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Bogoliubov's model Hamiltonian H~(n, n*) is obtained
from (2.5) by dropping the last two terms which contain
three- and four-particle operators referring to k &0

states; Eq. (6.1) diagonalizes this truncated Hamiltonian.
It is interesting that the integral involved in (6.9) or

(6.12),

f dkk v I',)/E,

does not converge if v(k) is replaced by a constant,
such as v(0).
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38At T= 0, Mlp should be zero because the system is2

in a pure state in which all the bosons are in the k= 0
single-particle state. Of course, for the interacting
case, Mlp =O(Np) at T=O (4.37) as well as for T&0
(4.36). This is a consequence of the interactions, which
"scatter" the particles out of the k= 0 state, and give
rise to the "depletion effect" (Np & 6) and to fluctuations,
even at T=O.

4p The suggestion by P. Hohenberg and P. M. Platzman,
Phys. Rev. 152, 198 (1966), that Np can be determined
by neutron scattering at high energy has recently been
carried out by R. A. Cowley and A. D. B. Woods, Phys.
Rev. Letters 21, 787 (1968), with inconclusive results.
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In using a computer experiment to calculate the time correlation function of some dynamical

variable, the ensemble average over an equilibrium distribution in phase space often is re-
placed by a time average over a finite interval T. It is shown here that the statistical uncer-
tainty due to this kind of average is of the order of 1/T . The coefficient of the square root
is related to a characteristic relaxation time of the correlation function. If only time averaging

is performed, the resulting statistical uncertainty in typical computer experiments may be of
the order of 20%.

Recently much attention has been given to the
numerical evaluation of time correlation functions
by means of computer experiments. ' ' In this
article we present a theoretical estimate of one
particular source of error inherent in such cal-
culations. The error is associated with replace-
ment of an equilibrium ensemble average by a
time average over a finite time interval.

In classical statistical mechanics, the time
correlation function C (t) of a dynamical quantity
A(t) is defined as

C„(t)=&A(s)A(s+t) & .

Here, A(t) is the numerical value of some proper-
ty A of a given system at time t; it is determined
by the trajectory of the system point in phase
space. The average denoted by ( ) is an ensem-
ble average over an equilibrium distribution of
initial system points in phase space. Note that
C (t) is independent of the arbitrary time s;

this is a consequence of Liouville's theorem.
According to ergodic theory, the ensemble

average can be replaced by an infinite time
average for almost all initial system points in
phase space,

C (t) = lim C (t),
T. ~ oo

where

C (t ) = —f dsA(s)A(s +t )
1 T

T T 0

is an average over the finite time interval T for
a single initial point in phase space.

In typical computer experiments it is not easy
to construct an accurate ensemble average. Each
member of the ensemble corresponds to a repe-
tition of an experiment with randomly chosen
initial conditions. If the ensemble contains n
members (i.e. , the experiment is repeated n
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times), the relative error of the estimated ensem-
ble average is of order 1/n'I'. This is aconsequence
of the law of large numbers. For a relative error
of I%%uo, about 10' repetitions are needed.

For this reason one usually performs a time
average. If the time interval T is large enough,
then we expect that only a single trajectory in
phase space (a single computer experiment) will
suffice. However, because of the nature of com-
puter experiments, one can average over a finite
interval only. So the question arises: How large
an interval T is required in order to attain some
specified accuracy?

In this paper we show that the relative error in
a time correlation function obtained by averagimg
over a single trajectory for an interval T is of
the order of I/T 'I', and we present an explicit
expression for the coefficient of the square root.
We give numerical estimates of the error for a
typical though hypothetical case.

Our argument is based on the assumption that
the quantity A(t) is a Gaussian random variable.
Because this is not necessarily true when A(t) is
a dynamical quantity, our results are expected
to be plausible estimates, but not rigorous. At
present we do not know of any way to correct for
non- Gaussian behavior.

%e want to know how well an ensemble average
is approximated by a finite time average. The
difference between the two averages is denoted
by h(t),

~{t)=c(t) —c (t). (4)

It is clear that the first moment (taken with re-
spect to the ensemble) vanishes,

(~(t)) = 0.

The second moment of the deviation is

(For simplicity the subscript T on CT (t) is
omitted. )

The deviation 4(t) is a random quantity. It de-
pends on the initial state of the system, or equiva-
lently, on the trajectory in phase space followed
by a single system. Its statistical properties
may be characterized by its first and second
moments.

Since the ensemble average is invariant to dis-
placement of the time origin, Eq. (4) may be re-
placed by

a(t) = f ds[—A(s)A(s+t) —(A(s)A(s+t))] . (5)
1 T

-(A( )A(, +t )) (A( )A( +t ))] (7)

Very little can be done with this expression in its
general form. However, it can be reduced to a
more manageable form by the assumption that
A(t) is a Gaussian random variable.

If A(t) is Gaussian, then the average of a
product of four A's can be expressed in terms of
products of averages of two A' s,

(A,AQSA4) =(A,A, ) (Ap~)

+(A,A, )(AP )+(A,A )(Ag, ) . (9)

But the average of a pair of A's is just the time
correlation function C (t). Thus the second
moment of the deviation is

(~(t,)~(t,)) = & f ds, f, ds,

x[C (s, —s,)C (s, —s, +t, —t,)

+C (s, —s, +t,)c (s, —s, —t,)]. (9)

The integrals in Eq. (9) may be estimated in
two ways. First, we can replace the ensemble
averages C (t) by the corresponding time aver-
ages, and use information about C(t) obtained in
computer experiments to calculate the integrals.

But a more useful and convenient estimate can
be found by focussing attention on a typical limit-
ing case. The correlation function C (t) usually
decays to zero within some characteristic time
of order 7. In typical computer experiments, the
averaging time T is much larger than 7; the ra-
tio T/7 may be, for example, about 20. Also, we
are concerned with deviations h(t) for times such
that the correlation function is not negligibly
small. This means that the times t, and t, in Eq.
(9) are themselves of order v., and are much
smaller than T.

In the integrals, sy and s, both vary from 0 to
T. But because the correlation functions vanish
for times of order 7, the dominant contribution to
the integrals comes from values of s, that are
within a range of order 7. from s,. Further, the
integrand is approximately independent of s, when
T is large, so that one integration can be done
immediately, leading to a factor T. The other
integration, originally from 0 to T, may be re-
placed by an integration from —~ to + ~ so that

(&(t,)&(t.))= T', f ds, f
x [(A(s,)A(s, + t,)A(s, )A(s, + t, ))

(S(t,) S(t,)) =T—f ds[C (s)]'

4
=—f ds[C„(s)]'.

0
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Now we define a mean relaxation time r bv

T = 2J ds[C (s)]'/[C (0)]' .

[Note that if C (t) decays exponentially with the
relaxation time v, then the above equation is sat-
isfied identically. This is the main reason for
defining 7 as in Eq. (11).]

In this way we find that the second moment of
the deviation is approximately independent of t,
and t„and has the value

R(t) = C(t)/C (0) a 0.28 . (19a)

Higher accuracy can be obtained, at least for
short times, by using case II. Here we want to
know how well R(t) is approximated by C(t)/C(0).
The corresponding deviation is

of t, so that this procedure will not give even the
initial value R(0) = 1 correctly.

In a typical computer experiment where T/v
= 25, the resulting accuracy of R(t) determined
this way is

&~(t,)~(t,)) =
T [c (o)] (i2) ~ (t) = c(t)/c(o) -R(t) .II (2o)

The preceding result will be used to discuss the
statistical properties of two different quantities
that are of interest in computer experiments,

By Eq. (4) this may be transformed to

I = C(t)/C„(0)

and II = C(t)/C(0) . (14)

(2i)~(t) —R(t) ~(0)
D' =

c„(o)+~(0)
On expansion of the denominator to first order,
we obtain

The difference is in the denominator. In case I,
the initial value of the ratio is not necessarily
unity, because C(t) is a random quantity while
C (t) is fixed. In case II, both numerator and
denominator are random, but the initial value of
the ratio is unity by definition. We will see that
somewhat greater accuracy can be obtained from
computer experiments in case II, as a result of
cancellation of randomness for short times.

In case I, the deviation from the ensemble av-
erage is

~„(t)=c, [~(t)-R(t)t (0)]

, [&(t)-R(t) ~(0)]+ ". (22)

The mean value of 411(t) does not vanish. If we
use the estimate given in Eq. (12), we find

(~„(t)) =—[R(t)- i] .

~1(t) = c(t)/c„(o) —c„(t)/c„(o) .

It is clear that the mean deviation vanishes,

(a,(t)) =o. (16)

([q(t)] ) =2~/T.

The second moment of the deviation can be found
from Eq. (12), and is

It will turn out, however, that a standard devia-
tion obtained from the second moment of EII(t) is
of order (v/T)'I'. So the mean value of 611(t) is
of a smaller order of magnitude, and may be ne-
glected.

The variance of b 11(t) is easily found from Eq.
(12), and is

([~„(t)]) —[(~„(t))]

This holds for values of the time t that are of or-
der 7 and much smaller than T.

It is convenient to introduce the normalized en-
semble averaged correlation function R(t),

R(t)=c (t)/C (0) .

(1- T )[1-R(t)]'= [1—R(t)]'. (24)

Evidently the correction from the square of the
first moment is of a smaller order of magnitude,
so we omit it.

Consequently, our estimate of R(t) from a com-
puter experiment in case II is

If we use one standard deviation as an indication
of the error to be expected in determining R(t)
by computer experiments in case I, we obtain

R(t) = C(t)/C(0) + (2r/T)'~'[I —R(t)] . (25)

R(t)=C(t)/C (0)+(2~/T)'I'.

It should be noted that the error is independent

In the error term we may replace R(t) by the ob
served C(t)/C(0) without appreciable effect. On
subtracting unity from boih sides, the result ap-
pears a bit simpler:
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R(f) —1 = -1 x 1+C(t) 2~) 2

C(0) r
&

(25)

f (psec) C(f)/C(0) R(f)

0
0. 1
0.2
0.3
1

1.0
0. 9
0. 3

—0. 1
0

1.0+0.0
0. 9+0.03
0.3+0.20

—0. 1+0.31
0+0.28

[In some computer experiments, T/7 has been as
large as 100. Then the error estimates given
under R(f) in this table should be halved. j

It appears that only the early stages of the decay
of a time correlation function can be computed
with any confidence by averaging over about 25
relaxation times.

If one also performs an average over an en-
semble containing n members, one can obtain an
improvement in the error by a factor I/n'I'. The
reason is that this extra ensemble average is
roughly equivalent to considering a single system

As an illustration, we take a hypothetical ex-
ample where T/7 =25. The following table gives
"measured" values of C(t)/C(0) for several times,
and the resulting estimate of R(t):

for a time interval nT.
The preceding discussion suggests that it may

not be feasible economically to achieve much
greater accuracy (say, 1%) by computer experi-
ments using only time and ensemble averaging.
It should be observed, however, that greater ac-
curacy has been achieved in special cases, where
another kind of average is possible. An example
is the calculation of the velocity correlation func-
tion

(f) =&,(0),(f) &

of an individual particle in a liquid. If all N par-
ticles in the system are identical, then the veloc-
ity correlation function is independent of the par-
ticle number, so that

N
o (f) =—Q (v. (0)v.(t)) .N . (28)

This extra averaging over particle labels is rough-
ly equivalent to averaging over an ensemble con-
taining N systems. When a single system contains
400 particles, and the time average is taken over
25 relaxation times, an accuracy of about 1% is
expected. Useful results have been obtained in
this way.
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