function itself." Similar analysis
using computer values of S(z, &o), Zf(x, ar), and

Ss(x, &o) would be of interest, and the results
should be helpful in studying approximate methods
for calculating D'(x, v). We note that one can
also interpret D' as a memory function. This
point of view has been applied mainly to the cal-
culation of autocorr elation functions. "~"

In the case of van Hove self-correlation func-
tion, we have also considered a Gaussian fre-
quency dependence for the damping function which
may be regarded as the wavelength-dependent
velocity autocorrelation function. The Gaussian
assumption has the advantage in that sum rules
corresponding to the fourth frequency moment of
Sg(K, (d) and higher can now be introduced. 4' Since
the fourth moment can be easily computed, we
have been able to construct a phenomenological
Ds(», &o) in a self-consistent way. This procedure
gives the half-width of S~ in better agreement
than that derived from the simple Lorentzian
assumption with a constant relaxation time. The
comparison is inconclusive, however, since any
relaxation time function can be used with a
Lorentzian D'(x, v). Indeed, we observe from the
analysis of transverse current correlation that
quite good results are obtained with an interpola-
tion prescription for vt(~) such as that proposed by
Akcasu and Daniels. " Generally speaking, we

can conclude that frequency and wavelength ef-
fects in D'(a, or) are not simply separable, so
that any discussion of the relaxation time can be
made only in the context of the assumed frequen-
cy dependence. Assumptions which lead to re-
laxation times having simple behavior provide
useful calculational procedures, but the question
of a e-dependent relaxation time as a basic con-
cept remains to be clarified.

Since the sum rules play an important role in
the present calculations, one may question the
utility of higher-order sum rules, such as
(ef ~(a)), if they are available. The molecular ex-
pressions at finite x have been derived but not
evaluated because of computational difficulties.
The same information can be obtained from the
fourth-order time derivatives at t =0 of the time
correlation functions generated by computer ex-
periments. When these results are known, one
may be able to completely specify the wavelength
dependence of D'(tc, &o).

In the analysis of neutron-scattering experi-
ments on liquids one of the difficu1ties has been
a proper calculation of the coherent effects. An

early procedure was to assume that S(v, &o) can
be computed using the structure factor S(z) and
the self-correlation Ss(tc, &o). The Convolution
approximation was first suggested by Vineyard, "
and a number of modifications subsequently
have been proposed. ' ' " The feature common
to all the prescriptions is that the dynamics is
treated in terms of a single-particle model, and
because of this they all fail to give the proper
hydrodynamic behavior at long wavelengths and
low frequencies. The present approach does not
suffer from this defect." Regardless of the
assumptions concerning the damping function or
the relaxation time, all the correlation function
expressions have the correct hydrodynamic
limit. By making simple assumptions about
DI'(x, &o) and vf(x) we have been able to obtain,
without any adjustable parameter, the absolute
neutron-scattering intensities for argon which
are in at least semiquantitative agreement with
experiment. Since neutron data on liquid lead'~44

and sodium~' are available, it would be interest-
ing to see if similar analysis is useful for liquid
metals as well. 4'
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A harmonic analysis of linear chains in terms of the classical phase integral was conducted
in order to calculate the replacement factor, i.e. , the partition function for the internal de-

.grees of freedom that an isolated segment does not have because it is not part of an infinite
chain. The replacement free energy is given by

Il (rep) = kTlnST&n/-k(u ),
n D'

where n is the number of atoms in the segment and coD is the Debye frequency. It is con-
cluded that the replacement factor is correctly calculated in terms of center-of-mass motions
of segments only by considering just those contributions for which the internal cluster co-
ordinates remain fixed.

INTRODUCTION

In the theory of nucleation in phase transitions
it is customary to represent the internal free en-
ergy of formation of the embryos and critical
nuclei in terms of macroscopic thermodynamic
properties, such as volume free energy, and sur-
face tension of the bulk stable phase. ' ' It is im-
portant to know the limitations of this description
and the order of magnitude of the correction factors
involved. Among other things, one wants to calcu-
late the free energy'that a small cluster or nucleus
(containing of the order of 100 molecules) does
not have because it is not part of the bulk phase.
The partition function for the six degrees of free-
dom that are missing in the isolated cluster is
called the replacement factor. ' ' The replace-
ment factor has been alternatively described as
the partition function for the six degrees of free-
dom in bulk that are replaced by free translation
and rotation of the cluster. 'y'y' Early attempts at
handling this problem have been reviewed and dis-
cussed by Feder et al. ' Recently, on the basis of

qualitative considerations, Lothe and Pound4 con-
cluded that the replacement factor could best be
represented by the partition function of the six
degrees of freedom for translational and torsional
motion of clusters in bulk relative to each other,
with the internal coordinates of the clusters re-
maining fixed. The purpose of this paper is to
check out this prescription against exact calcula-
tions for linear cd,ins. It will turn out that the
above prescription for the replacement factor is
exact for the linear chain and that alternative pro-
cedures, which also recently have been proposed, '
are wrong and involve inconsistencies. '

The infinite chain (bulk) will be mathematically
divided into equal segments (clusters in bulk), and
orthogonal transformations will be introduced that
separate the partition function for the system into
center-of-mass parts (replacement terms) and in-
ternal parts (free cluster parts). The results are
finally tested by combining the replacement term
and the internal term to give the known free energy
per segment in the infinite chain. The treatment
is a generalization of preliminary work in a Debye


