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The potential described by these matrix elements

is nonlocal in configuration space. It is for this

reason that the system does not obey the f-sum
rule. This nonlocal behavior of the potential is
analogous to that occurring with the BCS reduced
Hamiltonian.
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We calculate the equilibrium and transport properties of the mixtures using the overcomplete

basis functions y g& discussed in I. The theory includes the enlarged correlation hole of a

single He and the backflow of He atoms around it. The two quasiparticle scattering amplitude

is the sum of two terms

2 m4s )r (k 'q) (k' 'q) (1+o) m~+ 6m l
V= -0.

n m4gq m3+ 6m

the first from the interaction of the excess correlation holes and the second from the inter-
action of the backflows. Both terms were derived previously from macroscopic considerations

by Bardeen, Baym, and Pines.

I. INTRODUCTION

In this paper we calculate the low-temperature
equilibrium and transport properties of the liquid
He'-He~ mixtures from first principles using the
formalism developed in I.'

The work of Edwards ef' al.' on the phase-sepa-
ration curve of the mixtures indicated that the
mixtures would be thermodynamically stable down
to T =O'K for He' concentrations 1ess than 6%.
Wheatley and co-workers' have measured the heat
capacity, susceptibility, spin diffusion, and ther-
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mal conductivity of 1.3 and 5% solutions down to
T-0.005'K, where the He' quasiparticles behave
as a weakly interacting, degenerate Fermi gas.

On the theoretical side Bardeen, Baym, and
Pines' (BBP) have assumed a phenomenological,
local potential to describe the scattering of two
He' quasiparticles and have determined a two
parameter potential by fitting the low-temperature
spin diffusion for two concentrations. Their
phenomenological potential is

V = V cos(Pq),
q 0

V = —0.075 m s'/n, P=3.16 A,

where m4, s, and n are the mass, sound velocity,
and particle density of liquid He . Baym' has
argued that the potential for small q is

V, = —n'm, s'/n

where n = 0.28 can be found from the molar volume
of the mixtures

, = u, (1+nx) . (3)

V = —o. 'm, s'/n

h'(k ~ j)(k' j) (1+o.)m, +5m
nq'm4

where the first term is due to the change of zero-
point energy of one He' in the decreased particle
density near a second He' and the second term is
the backflow-backflow interaction due to the change
in the kinetic energy associated with the over-
lapping backflow patterns. For scattering on the
Fermi surface the second term simplifies and
we find

Here x is the concentration of He'. The physical
argument leading to this interaction is as follows:
The He' atom has a smaller mass than a He4 and
it occupies a slightly larger volume, proportional
to 1+e, than a He' atom. A second He' atom
distinguishes the first He' from the He background
by the extra hole, proportional to a. From the
interaction of the holes one finds a potential pro-
portional to n' times the characteristic energy
of the liquid m4s'. The momentum dependence of
the interaction is stronger than one expects on di-
mensional grounds. The phenomenological poten-
tial goes through zero at q=0.5 A ', whereas the
characteristic wave number of the liquid is q~
=-m, s/k =1.5 A '.

According to the microscopic theory, which we
present below, the scattering amplitude for two
He' quasiparticles with momenta k and k' scatter-
ing to states with momenta k —q and k'+q is ap-
proximately

V= (m s'/n) [- o.'+&o(q/q )']

This result justifies the use of a local potential
in BBP and explains the strong momentum de-
pendence of the potential. BBP discussed the
backflow-backflow interaction and derived the
second term of (4) from macroscopic considera-
tions for q «k. We will see that (4) is correct
for q «q~ and that BBP derived the both terms
in the scattering amplitude from macroscopic
considerations, apparently without realizing that
these are the only important terms.

The plan of the paper is as follows: In Sec. II
we briefly sketch the formalism developed in I
to treat strongly interacting quantum liquids. In
Sec. III we discuss the structure of a single He'
quasiparticle and in Sec. IV we calculate the scat-
tering amplitude for two quasiparticles. Finally
in Sec. V we calculate the low-temperature trans-
port properties from the scattering amplitude.

II. FORMALISM

We consider a system of N, He' atoms and N4

N3 He' atoms in a box of volume Q. The
Hamiltonian of the system is

N h'v' N
a= Z ' +XV(r),2m U'i=1 i i&j

(6)

where V(r) is a realistic two-body potential. In
a system of strongly interacting particles, such
as liquid He, it is important to take into account
at the outset the strong correlations between
particles. One could do this by using the cor-
related wave functions

=y (1 ''No)(o(1 ''N),k k
(7)

where pk is a determinant of plane waves for the
N, fermions and go is the ground state of N He'
atoms with

N
+ Z v(r. .),

i&j

o~o =Eoi"o ~

Note that this wave function correlates each pair
of atoms, not just the bosons. However it is a
great advantage, as discussed in I, to include the
collective modes of the system at the outset and
to use the overcomplete basis set

=P (1 ~ ~ ~ N )P (1 ~ ~ ~ N),
k k

3 q

where gq is the ground state or an excited state
of the pure Bose liquid
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0 =p 0 /(NS )"'
q q 0 q

where p =Z e (12)

and Sq is the liqu&d structure factor. The energy
of these excitations is

(o = I'q'/2m S
q 4q'

Note that all of the atoms, the fermions, and the
bosons participate in the collective modes in
zeroth order.

For the ground-state wave function one could
use the Jastrow' pair function

N
y =exp —— g u(r. .) i02. .

hajj

z(j
(14)

which correlates each pair of particles and which
has been used variationally' for liquid He'. The
zero-point motion of the phonons can be included
in this wave function by choosing the long-range
part of u(r) properly. '

We will use this set (9) of basis functions and
treat the off diagonal part of the Hamiltonian as
a perturbation to calculate the properties of one
and two He' atoms in liquid He4.

III. SINGLE-PARTICLE PROPERTIES

We turn now to the calculation of the properties
of one He' atom in liquid He4. We begin with the
wave functions

H g =(E +sr )gOq 0 q q'
Feynman' has argued that the low-lying excited
states of liquid He4 are density fluctuations with
the wave function

The balance of zero-point and potential energies
determines the equilibrium density of liquid He'.
Putting a He' atom into the same cage increases
its zero-point energy by + without affecting the
potential energy. It is then energetically favor-
able to increase the size of the He' correlation
hole. This increased size of the correlation hole
appears as a decreased particle density in the
neighborhood of the He' and is simply described
in terms of a coupling of the He' to the density
fluctuations (phonons) of the system.

The second physical effect that we wish to
describe is the backflow" of He' atoms around a
moving He'. As the He' moves slowly through the
liquid it adiabatically displaces He4 atoms which
then move in a dipolar velocity pattern around the
He . Since this velocity flow of the liquid is de-
scribable as a linear superposition of phonon ex-
citations we can obtain the backflow from the Hg'-
phonon interaction. We proceed now to a calcu-
lation of the He'-phonon vertex in order to find
the size of the correlation hole and the effective
mass due to backflow.

With the wave functions (15) the diagonal ma-
trix elements of the Hamiltonian (6) are

k* k
f% H4' =e&+~ + 3(KE)+&0,

q q k q
(16)

e& = 5'k'/2m

where (KE) is the kinetic energy per particle in
liquid He'. The term (KE) /S arises from the
mass difference and is the chemical potential dif-
ference p„—p44 in first order where p.„(p«) is
the chemical potential of a He' (He') atom in liquid
He4. The He'-phonon vertex is the sum of two
terms

g -=f4 H4 =g +g
k k —q k 1 1

q q 0 v p

The first term is a coupling to the velocity field
of the phonon and is readily evaluated

There are two effects that we want to calculate.
The He' is lighter than the He4 atoms of the host
liquid and its zero-point motion will be larger.
In zeroth order, Eq. (15), we have given the He'
atom the same size correlation hole as a He4

atom in liquid He4. Crudely speaking each atom
is liquid He~ moves in a cage (correlation hole)
of neighboring atoms and its zero-point energy
-14'K is determined by the size of that cage.
Lowering the density of the liquid increases the
size of the hole and reduces the zero-point energy.
However lowering the density also decreases the
number of atoms sitting in the attractive well of
the two-body potential and costs potential energy.

g '=- —(h'/m )(N/S )'I'
v 3 q

=I'k q(1 —S )/2m (NS )'~2
3

where S = I+Nfl 'e q ' ' dv

(18)

(19)

The second term
1

1 —O' N ~
p iq'(r, —r, ) 2

(20'
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is a coupling to the density fluctuations of the
phonon and can be expressed in terms of the
pair function u(r) from (14) and the three-particle
correlation function which is not available. We
can obtain the vertex at long wavelength from the
standard deformation potential argument. The
energy of a He' atom (16) is a function of the local
density p of the liquid and is equal to (KE) /3 in
first order. In the presence of a small static
density variation the He' energy is

will see that the second term enlarges the correla-
tion hole and the third term adds on the backflow.

In order to find the size of the correlation hole
we first compute the density of He4 atoms a dis-
tance r from the He'

N
p (r) —= g J } @ [ 5(r —r. —r)dr

i& 1

(27)

~E3 =
3s [p(r, ) —po j .s(KE)
3ep (21) and obtain the volume of the correlation hole

from
Expanding p(r, ) in phonon coordinates we find

1

EE '0 =Zp ( ) 0 (22)
'U, -=J [1—(0/N) p, ,(r)jd'r

= (n/N)[1+ n+ O(n')] . (26)
1

so that g '=p s(KE) q
p 38p N ' c'q«q (23)

The molar volume of the mixture is then

'U„= Z, (1+nx), (2S)

(p,.—) ..) q

j.

p ep N q
(24)

which we write in terms of the dimensionless
parameter e.

for small q. For larger q the vertex will be (23)
multiplied by some form factor fq which we do not
know. In the absence of any better information we
will use the form factor from (18), fq = 1 —Sq.
Equation (23) is correct to first order in the mass
difference; in order to find the exact vertex we
replace (KE)/3 by the exact chemical potential
difference.

where x is the fraction of He' atoms, a result al-
ready derived by Baym. ' From the experimental
data on molar volumes" one finds n =0.28.

Feynman and Cohen' have argued that a moving
impurity atom in liquid He sets up a dipolar back-
flow velocity pattern in the host liquid. The Feyn-
man-Cohen (FC) wave function for a mass 4 im-
purity with classical backflow is

=exp ik r -i g r. —r
1 .

1 j 1 0'
(3O)

g =nm s '(S /N)'i'f . (26)
where g(r) = k ' r/4mp, r ' .

We define n in terms of the density derivative of
the chemical potential difference rather than
through Eq. (3). n can be measured directly by
measuring the phase-separation curve versus
pressure at low temperature.

Treating the He'-phonon vertex in first order
we find the wave function for a moving He' atom

k k p q @
k —q

0 & —e —m q
q k k —q q

a ~ q i(k-q) r,8
NS

q q

(1+ n)m k ~ qp

(26)

For small k we can expand the exponential and
Fourier transform g(r) to find

ik' r~ p k q i(k —q) ~ r~

(32)

We see that the third term of (26) is just the Feyn-
man-Cohen backflow term. The prefactor in the
backflow term of (26) is not exact. For a sphere
of volume (1+n)/n moving in a classical liquid
the prefactor (1+a)m, /m, is replaced by
[(1+n)m~+ 5m] /m* where 5m = m* —m, .

The energy of a slowly moving He' quasiparticle
to second order is

Lg I

k 2

E =E +e~+ +Q(KE)
—(0

q k k —q q

where we have assumed k and q small. The first
term in brackets is the zeroth-order term and we

= E, + p,„—p«+5'0'/2m*,

where the chemical potential difference is

(33)
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&KE)
~'4 ~44 S 2 4 ~ N(1+/ S )

q '
q

= 4.7 —0.7'K (s4)

and the effective mass is

m (I-S )'

m+ +3

The sum (= 0.94) was evaluated using the theoreti-
cal Sq taken from the microscopic calculations'
on the ground state of liquid He4. The experimen-
tal chemical potential difference" is 4.4'K and
the effective mass' is 2. 3m, . The theoretical
expressions in (33) and (34) involve the form
factor fq, which is unknown, and so the theoreti-

cal p, ,4 and m* must be regarded as rough esti-
mates. In addition, we have used the approxi-
mate Feynman wave function (11) for the roton
and neglected two-yhonon vertices.

The calculation of the single-particle proper-
ties could be performed using variational methods
instead of the perturbation methods used here.
For a mass 3 impurity the calculations are more
complicated than for a mass 4 impurity which
Feynman and Cohen considered; one requires a
knowledge of the ground-state wave function as
well as the structure factor. The results of a
variational procedure would be more reliable
particularly for the chemical potential difference
since we do not know the correct form factor in
(34) for large q. For the calculation of the two-
quasiparticle scattering amplitude in the next
section we are interested only in small momen-
tum transfers and the perturbational approach is
simple and quite reliable.

IV. TWO QUASIPARTICLE SCATTERING

In this section we compute the scattering amplitude of two dressed He' quasiyarticles moving in liquid
He'. Consider first the unsymmetrized wave function

k k'
= exp(ik ~ r, +ik" r, )g, . (s6)

We take matrix elements of the Hamiltonian between two such states to find the scattering amplitude in
first order

V~'~(k, k', q)—= J O' ' P4 ' = k $ ~ q-k' ~ q)(1 —8 )/2m N+2nm s 8 f /N .0 0 q 3 4 q q
(37)

Since the wave functions are not orthogonal one must be careful either to Schmitt orthogonalize the two
states or to subtract out the diagonal part of the Hamiltonian before performing the integral. The inte-
grals are similar to those found in Sec. III for. the He'-yhonon vertex.

The second-order scattering amplitude is

k k' k k'
P'&(k, k', q)=-g J@ ' H% f @*HI ' /(E -E,),n 0 n n 0 n k, k' (ss)

where the Cn are a complete set of eigenstates. It was shown in I that the imyortant intermediate states
are the one-phonon excited states and the second-order scattering amplitude is just the familiar one-
yhonon exchange term

k'
&"(k,k', q)=g g /(s -s —~ )+k —k'

q q k k —q q

—2n'm 's48 f ' nm s'5'q'f (1 —S ) K4(1 —8 )'P(k ~ q)(k' q)+q'(k —k') q]
Nor m Nv 4m 'NS ~

q 3 q 3 q q

For small k and q and to lowest order in the mass ratio m4/m, the first-order scattering amplitude can-
cels the second term and part of the third term in (39). We find

V(k, k', q) - —cx'm4sm/N 5'm4(k q)(k-' q)/Nm, 'q' . (40)

The two terms in the scattering amplitude have a simple physical interpretation. The liquid-particle
density in the neighborhood of a He' atom is lower than that of the host liquid; about 3 of a particle is
missing. The zero-point energy of a He atom is proportional to the local particle density and is lower
in the neighborhood of another Hes. This leads to an attractive interaction at long wavelengths equal to
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—n'm, s'/N, a result first derived by Baym. ' The second term in (40) is proportional to the velocity of
both quasiparticles and is of a dipole-dipole form. This term is just the backflow-backflow interaction-
the change of the kinetic energy of the host liquid due to the overlap of the backflow patterns. In a classi-
cal liquid this energy is proportional to the square of the volume of the correlation hole and to the actual
velocities of the quasiparticles and is

—(@'/&)(k .j)(f' j)/q' (1/m, ) ([(1+o)m, +5m]/(m, +5m))'. (41)

In BBP this term was derived from macroscopic considerations for the quantum liquid for q «k. Our re-
sult (40) is approximate because we have not used fully dressed vertices; we see, however, that the ana-
lytic expression for the backflow term is valid for q «q .

There are several corrections to (40). Each of the terms of (40) should be multiplied by a form factor,
roughly (1 —'Sq'). However, the momentum transfers in the mixtures are small enough that the form
factor is unimportant. The potential (40) is not very weak on an absolute scale; the multiple scattering
corrections reduce the scattering amplitude by about 10% at long wavelength. Of course, when one uses
properly symmetrized wave functions one finds

V (k, k', q) = V(k, k', q), V (k, k', q) = V(k, k', q) —V(k, k', k —k'- q) (42)

The scattering amplitude of two dressed quasiparticles is actually (40) multiplied by the square of the
wave- function renormalization factor. "

Z =1+8Z (P ~)/e~,
PJ

(43)

where Z is the single-particle self-energy. For the mixtures the self-energy varies with energy over a
range characteristic of a typical phonon frequency and one finds

Z =1+0(v /s).
Pp

This renormalization can be neglected.

(44)

V. TRANSPORT PROPER'HES

In this section we will compute those transport properties of the mixtures which are dominated by
He'-He' scattering. Wheatley and co-workers' have measured the thermal conductivity and the spin-
diffusion coefficient in the low-temperature (quantum) limit for solutions of 1.3 and 5% He . Approxi-
mate solutions of the Boltzman equation in this limit have been given by Abrikosov and Khalatnikov' and
by Hone" for arbitrary scattering amplitudes. More recently exact solutions have become available. "
R is a simple matter to perform the average over the scattering probability using (40) and obtain these
low-temperature transport coefficients versus concentration.

The expressions for spin-diffusion coefficient D, thermal conductivity k, and viscosity g at low tempera-
ture are

(DT ) =[3m k& C (X&)/16w k k& (1+F0 )] (W& &sin —,'8(1 —cosy)/cos ,'8), -2 —1 +5 2 —1 2 8 2 a 21

(I&X) '=[3m*'H '(X )/4w'k'k '](W sin'28/cos~8),

(qT') '=[45k 'm+'C '(X )/58k '](W sin' —,'8 sin'y/cos~8),

where kB is the Boltzmann constant, kI; is the Fermi wave number, and (1+'Eos) is the susceptibility en-
hancement factor. With the correction factors H and C given by Brooker and Sykes" these solutions are
exact. We will use the approximate solutions which one finds variationally": H =~», C = -,'. The scattering
probabilities are

W (k, k', q) =(2w/K)j V (k, k', q))', W(k, k', q) = —,'W (k, k', q)+ —,'W (k, k', q). (46)

At low temperatures the scattering is restricted to the Fermi surface and the average in (45) is taken
over the angle 8 between the initial momenta and over the angle y between the plane of the initial momenta
and the plane of the final momenta. Specifically
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( ~ ~ ~ ) -=f d(cos8) f (4m)-'dq"1 2'
-1 0

(47)

For scattering on the Fermi surface we have k q = —k' q =q'/2, so that the scattering amplitude (40) is
a function of q only. We find

W = (2~a'm 's'/kn')[I —P(q/2k )']', (48)

where P = (kk&/o. m s)'
3

and q'=2k 'sin'pe(l —cosy).

(49)

(50)

With this simple form for the scattering probabilities the angular averages in (45) are easily performed
and we find

(DT')-'=A a4(1 —~5P+~7P'), (KT) '=A o4(1 —~5P +IP'), (qT') '=A o'4(I-~P+-'P') (51)

2ppg 2s4 12ppg+4~ 2s4

here AD 9 2 ' AE
I3 4 4

3m@ k (I+X )n 5&k k nF 0 F

'm*4m 'S4

g @Ok 5 2F"
(52)

Values of the A's and the experimental dimensionless scattering probabilities [i.e. , (DZ'2A&) ']
given in Table I. The theoretical scattering probabilities computed from (51) with o =0.28 are about a
factor of 2 too large. Since n is known experimentally from (29) only within say %30%%up we have taken the
liberty of adjusting n to obtain agreement with one transport coefficient. The theoretical scattering
probabilities with e =0.24 are given in Table I. The agreement with two transport coefficients measured
for two concentrations is reasonably good but not perfect.

The low-temperature transport properties sample the scattering amplitude for q & 2kF (=0.6 A-' for a
5'%%up solution). Ebner" has calculated the spin-diffusion coefficient at high temperature T» TF and found
an empirical (local) potential which fits the measured spin-diffusion coefficient. For T = 1'K the im-

0
portant momentum transfers are of order 1.0 A ' and we can compare our theoretical scattering ampli-
tude with Ebner's empirical potential. If we make the local approximation (k q = —k' q = q'/2) in (40)
and include the form factor 1 —S ' we find

V =(m s'/lV)[- n'+~(q/q )'-~(q/q )4] (53)

which is about 80'%%up larger than Ebner's empirical potential at q = 1 A '. However, for these large momenta
the scattering has become so strong that multiple scattering corrections are important. Webelieve that the
neglect of multiple scattering corrections is responsible for this discrepancy. Multiple scattering correc-
tions will introduce an explicit velocity dependence into the scattering probability on the Fermi surface (48)
so that the loca1. potential will no longer be correct for that case.

TABLE I. A comparison of the dimensionless transport coefficients with experiment.

(AgPT )

Q~xr) '

Theory

(0.0015)
0.0022

1.3% solution
Experiment

0.0015
0.0023

Theory

0.000 53
0.0020

5% solution
Experiment

0.000 61
0.0036

VI. CONCLUSIONS

We have applied the strong interactions formalism
presented earlier to calculating the equilibrium
and transport properties of dilute solutions of He'
in He4 at low temperature. The chemical poten-
tial difference and effective mass cannot be calcu-
lated accurately. However the two-quasiparticle

scattering amplitudes for small momentum trans-
fer are reliable and provide reasonably good agree-
ment with the low-temperature transport coef-
ficients. The physical picture of a He' quasi-
particle is clear: The He' carves out a correla-
tion hole in the liquid a little larger than the He4

correlation hole, and the moving He' is surrounded
by a backflow of He4 atoms. There are corre-
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syondingly two contributions to the scattering ampli-
tude, one arising from the interactions of the ex-
cess holes and another from the interaction of the
backflows. BBP derived both these terms for

- small q from macroscopic considerations. There
is no residual (screened) He'-He' interaction in
this picture.

We have justified the use in BBP of a local po-
tential at low temperatures. However, one should
be able to distinguish betmeen the local and non-
local forms of the-scattering amplitude by compar-
ing with spin-diffusion measurements at higher
temperature. It turns out that the interesting re-
gion of temperature is T-0.2'K which is of the
order of the Fermi temperature, a difficult regime
for calculation. However, such calculations are
in progress and mill be reported separately.
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