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In the perturbation theory studied by Barker and Henderson, an expansion is made of the
free energy in terms of a strength parameter A that multiplies the attractive part of the poten-
tial. This expansion is shown here to converge very rapidly for the Lennard-Jones liquid.
Taking as zeroth~order approximation the system with only repulsive forces, Barker and
Henderson have shown that it can be approximated by hard spheres with a temperature-
dependent diameter. We show by a direct computation that this approximation is excellent.

In the spirit of the A expansion, we can write down a semiempirical equation of state which is
applied with success to the Lennard-Jones fluid, argon, and xenon. It is seen that the large
scale density variation characteristic of the critical point lowers the critical temperature

by 6%.

I. INTRODUCTION

Two recent papers by Barker and Henderson!
again call attention to the perturbation theory pro-
posed by Zwanzig? for the study of classical fluids:
The attractive part of the intermolecular potential
is multiplied by a strength parameter A, and the
free energy is expanded as a power series in A,
around A =0. This A expansion, further studied
by various authors, 3 is to be contrasted with the
y expansion of Hemmer* and of Baer, Lebowitz,
and Stell,® which is an expansion, in the spirit of
the van der Waals theory, in terms of the in-

verse range y of the attractive part of the potential.

Brout and Coopersmith’s approach® is a mixture
of A and y expansion.

Zwanzig’s theory was devised for a potential pos-
sessing a real hard core. In that case the A ex-
pansion is simply the inverse temperature expan-
sion. Barker and Henderson make a very inge-
nious generalization of Zwanzig’s theory to the
case of a two-body potential of the Lennard-Jones
type. Furthermore a specific approximation for
the second-order term of the perturbation enables
Barker and Henderson to derive an equation of
state which agrees well with the results of com-
puter simulations. In view of this success we be-
lieve it is useful to examine critically the various
aspects of their theory.

Let us first remind the reader of the perturba-
tion theory referred to above. Let the interaction
between the atoms be the Lennard-Jones potential,

&(r) =4€[(o/7)2 - (a/7)°] ,

which we shall divide into two parts: a short-
range part «(#) for <o, and a longer-range at-
tractive part w(r) for » >0. It is easy to see that
the Helmholtz free energy is given by
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F/NRT =F o/NET + fo 1d7\(W>A/NkT . (1)

Here F, is the free energy of a system of particles
interacting through «(») only, which we call the
reference system. (W), is the average of the at-
tractive part of the interaction

2 w(|Ff.-F.]),
. i

1 <]
when the particles interact through a potential u(7)
+w(7). This potential gives rise to a radial dis-
tribution function g(»,1). We have explicitly

(W)K/NkT =30 [df glr,Nw(r) , (2)

where p is the particle density and 8=1/k~T.

For liquid densities, the gross features of the
radial distribution function are determined by the
presence of the repulsive core. It is therefore
temptingto replace, in first approximation, g(r, )
by g(r, 0) =g,(#). This is the physical basis of the
A expansion,

In Sec. II, we present a direct computation of
(W>>\/NkT for a state not far from the triple
point. There it is shown that the rate of conver-
gence of the A expansion is very good and that it
is an excellent approximation to retain only the
second-order term, in addition to {W),/NkT, as
Barker and Henderson have done. That term in-
volves the fluctuations of the attractive part of
the potential, evaluated for the reference system.

The whole approach presupposes that we can
give an adequate treatment of the reference sys-
tem. Barker and Henderson, using a perturba-
tion theory where the inverse steepness of the re-
pulsive potential is the expansion parameter,
succeed in replacing the interaction «(#) by a
hard-core potential of diameter d, where d is
given by
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d= foodz(l—e_ B”(Z)) . (3)

Then using results for the hard-sphere gas ob-
tained from machine computation, it is possible
to evaluate the thermodynamics of the reference
system.

It is shown in Sec. III by a direct comparison
with an “exact” (Monte Carlo) treatment of the
reference system that, at this stage, the Barker-
Henderson approximation is outstandingly good.

The first-order term $8p[/d ¥ g,(r)w(r), must
then be evaluated. g,(#) is replaced by the radial
distribution function for the hard-sphere gas of
diameter d in the Percus-Yevick approximation.
This is shown to lead to an error of the order of
2%.

We then proceed (Sec. IV) to discuss the ap-
proximation introduced by Barker and Henderson
for the evaluation of the complicated second-
order term. It is shown that their approximation
for it is of the right order of magnitude, but is
quantitatively incorrect.”’

In Sec. V, we use the basic ideas of the A ex-
pansion together with the Barker-Henderson
treatment of the repulsive core to derive semi-
empirical equations of state that fit the data ob-
tained from machine computation results in the
liquid and dense gas region. These equations
of state contain only a few parameters and fit
very well the machine data, which are reviewed
in the Appendix.

We give in Sec. VI examples of the application
of these equations to the calculation of the funda-
mental thermodynamic functions and of their
derivatives.

In Sec. VII, equations of state are derived for
argon and xenon. From these equations it is con-
cluded that, for moderate temperatures, the core
of argon is narrower and steeper than indicated
by the Lennard-Jones potential; that the diameter
of the xenon core is 4% larger than that deduced
from the study of the second virial coefficient;
and that the suppression of the large scale den-
sity variations characteristic of the critical re-
gion would have the effect of raising the critical
temperature by 6%.

II. VALIDITY OF THE A EXPANSION

We first proceed to investigate the validity of
the A expansion by considering the specific ex-
ample of a liquid in a state not far from the
triple point: p=0.85, T7=0.72. The direct
Monte Carlo computation of (W), /NkT was made
for five values of »: A =0, 0.25, 0.5, 0.75, and
1. The results are shown in Fig. 1, where

(W), (W) ()/NkT

is plotted as a function of A. We see that this
plot is not far from linear. This shows that

keeping terms up to the second order in A will
yield good results. Specifically we have (W),/
NET =-1.79. For the curve of Fig. 1, we can
calculate the contribution to F/NET of the sum
of the terms of second and higher order. It
amounts to — 0.47. The second-order term can
be calculated knowing the slope of the curve of
Fig. 1. A value of — 0.45 is obtained. This is
to say that the contribution of all the terms of
an order higher than the second amounts to 0.02
only. The second-order term is equal, by the
way, to

(W)o? ={W?,)/NeT

which can be computed in the reference system,
and this offers a more direct but less precise
way of evaluating it. The value — 0.45+0.02 is
thus obtained. As a conclusion we see that the
A expansion is converging very rapidly in the
dense liquid region where the convergence ratio
is of the order of . It is therefore a legitimate
expansion to use in the case of liquids. This re-
sult is significant from a theoretical standpoint.
Practically the problem is still not trivial, be-
cause, if quantitative results are to be derived,
it is necessary to evaluate with care both the
first- and second-order terms.

(<Wha= (WD) /NKT

-0.75(

-0.50

-0.25

A
1.0

FIG. 1. Results of the direct Monte Carlo compu-
tation of (W),/NkT.

III. TREATMENT OF THE REFERENCE SYSTEM

For the pressure of the equivalent hard-sphere
gas we use an expression that uses the known



182

virial coefficients® and fits the computer results®
at high density:

[+e]
FZ'T‘ =1+ % anp’n , (a)
n=1

with p’=2mpd*/3; a,=1, a,=0.625, a,=0.28695,
a,=0.1103, a,=0.0386, a;=0.0138, a,=0.004 334,
a,3=0.3093x10-%, and all the other a,, are taken
to be zero.

In Table I, we compare the results obtained
using the Barker-Henderson approximation (3)
for d with those of the reference system at the
temperature 7'=1.35 (reduced units, i.e., o=¢/
k=1, are used throughout). For p<0.3, the
Percus-Yevick (PY) equation was used, and at
higher densities (up to p =0.8) the results were
obtained by a standard Monte Carlo calculation
(864 particles, 350x 864 equilibrium configura-
tions). The agreement for the pressure and free
energies is seen to be excellent. We give also
a comparison for a point at a lower temperature,
not far from the triple point. At p=0.85, T
=0.72, (p/pkT),="7.78+0.05. For the same state
we obtain, using (2) and (4), the value 7.67. The
approximation is as good as could be wished.

As we have said in the introduction, Barker and
Henderson evaluate the first-order term by re-
placing the radial distribution function for the
reference system g () by that corresponding to
hard spheres of diameter d in the PY approxi-
mation. An indirect by instructive test of the
validity of this approximation is obtained by fit-
ting the structure factor, i.e., the Fourier
transform of the correlation function g,(») -1,
with the help of the hard-sphere model studied
by Verlet. ® This model is a variant of the one
introduced by Ashkroft and Lekner!!; It consists

TABLE I

PERTURBATION THEORY AND EQUATION OF STATE FOR FLUIDS

Monte Carlo and approximate results on the T'=1.35 isotherm.
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in equating the height of the first maximum of the
structure factor of a fluid at the density p with
that of a hard-sphere gas of packing fraction 7.
The diameter a of the hard-sphere gas is ob-
tained if it is required that its density 67/7a®
coincide with the density p of the fluid. For p
=0.8 and T=1.35, d=0.967. a is equal to 0.961
if the Wertheim-Thiele solution'? is used, but a
value of 0.966 is obtained for this quantity if the
exact solution for the hard-sphere gas is used in-
stead. ® In the same way for p=0.85 and 7=0.72,
d=0.979. a=0.968 whenthe PY equation is used
and a=0.978 when the hard-sphere problem is
solved exactly.

The first-order contribution to F/NkT is

(W)o/NET =3pp [dT go(r)w(r) .

In its evaluation by Barker and Henderson g,(7)
is replaced by the Percus-Yevick solution for
the hard-sphere system of diameter d. This re-
placement leads to an error which is small, but
not negligible. For p=0.8 and T =1.35, the first-
order term is equal to — 3.83 when calculated ex-
actly and to — 3.89 when the hard-sphere approxi-
mation is used. For p=0.85 and T'=0.72, (W),/
NET =-"1.79 and its approximate value is - 7.95.
This discrepancy is due partly to the use of the
hard-sphere model, partly to its treatment
through the PY approximation: If the real refer-
ence system is calculated in the PY approximation
and the results compared with the exact ones,
the effect of using this approximation is evalu-
ated. We thus find — 3.85 and — 7.84 for (W),/
NET in the two cases studied above.

We have just shown that the error made by
Barker and Henderson on the first-order term
is rather small, It will be seen below, however,

“Exact” compressibility factor, column

2, and free energy, column 3, both for the reference system. Column 4: excess free energy correct up to the first

order in A. Column 5: “exact” values of the excess free energy obtained by using the data of Table II.

values of the sum of the higher-order correction terms.

Column 6:

Compressibility factor, column 7, and excess free energy,

column 8, for the reference system obtained using the Barker and Henderson expression (3) for the temperature-

dependent diameter.

Column 9: excess free energy obtained from the equation of state (7). Column 10: second-

order correction term in the “macroscopic compressibility”’ approximation.

Exact calculation

Approximate calculation

m.c.
2o Fo B 5 ETH % To T correction
P pkT NET NET NrT NeT pkT NET NRT term
0.1 1.21 0.204 —-0.226 —-0.295 -—0.069 1.21 0.201 —-0.299 —-0.052
0.2 1.48 0.430 —-0.444 -0.562 —-0.118 1.49 0.429 -0.573 -0.075
0.3 1.82 0.690 —0.673 —0.796 -0.123 1.84 0.689 —0.816 —0.082
0.4 2.31 0.991 -0.874 —0.998 -0.124 2.29 0.989 —1.024 - 0.080
0.5 2.89 1.343 —1.040 -1.159 -0.119 2.88 1.336 -1.186 -0.072
0.6 3.68 1.755 -1.124 —1.258 —-0.134 3.65 1.745 -1.289 -0.063
0.7 4.67 2.237 -1.145 —1.289 -0.144 4.70 2.229 -1.310 —-0.051
0.8 6.07 2.814 -1.019 -1.190 -0.171 6.12 2.811 -1.210 —0.040
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that the second-order terms are not much larger
than this error.

IV. ON BARKER'’S EVALUATION OF THE
SECOND-ORDER TERM

Barker and Henderson have proposed two ap-
proximations for the second-order term, which
they show to give very similar results. We pre-
sent here the results yielded by one of these, the
so-called “macroscopic compressibility” approxi-
mation. The second-order term is then simply
replaced by

p [dF w(r)g,(r)/(3p/2p), .

In Table I we give results concerning the iso-
therm 7T'=1.35, which is very near the critical
isotherm of the Lennard-Jones potential., The
exact free energy is obtained (column 5) by in-
tegrating p/pkT along the isotherm: The excess
part of the free energy is given by

F,/NET= [P (p/pkT~)dp/p . (5)

The equation of state was obtained from the PY

II equation when p <0.30 and through Monte
Carlo calculations, the results of which are given
in Tables II and III, from p=0.35 to p=0.80.

The reference system is treated by the PY equa-
tion for p <0.3 and by the Monte Carlo method at
higher densities. We thus obtain F /NET (col-
umn 3),

We then calculate the first-order contribution
(W),/NET to the free energy. In column 4 we
give F,/NkT, where F, is the free energy cal-
culated to the first order in the A expansion.

(F; - F1)/NET is the sum of higher-order terms.
It is given in column 6. It is seen that the ratio
of that term to the first-order term is decreas-
ing when the density increases: TheX expansion
is most satisfactory at high density. The Barker

TABLE II. p/pkT as a function of the density for the
isotherm T'=1.35. Column 2: Monte Carlo results.
Column 3: results obtained using the PY II equation
(Ref. 14). Column 4: equation of state (7). Column
5: equation of state (11).

and Henderson approximation for the second-
order term is given in column. 10, We see that
the correction term thus calculated, although of
the correct sign and of the right order of magni-
tude, is quantitatively incorrect, especially so at
high density. For instance, for p=0.8, the cor-
rection term found using the “ macroscopic com-
pressibility” formula is — 0,040, when the correct
value for (F - F,)/NkT is ~ 0.171. We may re-
call, however, that an error of — 0,06 is made if
the first-order term is evaluated using the hard-
sphere approximation. If we use the Barker and
Henderson method both for the second- and the
first-order term we find an apparent correction
term of - 0.10,

For T'=0.72 and p=0.85 we know that the sec-
ond-order term is equal to — 0.45. Using the
Barker and Henderson approximation, a value of
—0.14 is found. This is, in magnitude, three
times too small. On the other hand, the error
on the first-order term, evaluated in the hard-
sphere approximation, is — 0.16. The apparent
second-order term is then — 0.30 nearer to the
exact value - 0.45.

V. EQUATIONS OF STATE FOR THE
LENNARD-JONES FLUID

We shall now try to use the A expansion as a
guide in order to write down semiempirical equa-
tions of state, first for the Lennard-Jones fluid
and then for real ones. A possible way to do
this is to derive an equation of state from the fol-
lowing approximation for the free energy

F/NET = F/NET + B, (p) + B2,(p) , (6)

where the first term is the equivalent hard-
sphere (hs) free energy defined above. The de-
pendence on temperature of the first-order term

TABLE III. The excess internal energy per particle
Ui/ N as a function of the density for the isotherm
T=1.35. Column 2: Monte Carlo results. Column 3:
results obtained using the PY II equation. Column 4:
internal energies according to the equations of state -
(7). Column 5: the same with equation of state (11).

o MC PY II Eq. (7) Eq. (11) P MC PY I Eq. (7)  Eq. (11)
0.3 0.35 0.36 0.32 0.37 0.3 —2.09 -2.18 -1.99 —2.05
0.35 0.30 0.31 0.27 0.31 0.35 —2.40 -2.47 -2.31 -2.38
0.4 0.27 0.27 0.25 0.28 0.4 —2.75 -2.77 -2.65 —-2.72
0.5 0.30 0.30 0.32 0.32 0.5 -3.37 -3.36 -3.31 -3.38
0.55 0.41 0.45 0.42 0.41 0.55 -3.70 ~3.66 —3.64 -3.70
0.7 1.17 1.22 1.22 0.7 —4.68 —4.60 -4.67
0.8 2.42 2.41 2.42 0.8 -5.25 -5.18 —5.22
0.9 4.58 4.57 4.54 0.9 —5.66 —5.60 —5.65
0.95 6.32 6.25 6.37 0.95 —5.71 —5.69 -5.71
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in the X expansion of F/N is due only to the tem-
perature dependence of the reference system and
is expected to be weak. ¥,(p) is the temperature-
independent part of that first-order term. A
linear approximation for the B-dependent part of
that term and the temperature-independent part
of the second term are lumped together in ¥,(p)
which is supposed to be, and so it turns out, an
order of magnitude smaller than ¥,(p). From (6)
follows the equation of state

p/pkT =(p/pkT), _+Bpd,'(0) + B3 (o) . (7)

We expand ,(p) and ¥,(p) in the density

o n ) n
_ p_ _ [
zPl(p)—% b= zpz(p)_§ € (8)

If van der Waals’s theory were correct we would
have

by=% JdFw(r)=-167/9=-5.59 (9)

and all other b’s and ¢’s equal to zero. We shall
need a more complicated form for ¥, and ¥, to fit
the equation of state with the results from ma-

chine computation (see Verlet® and the Appendix).

The value of b, so obtained turns out to be of the
same order of magnitude as the one given by
van der Waals’s theory.

With five parameters we can obtain a fit for
p/pkT with an average error of the order of 0.02.
Adding more parameters does not improve the fit
appreciably. The error is systematic at low
density, where the equation of state is not ex-
pected to work very well, but is of the order of
the statistical error at high density. The ex-
cess internal energy is given by

% - i?[(’ﬁ%f> T 1] +¥,(p) + 284,(p). (10)

In order to obtain a good fit for this quantity we
must add one more parameter in ,(p). The er-
ror on the internal energy is then always less
than 0.1. The parameters obtained through this
fit are

b,=—6.639, b,=4.458, b, =—4.024
c,=-0.127, c,=-1.362, c,,=5.586 .

A comment should be added on the fitting proce-
dure: As wedo not a priori expect the equation
of state to be valid when both the temperature
and the density are low, we have excluded, when
making the fit, all points for which both T is
smaller than 1.6 and p is smaller than 0.5. If we
nevertheless try to obtain the critical point from
the equation of state (7), we obtain

T =137, p_ =0.31, Bp /p,=0.32 .

The critical constants for the Lennard-Jones po-
tential were obtained in Ref. 14 usingthe PY II
equation. The validity of this equation can be ap-
preciated from the new data presented in Table
II. The critical constants of the Lennard-Jones
potential (in a situation where the one-particle
density is not allowed to vary spatially, see Sec.
VII) are thus found to be

T =1.36+0.03, p =0.36+0.03,
c c
Bcpc/pc =0.31+0.04

The agreement is surprisingly good.

The addition of a term of the form B%),(p) does
not seem to improve the equation of state. A bet-
ter agreement with the data to be fitted would re-
quire probably the use of full high-order polyno-
mial representations for ¥,(p) and ¥,(p) instead
of the “lacunar” polynomials that we have used
for the sake of simplicity.

We have used also another form of the equation
of state that is more suited to very high tempera-
ture where p can become large, but where pd?
stays smaller than unity. For this we remark
that the first term in B8 may be viewed as an ap-
proximation for pfw(r/o)g,(v/d, pd3)d¥, where
go(r/d, pd?®) is the radial distribution function of
hard spheres of diameter d for the density pd 2.
As d is a slowly varying function of 8, the first
term may be replaced by B®,(pd?), where &, is
a function to be determined. The leading cor-
rection will be taken, as above, as a part of a
B2 term.

The equation of state is thus written as

p/pkT = (p/ka)hS +Bpd *®, '(0d?)
+B(pd*1@, (0d®) . (11)

The expression for the excess internal energy is
slightly modified into

. d!
W"=3_d'6 -p-,%q +®,(pd ) +288,(0d?) . (12)

®,(pd?) and &,(pd?) will again be expanded as

@, (oa®) -z b "0a/n

<I>2(pd3)=Zc "od >/ . (13)
1 n

A fit slightly better than for the equation of state
(7) is obtained with the following values for the
parameters:

b,'=-5.851, b,'=—5.757, b,'=16.239,
b,'=-5.966, b, =-81.585,c,’'=~1.270,
c,'=T7.438,  ¢,'=-8.938, c,,'=197.294
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Adding more parameters does not improve the fit
appreciably. With the equation of state (11) the
critical constants turn out to be

T_=1.36, p =0.33, B _p /o =0.36

VI. VALIDITY OF THE EQUATIONS OF STATE
FOR THE LENNARD-JONES POTENTIAL

In this section, we shall give a few examples
of the use of the equations of state (7) and (11)
and of the degree of success that can be expected
from them.

(1) On the isotherm 7 =1.35 already mentioned,
it can be seen from Table I that F; /NkT calcu-
lated using the equation of state (7) differs by
0.03 at most from the “exact” one.

(2) In Tables II and III, we give a comparison
for the pressures and internal energies on the
same isotherm: the Monte Carlo results® ob-
tained with the collaboration of Hansen are com-
pared with the results from the equations of state.
There is a good agreement both for the pressures
and the internal energies at high densities. For
low values of the densities, where the equation of
state is not supposed to work very well, it is
seen that the agreement is not so good. A com-
ment should be made on the Monte Carlo results
at p=0.3 and p=0.35. Although, for those states,
‘the pressure was found to remain quite stable
during the computation, the internal energy is
uncertain as its magnitude rose continuously,
and the values given in Table III are only vague
indications. In our experience this situation
arises when the system tends to separate into
two phases, and this tends to confirm the fact
that the isotherm 7'=1.35 is slightly under-criti-
cal, We display also in the same tables the val-
ues of the thermodynamical quantities obtained
with the PY II equation, because it can now be
compared with more precise Monte Carlo re-
sults. Its range of validity is seen to extend up
to p=0.55, and is thus larger than we had be-
lieved before.

(3) In Tables IV-VI, we give a few examples
of evaluations of derivatives of thermodynamical
quantities, which are expected to be more im-
precise than the pressures or internal energies.
The quantity (1/p)8p/387T — 1 is shown in Table IV for
several values of the temperature on the isochore
p=0.85. The results of the equations of state
(7) and (11), Columns 3 and 4, respectively, are
compared with the “exact” values obtained
through differentiation of a polynomial fit of the
data given in Ref. (15) and in the Appendix.
These values are slightly different from those
of Lebowitz, Percus, and Verlet, * which were
obtained graphically and which are probably less
precise. We give also in Table IV, for the sake
of comparison, the values of thermodynamical

TABLE IV. (1/p)8p/8T -1 on the isochore p=0.85.
Column 2: “exact” values obtained from molecular
dynamics by numerical differentiation. Column 3:
values calculated from the equation of state (7). Column
4: the same with Eq. (11). Column 5: values obtained
in Ref. (16) through a direct evaluation of the appropriate
fluctuation.

Fluctu-
T “Exact”  Eq.(7) Eq. (11) ation
2.89 3.72 3.8 3.8 3.3
2.20 4.1 4.2 4.2 4.0
1.21 5.3 5.3 5.4 4.6
1.13 5.5 5.4 5.5 4.8
0.88 6.0 5.9 6.2 6.4

TABLE V. B(8p/8p) on the isotherm T=1.35. Column
2: “exact” values obtained from molecular dynamics
by numerical differentiation. Column 3: values calcu-
lated from the equation of state (7). Column 4: the
same with Eq. (11). Column 5: values obtained using
the Ornstein-Zernike formula and the prolongation pro-
cedure for the correlation function described in Ref.
(10).

o “Exact” Eq. (7) Eq. (11) 0.7Z.

0.4 0.18 0.21 0.11 0.43
0.5 1.01 1.09 0.98 1.41
0.55 1.82 1.92 1.85 2,23
0.7 7.24 7.23 7.41 8.6
0.8 15.25 15.1 15.0 16.0
0.9 30.86 30.4 30.4 30.4
0.95 44.22 43.2 51.9

TABLE VI. The excess specific heat per particle
Cy’. Column 2: “exact” values. Column 3: values
calculated from the equation of state (7). Column 4:
the same with Eq. (11). Column 5: values obtained in
Ref. (16) in terms of the fluctuation of the potential
energy.

Fluctu-
T “Exact” Eq. (7) Eq. (11) ation
2.89 0.66 0.65 0.73 0.59
2.20 0.79 0.72 0.78 0.78
1.21 0.97 1.02 0.95 0.84
1.13 0.98 1.08 0.99 0.78
0.88 1.03 1.41 1.15 1.24

derivatives obtained directly in Ref. 16 in terms
of the fluctuation of the product of the virial and
the potential energy, which was evaluated in the
molecular dynamics computations. In Table V
we give the inverse compressibility g(8p/9p) on
the isotherm 7'=1.35, for several values of the



182 PERTURBATION THEORY AND EQUATION OF STATE FOR FLUIDS 313

density. The “exact” results (Column 2) are ob-
tained by numerical differentiation of a polyno-
mial fitting the Monte Carlo results of Table II.
They are seen to agree very well with the re-
sults yielded by Eq. (7) (Column 3) and Eg. (11)
(Column 4), except that in the latter case there

is a discrepancy for the highest value of the den-
sity: A more complicated form of the &, and &,
function would be necessary to get a better agree-
ment. We thought it interesting to give in the
same table (Column 5), the inverse compressibil-
ity obtained by applying the Ornstein-Zernike
relation to the correlation function obtained from
molecular dynamics computations, following the
procedure described in Ref. 10. The “exact”
radial distribution function is used in the small

v region (including the first peak) and the Percus-
Yevick equation afterwards. As expected, the
agreement is fair, but not very good.

In Table VI are given examples of the excess
specific heat per particle Cy? on the isochore
p=0.85. In Column (2) we give the results of a
numerical differentiation of the energy with re-
spect to the temperature, on the isochore. The
comparison with the equation of state (7) (Col-
umn 3) is seen to lead to rather poor results at
low temperature. Equation (11) (Column 4) gives
substantially better results. In the last column
of the table we show the specific heats obtained
in Ref. 16 in terms of the fluctuations of the po-
tential energy.

VII. EQUATION OF STATE FOR
ARGON AND XENON

We have made a fit to the known experimental
data for the equation of state of liquid argon and
xenon. The experimental data for argon are
numerous and precise. Adding together the re-
sults obtained by the Amsterdam, !’ Toronto, ®
and Princeton!® groups, it is possible to cover a
region ranging in temperature from the triple
pointto three times the critical point and reaching,
in density, the solidification region. The data
for xenon are more scarce. We have used the
pressures and internal energies given by Levelt!’
for a rather narrow strip in reduced temperature,
ranging from 1. 35 to 1.9, the reduced densities
going up to 0.85. We have also used the known?°
triple point constants of xenon. In both cases we
have used as reduction parameters the Lennard-
Jones potential constants € and o determined from
the second virial coefficients: for argon,?! ¢/k
=119.8, ¢=3.405 A. For xenon? e/k =224, 5,
0=4.064 A. The fits have been made excluding
a wide domain around the critical point, corre-
sponding to p<0.55 and T'<1.8.

As we do not know the interaction we must now
choose for the temperature-dependent diameter
a definite form depending on parameters that

must be determined in the fitting process. We
have tested in the Lennard-Jones case that d(B)
could be fitted, for T'<5, by an approximant of
the form

d)=(az+a,p~)/(1+a,8Y) .

The constants turn out to be @, =0.1680, a,
=0.1958, and a;=0.9955 with an error of less
than4 x 107, This entails no error in the pres-
sure. The internal energy is unchanged except
at the highest temperature in the range con-
sidered. We have only used the equation of
state (7). The parameters giving the functions
¥,(p) and 9,(p) are for argon: b,=5.627, b,
=5.945, b,3=-1.683, ¢, =— 0.875, c,=-0.381,
¢,,=0.686. The core parameters turn out to be
@,=0.1479, a,=0.1727, and @,=0.9667. The er-
ror on p/pkT is in general smaller than 0.01,
except at very high temperature where there
seem to be larger discrepancies due to slight
differences between various experiments. The
error on the values of the internal energies given
by Levelt are of the order of 0.02,

The fit for xenon is as good as for argon. But
it must be emphasized again that it has been
made using a much smaller set of densities and
temperatures. The parameters giving the best
fit are b, =—4.973, b,=9.243, b,;=- 6.204, c,
=-1.997, ¢,=6.770, o, =~ 8.037, ¢,,=1.850, a,
=0.2677, @,=0.3022, and a,=0.8969.

We shall make a few remarks about these equa-
tions of state. We begin by discussing the tem-
perature-dependent hard-sphere diameter d(B).
Such a diameter has already been considered by
Dymond and Alder? in a rather similar way.
These authors have determined the hard-sphere
diameter in the following fashion: Let us con-
sider, at some low inverse temperature g and
for a given value of the density, the equation of
state (7). If B is small enough, we can neglect
the p% term. Let the variation with g8 of (p/
pkT)hg, which is small [as compared with ¥,(p)],
be altogether neglected. Then (p/pkT)hg can be
determined by the intercept, for 8=0, of the tan-
gent drawn to the representative curve of p/pkT
at the point corresponding to the inverse tem-
perature B. We can therefore determine d as a
function of B, using this procedure, This di-
ameter should not depend ~ and does depend very
little — on the value of the density for which the
fit is done. The diameter so determined by
Dymond and Alder differs from ours by a few
percent only. This difference may be due to the
approximations we have mentioned above.

As an illustration we give in Table VII the val-
ues of the diameter for a low temperature (7=1)
and for a high temperature (7'=5). From these
data we would conclude that for a temperature
not too high (7 <5), the effective two-body repul-
sion is, in argon, less extended and steeper than
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in the case of the Lennard-Jones potential. We
also see from Table VII that the xenon diameter
is substantially smaller than that of argon. We
should note that, in the reduced units for xenon
that we have used, the density for the triple point
of xenon turns out to be 0.951 when the triple-
point density of argon is 0.839. In order to ob-
tain the same reduced density at the triple point

TABLE VII. The equivalent hard-sphere diameter
d(B) of argon and xenon for two values of the inverse
temperature B in the case of the Lennard-Jones poten~
tial. The diameters are expressed in units of ¢, where
for argon (Ref. 21) 0=3.405 A, and for xenon (Ref. 22)
o=4.064 4.

B L.dJ. Ar Xe
1 0.973 0.939 0.894
0.2 0.927 0.917 0.890

for xenon as for argon, we should multiply the
unit of length by 1.042. It is seen that this has
the effect of reducing very much the discrepancy
between the argon and xenon entries in Table VII.
In other words we would conclude that xenon has
a core 4% larger than indicated by the fit to sec-
ond virial coefficient.

As we have shown the ability of the equation of
state (7) to predict the critical temperature in the
Lennard-Jones case — it was overestimated by
only 0.01 — we may calculate the same quantity
in the case of argon. We find for the critical
temperature the value 1.35 instead of the 1.26 found
experimentally. The explanation for most of
this very large discrepancy seems to us to lie in
the following: The equation of state is a straight
expansion in the inverse temperature and the den-
sity, and does not allow for the singularities
characteristic of the critical point. It is not sur-
prising that in the Lennard-Jones case it agrees
with the molecular dynamics computation, which
does not allow for large scale density variations.
The same is true with the PY II equation where
the one-body correlation function is kept con-
stant as in the usual integral equations.* All of
these approaches are consistent with the classi-
cal van der Waals view on the critical point. As
is well known, the situation is different in nature
where large scale density variations do occur.
They are responsible for the well-known flat-
tening of the p versus T coexistence curve. A
consequence of these effects is a reduction of the
critical temperature amounting, as we see by the
preceding argument, to about 6%.

VIII. CONCLUSION

The excellence of the Barker-Henderson ex-
pression for the equivalent hard-sphere diameter,
as well as the rapid convergence of the A expan-
sion, have enabled us to write down semiempiri-
cal equations of state for liquids and dense gases.
These equations have been derived in the case of
the Lennard-Jones fluid, and for argon and xenon.
Improvements in these equations of state, as well
as their extension to other simple fluids, will be
carried out.

The considerations given in the present paper
can be extended to the case of solids at tempera-
tures which are not too low. The theory of melt-
ing which results, as well as the vaporization
curves obtained from the equation of states given
here, will be published in a later paper.?
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| APPENDIX

We present here some new data which have been
used in conjunction with those of Ref. (15) in fit-
ting the equations of state of the Lennard-Jones
fluid. Using the equations of state as a tool we
also review the computations made so far in that
case.

In the first part of Table VIII we give some
Monte Carlo results on the isotherm 7'=2.74 in
collaboration with Hansen using a 864-particle
system and of about 4 X10° configurations. In the
second part of the table we give a number of new
molecular dynamics results obtained by the meth-
od of Ref. 15. In the last part of the table we
give a number of points of Ref. 15 that must be
corrected either for misprints or for slight er-
rors.

To these data should be added those presented
in Tables II and III for the isotherm T'=1. 35,
which supersede the 108-particle Monte Carlo
results of Ref. 14. Those points are compatible
with the newer ones but less precise.

The agreement of the equation of state with the
two higher density isochores, given by McDonald
and Singer?® who used a 32-particle system and
the Monte Carlo method, is quite good. It would
be better still if their value of p/pkT were
raised by 0.04. A similar conclusion can be
drawn concerning the points of the isotherm T
=1, 0579 obtained by Wood?’ using a 32-particle
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system and the Monte Carlo method, with the ex-
ception of the highest density point. There a dis-
agreement appears. For p=0.833, Wood finds
bp/pkT =1.99 when the equation of state (7) yields
for the same quantity the value 2. 13.

The agreement is also within the expected ac-
curacy for the old 7T'=2.74 isotherm of Wood and
Parker® except, again, at high density. For p
=1, for instance, the new Monte Carlo result of
Table VIII is p/pkT ="7.44. Wood and Parker ob-
tained 7.06 for the same quantity.

The computations made by Fickett and Wood2?
at very high temperature (32 particles, Monte
Carlo method) require a more careful investiga-
tion. There the equation of state (11) should be
used. Let us first consider their points at very
high temperature (T=100). The B term in the
equation of state is practically negligible as may
be seen from Table IX. The hard-sphere equa-
tion of state is then practically valid. We see
that the Monte Carlo compressibility factor for
p=1 is a little low when compared with the one
given by the equation of state. This tendency is
more marked for the p=2 point. The two points
at p=2.5 and p=3. 33 are probably deep in the
metastable region. The Monte Carlo pressures
are being compared with what may be unduly long
extrapolations of the equation of state for hard
spheres: nevertheless the values seem to be
surprisingly different. The points at 7'=20, ex-
cept one, and all the points at 77=5 are in the
stable fluid region. It is seen that for p<1 the
agreement with the equation of state (11) is good
and that when p> 1 the pressure given by Fickett
and Wood is substantially lower than the one given
by the equation of state. The question is whether
this may not be due to an inadequacy of the
Barker-Henderson approximation for high values

TABLE VIII. Compressibility factors and excess
internal energies as a function of density and temper-
ature. (a) First group of states: Monte Carlo results.
(b) Second group of states: molecular dynamics results.
(c) Third group of states: revised data of Ref. (15).

1Y T Bp/p Ui
(a) 0.55 2.74 1.65 -3.21
0.75 2.74 2.64 -3.90
0.9 2.74 5.14 -4.41
1.00 2.74 7.39 -4.18
1.08 2.74 9.59 -3.80
(0) 0.35 1.363 0.35 -2.40
0.65 1.43 0.98 -4.31
0.65 1.83 1.56 -4.12
0.65 3.67 2.46 -3.32
0.75 1.12 1.04 -5.13
0.75 1.30 1.60 -5.00
0.75 2,040 2.68 -4.52
0.85 0.72 0.43 -6.22
0.85 0.76 0.82 -6.07
0.85 1.273 3.17 ~5.55
0.85 2,145 3.06 —4.80
(c)0.45 1.552 0.57 . -2.98
0.5 1.36 0.32 -3.38
0.5426 1.326 0.37 ~0.36
0.5426 1.404 0.48 -3.63
0.5426 3.26 1.81 -3.00
0.85 0.591 -1.20 -6.46
0.85 0.658 ~0.20 -6.39
0.88 0.94 2.77 -6.04
0.88 1.095 3.48 -5.85

TABLE IX. High-temperature equation of state of the Lennard-Jones fluid. Column 3: value of pd® calculated using
(3). Column 4: compressibility factor obtained by Fickett and Wood Ref. 29 using 32 particles and the Monte Carlo
method. Column 5: results obtained with the equation of state (11). Column 6: hard-sphere compressibility factor.

b/okT

T ) pd® W.F. Eq. (11) hs
100 0.5 0.24 1.67 1.69 1.70
100 1 0.48 2.95 3.06 3.10
100 2 0.96 9.50 13.00 13.29
100 2.5 1.2 16.29 (35.6)
100 3.333 1.6 27.85 (346)
20 0.5 0.326 1.89 1.97 2.10
20 0.667 0.435 2.51 2.59 2.75
20 1.000 0.65 4.46 4.74 4,97
20 1.333 0.87 8.00 9.43 9.69
20 2.000 1.30 20.30 (60.0)
5 0.5 0.40 1.87 1.90 2,51
5 0.667 0.53 2.63 2.79 3.56
5 1.00 0.80 6.34 6.78 7.70
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of the temperature and density. That this is in-
deed the case is shown by the following example.
For p=2, T=100, a direct Monte Carlo compu-
tation agrees quite well with that of Fickett and

Wood: A value of 9.2 is obtained for p/p~T when
Fickett and Wood give the value 9.5. This is in
strong disagreement with the results obtained
from Barker and Henderson’s theory.
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It is shown that in a liquid whose bulk modulus relaxes with relaxation time 7’, there exist
density fluctuations whose correlation length is approximately v7’/7, where v is the sound

velocity at Q= (1)1,

It has been suggested that one might study the
correlation function of density fluctuations in a
liquid by measuring the correlation function of
the scattered light.! For this to be possible it is

of course necessary that the correlation length in
the liquid be comparable to the wavelength of the
incident light. In the case of Rayleigh scattering
near the critical point it is well known that the



