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Equation (B2) shows clearly that the Bogoliubov
theory is a weak-coupling version of the Feynman
theory of liquid helium. " Moreover, Eq. (14)
shows that it is not necessary to go through any
kind of canonical transformation of plane-wave
creation and annihilation operators in order to

explicitly calculate E&(k) and thus 8&(k). As
Mihara and Puff suggest, ' once the initial ansatz
is made (in this case, that the dynamic structure
factor corresponds to a single excitation fre-
quency), the sum rules completely determine the
energy spectrum for the liquid.

N. Mihara and R. D. Puff, Phys. Rev. 174, 221 (1968).
R. P. Feynman, Phys. Rev. 94, 262 (1954).
¹ ¹ Bogoliubov, J. Phys. (USSR) ~11 23 {1947).
E. Merzbacher, Quantum Mechanics (John Wiley &

Sons, Inc. , New York, 1961), Chap. 8.
Throughout this paper we use units such that 8= 1 and

assume the liquid to be confined to unit volume.
T. Davison and E. Feenberg, Phys. Rev. 171, 221

(1968).
A. Messiah, Quantum Mechanics (John Wiley 5 Sons,

Inc. , New York, 1961), Appendix II.
R. D. Puff, Phys. Rev. 137, A406 (1965). See also

A. A. Abrikosov, L.P.Gor'kov, and I. -E.
Dzyaloshinski, Methods of Quantum Field Theory in
Statistical Physics (Prentice-Hall, Inc. , Englewood
Cliffs, New Jersey, 1963), pp. 15lf.

The even-moment sum rules elude us here because
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An analysis of the nature of heat in the condensed phases leads to the conclusion that the
transport of thermal energy must be accompanied by the development of a "radiation pressure. "
In line with this conclusion, a force must act on the particles dissolved or suspended in a
liquid when a temperature gradient is established in absence of convection. The direction of
the force is parallel to the temperature gradient, and its orientation depends on the thermal
conductivities and speed of sound both within the liquid and the particles. On this basis a
physical explanation of the thermodiffusive phenomena in the condensed phases is advanced.

INTRODUCTION

Since the time of its discovery by C. Ludwig'
and C. Soret, ' ' the yhenomenon of thermal dif-
fusion in liquids has never ceased to puzzle the-
oretical physicists. The hyyothesis that the
variation of osmotic pressure with temperature
was the yhysical basis of thermal diffusion in
liquids goes back to the time of Van't Hoff'; his
early theory was disproved by the experiments
of Arrhenius. '~' Also inadequate to explain the

complex behavior of liquid solutions and mix-
tures when crossed by a flow of heat, in condi-
tions of gravitational equilibrium, were the many
theories put forward, among others, by Wereide, '
who tried in 1914 to generalize Einstein's theory
of Brownian motion for a system at nonuniform
temperature; by Chapman", ~" who worked along
similar lines with more refined methods; and by
Porter, "who applied to thermal diffusion the
kinetic theory of diffusion»~orked out by E. Mey-
er for the case of a gas.
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One common feature of all these theories is the
assumption of a gas kinetic model —crude in
some cases, sophisticated in others —as the
basis upon which the theory is constructed. This
approach stems from the great success met by
simple kinetic models in explaining osmotic pres-
sure, diffusion, and Brownian movements in
liquids, and the complete success of the gas
kinetic theory in explaining the behavior of ther-
mal diffusion within matter in the gaseous state
(see, for instance, the article by G. Dickel").

In the present paper we question the validity
of a gas kinetic model as the starting point for a
theory of thermal diffusion in liquids, and we
develop a thermal-radiation-pressure theory of
thermodiffusive phenomena. We make no men-
tion of the interesting and successful phenomeno-
logical theories of thermodiffusive phenomena,
nor of the theories based on nonequilibrium
thermodynamics, because none of them gives in-
sight into the physical mechanism of interaction
between the flux of thermal energy and the mate-
rials crossed by it, which mechanism is the ob-
ject of the present study.

NA'AJRE OF THERMAL AGITATION IN LIQUIDS

Since the cause of thermal diffusion in a solu-
tion is the flow of heat produced by a temperature
gradient in the liquid, the first step towards a
physical explanation of thermodiffusion consists
in an understanding of the nature of heat in a
liquid. If one assumes that a liquid behaves like
a condensed gas, then the sum of the individual
kinetic energies of the particles constitutes the
total thermal energy of the liquid, and the trans-
fer of kinetic energy mediated by collisions among
the particles is the elementary mechanism re-
sponsible for the flow of heat. Following this
approach, thermal diffusion phenomena can be
considered as a consequence of asymmetry in
the average distribution of collisions that are
produced by the existence of a thermal gradient.

If, on the other hand, a liquid is assumed to
behave as a melted solid, potential energy also
plays a role; in fact, in the disordered lattice
of a liquid, the heat content consists of the sum
of both the kinetic and potential energies of col-
lective oscillatory disturbances that are cease-
lessly propagating within it. The liquid is to be
considered as the seat of elastic waves of all
frequencies within certain physical limiting values,
which yroyagate within the liquid mass in all di-
rections. The f lorn of heat along the direction of
a thermal gradient consists of an excess flow of
undulatory energy in that direction. In this con-
text, thermal diffusion phenomena can be con-
sidered as a consequence of the mechanical in-
teraction of thermal elastic waves and matter.

Concerning the nature of heat in liquids, P.

Debye" extended to liquids his theory of specific
heats of solids by introducing the condition that
only longitudinal maves propagate in liquids, the
transverse waves being absent, owing to lack of
rigidity. According to this theory, conclusions
are obtained for monoatomic liquids very similar
to those that are reached for monoatomic solids.

A theoretical difficulty raised by L. Brillouin"
was that, following Debye's argument, one is
forced to assume a higher-frequency limit for
thermal waves for a given substance in the
liquid state than' in the solid. On the other hand,
if one keeps the same 1':miting Debye frequency
(vD) for both the liquid and solid states, namely,

v =v (3N/4mv)'~',

[where vf is the phase velocity of elastic waves
(of frequency vD) in the liquid, N is Avogadro's
number, and V the molar volume (volume oc-
cupied by a gram-atom in our case)], one is left
with too small a total number of normal modes to
accommodate all the 3N degrees of freedom of
the gram-atom. Brillouin" suggested that the
excess degrees of freedom are occupied by
transverse vortex movements, implying only
kinetic energy. (We observe here that the con-
cept of roton, developed by Landau, is already
contained in this work of Brillouin. ) Alterna-
tive mays to settle the question of the unoccu-
pied degrees of freedom in the liquid could lie
in assuming either the existence of transverse
waves within pseudo-solid micro-domains or of
strongly damped viscosity waves.

We must remember that another fundamental
consequence of Debye's theory is that, in the
limiting case of very lom temperatures, the
specific heats of substances which can still exist
in the liquid state should obey the famous law of
proportionality to the third power of the absolute
temperature, in analogy to the case of solids for
which

where R is the gas constant and 6 is the "Debye
temperature" of the substance.

Let us now look at the experimental reality to
check the theoretical predictions. If one plots
the specific heats of monoatomic liquids against
the reduced temperature defined by

where T~ is the melting point temperature, T~
the critical point temperature, and T is the
temyerature at which the specific heat is mea-
sured; then, as observed by Bauer and co-
workers, "different substances behave in a re-
markably similar way, the specific heats approach-
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ing very closely the theoretical value of C~
= 38 at 0 & t & 0.4. At higher values of the reduced
temperature f (nearer to the critical temperature),
C& approaches the value 2R. As one can see,
Brillouin's criticism of Debye's theory seems to
be sustained by the experimental behavior of
specific heats of monoatomic liquids, and thus
the question of the form taken by that part of the
thermal agitation not consisting of longitudinal
waves is left open to further speculation. The
idea that longitudinal waves are the principal
form taken by the heat content of liquids is, how-
ever, confirmed by these observations. The in-
vestigation of specific heat at temperatures close
to absolute zero, as in the case of the two iso-
topes He' and He4, lends further support to the
concept of the undulatory nature of heat in liquids.
Measurements of the specific heat of He4 in the
temperature range 0.25-1'K, carried out first
by Pickard and Simon and more recently by
Kramers, Wesscher, and Gorter, "proved that,
below 0.8'K, Debye's law (2) was surprisingly
well obeyed, with a value of e =15.5 K. The
best available measurements give" Cy = 0.02T'
&& J/g'K, at temperatures below 0.6'K.

Direct evidence of the existence of longitudinal
waves ceaselessly propagating in all directions in
liquids at room temperature was finally obtained
through the study of the interaction of these waves
with light. In a general theoretical study of the
interaction of thermal waves with light, Brillouin"
predicted the existence of a detectable Doppler
shift in the light waves crossing a liquid, produced
by thermal waves. The refractive index changes
associated with these waves will scatter an appre-
ciable amount of light at angle y to an incident
parallel light beam of optical frequency v, only
for the acoustic plane wave satisfying the Bragg
condition for reflection. The Doppler shift 4 v

of scattered light will be given by

b, p/ p, = + 2(v /C . ) s in2' q,
llq

where v~ is the velocity of the thermal waves in
the liquid and Cli is the velocity of light of fre-
quency v, in the same. The frequency shift 4 v

is equal to the frequency v~ of the elastic wave
responsible for the scattering. Early experi-
ments by Meyer and Ramm, "Raghavendra-Rao"
and others gave poor results due to lack of a
suitable monochromatic light source, but the ad-
vent of lasers, providing an intense beam of light
that is strictly monochromatic and comprised jn
a very narrow angle, has now made it possible
to obtain reliable quantitative verifications of ex-
pression (4) together with measurements of b v

= v~ and v~ in a number of liquids. "
To conclude, it is now possible to consider the

existence of longitudinal elastic thermal waves
in liquids as a well-established fact. The spec-

trum of these waves seems to extend from the
longest wavelengths compatible with the dimen-
sions of the vessel up to much smaller waves, the
limit being the mode in which immediately neigh-
boring atoms vibrate in opposition of phase. Of
this whole spectrum, only frequencies up to 10"
Hz (wavelengths of =0.15' in water) have been ex-
perimentally investigated with the methods de-
scribed above. Within this region the velocity of
propagation of the waves does not change very
much with frequency and is in general close to,
but a little higher than, the speed of the usual
elastic longitudinal waves in the acoustical and
ultrasonic ranges of the spectrum. One interest-
ing point open to further investigation is whether
this is true also in the 10' -10"Hz region, where
relaxation phenomena are to be expected. -

FORCES GENERATED BY THE FLOW OF HEAT ON
PARTICLES SUSPENDED IN LIQUIDS

(T, —T,)/a = ET/a =dT/dx

and a flow of heat in the liquid given by

dQ/dT=K SdT/dx, (5)

where S is the cross section of the liquid tra-
versed by the flow of heat and EE is the thermal
conductivity of the liquid. The flow of momen-
tum per unit of surface associated with the flow
of heat will be

(I/S
vf

) d Q/d T =p = (Ã /v ) d T/dx, (6)

vf being the phase velocity of the waves (see, for
instance, Ref. 31). Let us now consider a cy-
lindrical particle of cross section o. and height h,

According to the discovery of Rayleigh, elastic
waves exert dynamic actions on emitting, ab-
sorbing, or reflecting surfaces; therefore thermal
waves also, being elastic high-frequency acoustic
radiation, must exert such a "radiation pressure"
along their paths. The dynamic actions exerted
by acoustical radiation on a surface depend on the
mutual orientation of the surface relative to the
propagation vector of the waves, and therefore
it would be more appropriate to speak of a radia-
tion stress tensor rather than a radiation pressure.
These problems have been extensively studied by
Brillouin" "; here we shall confine ourselves to
the simple concept of radiation pressure to de-
velop a theory of thermal diffusion in liquids.

Let us consider the schematic drawing of a
thermal diffusion cell (Fig. 1). If T, and T, are
the temperatures at which the hot and cold plates
are maintained and a is their distance, when the
steady state is reached there will be a thermal
gradient
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the minus sign on the first expression arising
from our convention on the orientation of the x
axis, or, in other words, f" represents the
reaction on the particle of the energy leaving it.

The total force exerted on the particle by the
thermal energy flowing through it is therefore

l pp Kl p dT
(p& +pu )' v v dx

(10)
and this force will be positive (i. e. , directed
downward) if

K/v )K /v
P P

FIG. 1. Schematic drawing of a thermal diffusion
cell. The thermal gradient is parallel to the X axis.
A cylindrical particle of height h and cross section 0.

is suspended in the liquid.

suspended in the liquid as in Fig. 1. If Ep and

vp are the thermal conductivity and the velocity
of the thermal waves in the material of which the
particle is made, then

p =(K /v )dT/dx

will be the flow of momentum associated with
the flow of heat in the particle. Now PE and Pp
both have the dimensions of a pressure, and the
force exerted on the particle by the thermal en-
ergy flowing from the liquid into the particle
through its upper surface 0, assuming that the
downward direction of the x axis is positive, will
therefore be

f '= 7 '(K /v —K /v ) od T/dx

4pi i P E)
(Pl 1+Pp p)' vl

and negative (i.e. , directed upward) if

K/v (K /vl l P P
'

The first term, corresponding to v', will vary
between 2 and 0, the highest value being obtained
for pius —

-pinup and the lowest for ppup=0; that is,
for a particle unable to transmit energy through
itself. An empty box with thin rigid walls would
be impervious to the flow of heat and the condi-
tion p u&=0 would apply, so that the force I',
woul vanish.

One is immediately led to inquire whether, in
the case of such an "adiabatic" particle, there
would be any effect produced by heat flowing in
the surrounding liquid. An answer to this ques-
tion would also lead to an evaluation of the effect
on the "conductive" particle considered above of
that amount of thermal energy which is reflected
by its surfaces.

Both Kl and vl in Eg. (6) are temperature-de-
pendent quantities and furthermore, in more
general conditions dT/dx may be temperature-
dependent and posit;ion-dependent, too, if steady-
state conditions are not established. In general,
therefore, a net force I", will act on the "adia-
batic particle, " such force being given by

7i ~ being the characteristic coefficient of
transmission of elastic waves from the liquid
surrounding the particle to the material of which
the particle is made. This coefficient is, as
usual, given by a combination of the acoustic
impedances pu of the media, p being the density
and u the group velocity of the waves in each
medium, with the usual meaning of subscripts.
At the lower surface of the particle, the force
acting on the particle will be

f"= —7 ' (K /v —K /v ) o dT/dx
P, l P P l l

"l"l'p"p i l p
(pu +pu )'&v v dx 'll PP

o, (11)

the subscripts sup and inf representing the values
of the term (Kl/vl ) dT/dx) at the upper and lower
surfaces of the particle. For the case of the con-
ductive particle this force will be

(pu —pu ) K

(p u +piul)' vl dx
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pp l l ldT o, (12)(pu +pu )' v dx
lnf

and the total force FZ acting on the conductive
particle will result from the sum of F, +F, .
As will be seen later, however, the force F, is
very often much smaller than F, and can be
neglected.

THERMAL DIFFUSION IN LIQUIDS AS A CONSEQUENCE
OF RADIATION PRESSURE:

THE CASE OF MACROMOLECULAR SOLUTIONS

Up till now we have not considered the size of
the particles because, in principle, the above
considerations can apply to particles of any size,
both molecular and macroscopic.

However, let us now consider particles small
enough not to sediment appreciably under the
action of the earth's gravitational field (macro-
molecules or ultramicroscopic molecular aggre-
gates). If originally they are uniformly distribut-
ed in the liquid contained in the thermodiffusion
cell of Fig. 1, then as soon as the thermal gra-
dient

S (F,+F)D DS
dc

(15)KT dx
av

At equilibr ium

J0 [(Fl+F )/ÃT ]dx= —J s dc/c, (16)

c./c =exp[(F +F )a/KT: ] .
2 s 1 2 av

Comparing this expression with the equivalent one
arrived at by the phenomenological theory of ther-
mal diffusion":

c./c = exp(s 6T),
g S

where s is the Soret coefficient of the particles,
and remembering our Eq. (10) for F, and drop-
ping the term F, in the expression for FT (since
generally it is much smaller than F,) one obtains

where cz and cs are the equilibrium concentra-
tions near the upper and lower plates, respective-
ly. From (16) the following equation can be de-
rived:

dT/dx = (T, —T,)/a

is established throughout the cell, the flow of heat
will originate, as we have shown, forces like F,
and F, acting on the particles, so that the latter
will start drifting towards one of the two plates
along the direction of the thermal gradient. This
thermal sedimentation is counteracted by ordinary
diffusion which tends to redistribute the particles
uniformly in the liquid. The flow of matter caused
by thermal diffusion across the section S of the
cell will be

F (F +F)D
= cSv =cS = cSx XT

av

(13)

(pu +pu)' vl v Z'T dx

8pu pu E E~~PP ~ P

av

It is easily seen that the term in square brackets
in the second member has the dimensions of ('C '),
precisely as the Soret coefficient (s). Alternative-
ly, since s is defined as the ratio of the thermal
diffusion coefficient D'(cm'/sec'C) to the ordinary
diffusion coefficient D(cm'/sec), and remember-
ing the relation between the friction and diffusion
coefficients of the particles f and D, one can also
write

(
dm ec dc=-DS —= -DS —,
dt . ex dx

draff

(14)

so that the net flow of matter will be

where f is the friction coefficient of the parti-
cles, vx is their drift velocity, c is the concen-
tration (g/cm'), D is the ordinary diffusion co-
efficient, Tav is the mean of the temperature of
the plates, and E is Boltzmann's constant. Be-
cause of ordinary diffusion the flow of matter in
the opposite direction will be

(pu +pu)' v v f
which gives the analytical expression of the
thermal diffusion coefficient D' in terms of the
force F,. It is easy to write the expressions for
s and D' in terms of the complete expression of
the force FZ exerted by the flow of thermal ener-
gy on the particles.

One interesting feature of the expressions for
s and D' [Eqs. (19) and (20)] is their proportion-
ality to the cross section o of the particles. If
the particles are supposed to have a shape dif-
ferent from that of right cylinders, this feature
would still be retained. Let us then take into
consideration one consequence of this propor-
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tionality of the Soret coefficient s to the cross
section o of the particles. Since the cross sec-
tion

s.('C )

o = Ar' =A(M'/p)'I', 1.00—

where A. is a proportionality constant, x is the
"radius" or an equivalent dimension of the parti-
cles, p is the density of the material of the par-
ticles and M is the molecular mass, then it fol-
lows that

0.75—

(21)

where H is another proportionality constant de-
pendent from the geometry and density of the
particles. This last expression (21) can easily
be checked by doing a series of experiments of
thermodiffusion with particles of a polymer of
progressively increasing molecular weight. We
remember here that dependence of thermal dif-
fusion on the mass of the particles cannot be pre-
dicted by the phenomenological theories of ther-
mal diffusion, mass being not even a parameter
in them.

The only existing published data on the values
of Soret coefficients obtained in thermal diffusion
with polymer substances in an apparatus of the
kind schematically represented in Fig. 1 are
those of Emery and Drickamer" and they are in
very good agreement with the theoretical pre-
dictions of Eq. (21). In Fig. 2 it can be seen
how the data for polystyrene molecules of five
molecular weights ranging from 10000 to 338 000
in toluene fit the theoretical curve. Other data
on the behavior of macromolecular substances
in thermal diffusion experiments are those of
Debye and Bueche' and Langhammer, " " who
all used the thermogravitational method. Com-
parison of the data of these authors with our
theory is complicated by the very strong con-
centration dependence of the Soret coefficient
and the difference in the apparatus employed:
the results of Debye and Bueche and Langhammer,
however, fit our theories closely enough. The
only other existing data on the behavior of macro-
molecular substances in a thermogravitational
column are those recently obtained by Gaeta and
Cursio, "where the results obtained with the
two kinds of ribosomal particles [the only results
suitable for comparison with (21)] also fit the
theory.

Equation (19) has another interesting feature:
The value of the Soret coefficient s can be posi-
tive or negative depending on the sign of the
term (KI/vl —K~/vp). This means that macro-
molecular materials can be expected to migrate
either towards the hot or the cold wall depending
on the relative values of the thermal conductivi-
ties and the speed of sound in the material of the

0.50—

0.25—

0,00

10

I

2I10

I

34I M W

particles and the surrounding liquid. This is a
fundamental feature of the theory, in contrast to
all other theoretical predictions based on kinetic
models, and is a point open to an unambiguous
experimental check.

It is difficult to compare the numerical values
of Soret coefficients calculated from (19) and
experimental values because of lack of data on
thermal conductivities and velocity of sound in
macromolecular materials, and because of com-
plications arising from the solvation of the parti-
cles. A crude estimate from the few available
data for bulk materials shows that expression (19)
yields the right order of magnitude for s and that
the contribution of the force E, [Eq. (12)] is
negligible.

EXTENSION OF THE THEORY TO SOLUTIONS OF SMALL
MOLECULES AND IONS

In the preceding paragraph we have dealt with
the special case of relatively large particles con-
tained in a liquid made up of much smaller mole-

FIG. 2. Experimental values of Soret's coefficient
for various cuts of polystyrene molecules, obtained by
Emery and Drickamer (the five points being represented
by circles). The curve drawn as a full line represents
the function s=HM proposed by us; the value of H has
been obtained by fitting the expression to the third
experimental point. A better fit could be obtained by
deriving the parameter H from the curve of the family
which could best be superimposed to all five experi-
mental points.



182 THERMAL DIFFUSION IN LIQUIDS 295

cules. The reasons for this will become evident
when treating the case of solutions of small molec-
ular-weight solutes, which we shall now briefly
discuss.

No mention has previously been made of the
relationship between the wavelength of elastic
thermal waves and the dimensions of the parti-
cles. This is an important point, inasmuch as
all our preceding considerations implicitly assume
that the particles have diametral dimensions
greater than the wavelength of the elastic waves
interacting with them. Because of the distribu-
tion of energy in a Debye spectrum of thermal
waves, most of the energy is concentrated in the
highest frequency range (in water, for instance,
in the 10"—10" Hz region, corresponding to
wavelengths ranging from the order of 100 A
down to perhaps 3 or 4 A). This means that
macromolecules having molecular weights of
10'-10' can be considered already "large parti-
cles" in terms of their diametral dimensions
relative to the wavelengths of the greatest part of
the thermal energy. These considerations justify
our simple radiation-pressure theory of thermal
diffusion of macromolecules in liquid solutions,
and indeed this was the idea which induced us to
perform experiments" with such complex ma-
terials.

The same physical mechanism must underlie
the thermodiffusion of small molecules and ions
in liquid solutions, but the difficulties met with
when one tries to extend the theory to this case
are of two kinds: the lack of a sufficient knowl-
edge of the distribution of thermal waves in the
high-energy region of the spectrum, and the need
for a more detailed description of the interac-
tions of the thermal waves with the particles.

However, the general features of the behavior
of small dissolved molecules and ions in thermal
diffusion in liquids is readily explainable on the
basis of the radiation pressure theory. For in-
stance, the very peculiar behavior of the ben-
zene-n-heptane system studied by Bierlein et al."
and not explained until now, is readily under-
standable on the basis of the radiation pressure
theory. Indeed the values of the K/v ratios of
the two compounds and their temperature and
composition dependence in the solution are such
that an inversion point in the thermodiffusive
behavior is readily predictable, just as was found
by the authors of the paper quoted. The same
can be said concerning the various other liquid
mixtures which exhibit inversion of the sense of
migration of the components when the composi-
tion of the mixture varies beyond a certain point
(for instance, water-acetone solutions, etc ). .

One extreme but instructive case is that of
ions in superfluid liquid He . As is well known,
this system was used by Careri and his co-work-
ers to study superfluidity. The "heat flush" ex-

periment, "in which a stream of thermal excita-
tions interact with ions generated in the liquid
by irradiation, can be considered as an example
of thermal diffusion, showing that both the phononic
(or longitudinal acoustic wave component) and the
rotonic (or quantized vortex component) of the
thermal excitations interact with the ions in the
liquid. More detailed information on the inter-
actions between the "gas" of thermal excitations
and the ions was obtained by studying the ionic
recombination in superfluid liquid He4 at various
temperatures. "~" This showed that the ions are
pushed around in the liquid (this time in a state
of thermal equilibrium) in a kind of Brownian
motion, by collisions with the phononic and ro-
tonic excitations existing in superfluid helium.
These results demonstrate that a more refined
theory of thermal diffusion can be formulated on
the basis of the ideas expressed above.

CONCLUSIONS

A simple radiation-pressure theory of thermal
diffusion in liquids provides a plausible physical
explanation of this puzzling phenomenon. In the
case of macromolecules or supermolecular par-
ticles, the conclusions reached by the radiation
pressure theory are qualitatively, and —in the
few cases in which the parameters entering in
the formulas are known —even quantitatively,
satisfactory.

Some predictions made by the theor y are not
unexpected and are confirmed by the r.xisting
data (i.e. , the molecular weight dependence of
Soret coefficients in solutions of high polymers);
some are completely unexpected and are now be-
ing actively studied in this Laboratory. The in-
version of the direction of migration of macro-
molecules in the thermal gradient has already
been proved to have taken place in at least one
case in the conditions predicted by the theory. 4'

In order to proceed further, a more refined
theory and new data on thermal conductivities
and the velocity of sound in various materials
(together with the temperature-dependence of
these parameters) are needed, as well as an
extension of the study of the spectrum of thermal
excitations in liquids by means of Brillouin ef-
fect. We hope to be able to develop such a the-
ory before long, and to furnish further evidence
on the validity of the line of thought presented
here.

ACKNOWLEDGMENTS

The author is very much indebted to Professor
F. Graziosi for many enlightening discussions
and helpful suggestions, and to Professor C.
Eckart for reading the manuscript.



296 F. S. GAETA 182

C. Ludwig, S-B Akad. Wiss. Wien 20, 539 (1856).
C. Soret, Arch. Sci. Phys. Nat. Genhve (3), 2, 48

(1S79).
C. Soret, Compt. Rend. 91, 289 (1880).
C. Soret, Arch. Sci. Phys. Nat. Genbve (3), 4, 209

(1880).
C. Soret, Ann. Chim. Phys. (5), 22, 239 (1881).
J. H. van't Hoff, Z. Phys. Chem. 1, 481 (1887).
S. Arrhenius, Ofversigt Vetensk. Akad. Forh. 51,

61 (1S94).
S. Arrhenius, Z. Phys. Chem. 26, 187 (1898).
T. Wereide, Ann. Phys. {Paris) (9), 2, 67 (1914).
S. Chapman, Proc. Roy. Soc. (London) A119, 34

(1928) .
S. Chapman, Proc. Roy. Soc. (London) A119, 55

(1928).
A. W. Porter, Trans. Faraday Soc. 23, 314 (1927).
G. Dickel, in Methods in Chemical Analysis, edited

by W. Berl (Academic Press, Inc. , New York, 1961),
Vol. IV, p. 267-315.

P. Debye, Ann. Phys. (Paris) (4), XXXIX, 798 (1912).
L. Brillouin, J. Phys. (Paris) (VII), 8, 153 (1936).
E. Bauer, M. Magat, and M. Surdin, J. Phys. {Paris)

(VII), 7,441 (1936).
H. C. Kramers, J. D. Wesscher, and C. .J. Gorter,

Physics 18, 329 (1952).
See H. C. Kramers, Progress in Low Temperature

Physics (Interscience Publishers, Inc. , New York,
1957), Vol. II.

L. Brillouin, Ann. Phys. (Paris) 17, 88 (1922).
E. H. L. Meyer and W. Ramm, Z. Phys. 33, 270

(1932).
B. V. Raghavendra Rao, Proc. Indian Acad. Sci.

Sect. A, 1, 261 (1934).
I ~ L. Fabelinskii, Soviet Phys. —Usp. Fiz. Nauk 77,

649 (1962) [English transl. : 5, 667 (1963)].
G. B. Benedek, J. B. Lastovka, K. Fritsch, and

T. Greytak, J. Opt. Soc. Am. 54, 1284 (1964).
R. Y. Chiao and B. P. Stoicheff, J. Opt. Soc. Am.

54, 1286 (1964) ~

D. I. Mash, V. S. Starunov, and I. L. Fabelinskii,
Zh. Experim. i Teor. Fiz. 47, 783 (1964) [English
transl. : Soviet Phys. —JETP 20, 523 (1965)].

W. J. Cowley, Contemp. Phys. 4, 15 (1962).
S. E. A. Hakim and W. J. Cowley, Nature 208, 1082

(1965).
L. Brillouin, Ann. Phys. (Paris) X, 4, 528 (1926).
L. Brillouin, J. Phys. Radium 6, 337 (1925).
L. Brillouin, Rev. Acous. 5, 99 {1936).
L. Brillouin, J. Phys. Radium 17, 379 (1956).

32S. R. De Groot, L'effet Soret —Diffusion Thermique
dans les Phases Condensees, (North-Holland Publishing
Company, Amsterdam, 1945), p. 56, Eq. 128.

A. H. Emery, Jr. and H. G. Drickamer, J. Chem.
Phys. 23, 2252 (1955).

34P. Debye and A. M. Bueche, High Polymer Physics
(Chemical Publishing Co. , New York, 1948), pp. 497-
527.

G. Langhammer, Naturwiss. 41, 525 (1954).
36G. Langhammer and K. Quitzsch, Macromolekulare

Chem. 17, 74 (1955).
G. Langhammer, Kolloid Z. 44, 146 (1956).
G. Langhammer, J. Chim. Phys. 54, 885 (1957).
F. S. Gaeta and N. M. Cursio, to be published.

4pJ. A. Bierlein, C. R. Finch, and H. E. Bowers, J.
Chim. Phys. 54, 873 (1957).

4iG. Careri, F. Scaramuzzi, and J. O. Thomson,
Nuovo Cimento Ser. X, 13, 186 (1959).

G. Careri, F. S. Gaeta, in Proceedings of the Seventh
International Conference on Low-Temperature Physics,
Toronto, 1960, edited by G. M. Graham and A. C.
Hollis Hallett (University of Toronto Press, Toronto,
Canada, 1961), p; 505.

43G. Careri and F. S. Gaeta, Nuovo Cimento Ser. X,
20, 152 (1961).

44F. S. Gaeta, A. Di Chiara, and G. Perna, to be
published.


