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The solution to the nonrelativistic Schrodinger equation for a bound electron in an attractive
screened Coulomb potential is investigated using the large-Z (Z is nuclear charge) asymptotic
expansion theory. Both the basic asymptotic and perturbation solutions are found. The prob-
lem of finding the kth order perturbation wave function and energy for any state is reduced to
solving, recursively, a set of k linear algebraic equations in k unknowns. The asymptotic
expansions for the. energy and wave functions are presented to the tenth order in perturbation
theory for the 1S state and to fifth order for the general n, l =n -1 quantum state. Results
for the 2S states are also given. Comparison of the perturbation-theory results with those of
numerical integrations for the energy show excellent agreement. It is shown that a finite
screening radius gives rise to a finite number of bound states, a result which contradicts
some recently published work. Application of the screened Coulomb potential model to in-
tensity cutoffs in the spectra of solar and laboratory hydrogen plasmas is discussed.

I. INTRODUCTION

The problem considered here is that of an elec-
tron bound in an attractive screened Coulomb po-
tential. This potential, commonly known as the
Debye-HGckel potential in plasma physics and the
Yukawa potential in nuclear physics, has the form

v(r) = ze /-~,

where Z is the nuclear charge and X is the recip-
rocal of the Debye screening distance. Conven-
tionally, the screened Coulomb potential result is
derived by linearizing the Poisson- Boltzmann
equation using the condition

V(r)/KT ( 1

thereby obtaining a solution in the high tempera-
ture, low density limit. Of all the many possible
criteria for the validity of Debye-HGckel theory,
the Frank- Thomson criteria-, ' which in effect
states that the thermal energy must be an order
of magnitude greater than the Coulomb energy, is
the most conservative and can be written as

N (
p (KT/4mao)~, (3)

where KT is in terms of large rydbergs and Ne is
the electron density. This criteria gives a maxi-
mum Ne of about 5. 42&&10" cm ' at T=10' K and

goes to a value of about 5. 42 x10" cm ' at T
=10' K. Thus condition (3) is easily satisfied by
most laboratory and astrophysical plasmas. In
particular, in this paper we will study the bound
states of a one-electron ion embedded in such a
plasma.

The screened Coulomb effective potential can be
obtained directly from Thomas-Fermi theory in
a high-density, zero- temperature approximation
thus enabling one to use it in describing electron
impurity levels in solids. ' This potential has also
been shown to describe quasiparticle-quasiparticle
interactions in a uniform electron gas, a result
which follows rigorously from the random-phase
approximation in the high-density long-wavelength
limit. 3

Since the Schrodinger equation for the screened
Coulomb potential is not solvable analytically,
previous investigations of this problem have em-
ployed first-order perturbation theory, 4 varia-
tional calculations'~ ' and the actual numerical in-
tegration'~ ' of the differential equation. In this
paper, the large parameter asymptotic approach
developed by one of the authors (L. B.M. )'-" is
employed to obtain the vrave functions and the per-
turbation- theory energy expansion to arbitrarily
high order.

In Sec. II of the paper, the basic asymptotic ex-
pansion (the correct large-Z asymptotic expan-
sion away from the neighborhood of the origin) is
obtained to first order in Z ' and the general form
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of the energy expansion is derived for any n, l
quantum state.

In Sec. DI, a large-Z solution is obtained in the
neighborhood of the origin by solving the stretched
differential equation (perturbation-theory equa-
tion). By demanding "good behavior" of the solu-
tion near the origin, the energy terms are im-
mediately determined and the "matching condition"
is automatically satisfied. After solving the
Schr5dinger equation recursively through a few
orders in e = X/Z, the truncation form for the so-
lution becomes obvious and the solution near the
origin can be found to any order of perturbation
theory by solving a simple set of linear algebraic
equations of the same order. In particular, re-
sults are obtained for the case l =n —1 and for the
2S state. For the 1$ state, calculations are car-
ried through tenth order which show the oscilla-
tory nature of the series. The asymptotic prop-
erty is also clearly indicated. A comparison of
the numerical results for the 1S, 2S, and 2I'
states for astrophysical values of X is made with
the numerical integration results of C. Rouse'
and very good agreement is found. Our results
for the ground state for semiconductor values of
X are also found to agree closely with the varia-
tional calculations of G. Harris' and the numeri-
cal integration results of V. Bonch-Bruevich'
et al.

In Sec. IV, we discuss the problem of the num-
ber of bound states in a screened Coulomb po-
tential. This problem is of importance if Debye-
Huckel theory is to explain the disappearance of
spectral lines originating from levels greater than
n = 16 in the solar photosphere and from levels
greater than n =40 in the chromosphere. We show
explicitly, employing a theorem derived by V.
Bargmann" and J. Schwinger, "that for finite X

there are a finite number of bound states. In
particular, for a given X an upper bound to the
number of bound states is found. This result con-
tradicts the statements of C. Rouse' that an in-
finite number of bound states occur for a screened
Coulomb potential. A lower bound to the number
of bound states is found by re-examining the work
of H. Margenau and M. Lewis. '

In Sec. V, it is observed that although the
Debye-HGckel potential leads to a maximum value
of occupied principal quantum number n, this
value is much too large to explain the spectral
anomalies. A possible explanation of the dis-
crepancy is given as well as the way in which it
may be resolved.

Notice that the solutions obtained for the
Schrodinger equation should reduce to the hydro-
gen solutions in the limit X-0, that is

.-' /" 'Z I'L, "'(2Z./n), (6)
n ) n —l —1

and

E- —&Z'/n', as &-O. (7)

In order to obtain the proper form of the energy
expansion, it is necessary to find a natural per-
turbation- theory expansion parameter. Trans-
forming the radial Schrodinger equation [Eq. (4)j
into stretched variables $ =Zr and expanding the
exponential part of the screened- Coulomb poten-
tial, one obtains the equation

1d'4' 1 d4' 1@ g X (t) t —1
(t) Z

+[2f (~+1)/h'1 +=(&/Z')+, (8)

where B =(-1) /t!t+1
(t)

Equation (8) represents the Schrodinger equation
(in dimensionless form) for a one-electron ion
perturbed simultaneously by the infinite sum of
operators (X/Z)$', (X/Z)'g, ~ ~ ~, (X/Z)~$", ~ ~ ~,
etc. By treating each perturbation separately,
we see that the expansion parameter for the $& —1
term is ep 1=(X/Z) . The total energy shift E,
due to the $' term alone is

where distances are expressed in terms of Bohr
radii and the energy is in terms of large rydbergs
(approximately 27. 2 eV). The g(r) in Eq. (4) is,
of course, multiplied by the appropriate Legendre
polynomial to bring in the correct angular depen-
dence in the total wave function. In the large-Z
expansion theory, the assumed solution to Eq.
(4) is the formal asymptotic expansion

(5)
m=0

H. THE BASIC ASYMPTOTIC EXPANSION FOR THE
SCREENED COULOMB POTENTIAL

The radial Schrodinger equation for an electron
bound in a screened coulomb potential is

since the perturbation term is a constant. In a
similar fashion, the energy shift E, due to $ is
written as

E2 =E2, 2. +E2, 4&'+E2, 6E'+ "
~
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where the E2 j's are constants. In general for
the $ term, the energy shift is given by

e(g)= Q e.(g)~',
j=0

k k, k k, 2k k, 3k ' (l2)

Then the energy E for the problem can be written
as

E/Z =E0+ ~ Ek+ ~ (CT
k=1 k=4

where the (CT)k are cross terms arising from
lower orders of perturbation theory. The (CT)
sum starts at k= 4 since first-order perturbation
in c is a constant. Therefore the conventional
matrix element form for the energy sum does not
give rise to cross terms for k &4. Upon collect-
ing powers of &, we find that

where the energy expansion is given by Eq. (15).
Also note that, due to the large-Z limiting pro-
cedure, when $ is finite and Z is taken as large,
r = g/Z-0 and the solution to Eq. (8) becomes the
solution to Schrodinger's equation [Eq. (4)] near
the origin. In addition, for the condition of Eq.
(7) to be obeyed, we chose C, = —~n '.

Now that the form of the energy expansion has
been found, attention is again focused on the so-
lution to Eq. (4). Substituting Eq. (5) and Eq.
(15) into Eq. (4), and canceling out the exponential
on both sides, one obtains

——[Z'(S')'a —Z(S"a +2S'a ' )+g" ]
m=O

E/Z' =E, + e +E»e'+ E»e '
)

+ [E, , +E, , + (CT),] e' . (14)

1 g
y —(ZS'a +a ' )-Z am m r m

(15)

Thus by inspecting Eq. (14) we see that e = y/Z is
the natural perturbation- theory expansion param-
eter. Therefore the perturbation-theory expan-
sion for. the energy can be written as

E/Z= QC~2

0

OO I;

+—,a —Z' +Ca —Z =0.1 l(l+1) -m
2 r' m

= ™Zt&=0
(19)

[- —.
' (S')'- C,]a,=O . (20)

Setting the coefficient of Z' equal to zero in Eq.
(19), one obtains

where the C~ are immediately discerned from Eq.
(14). Note that treating the entire sum as the
perturbation and then evaluating

From the value of C, above, S is immediately
found to be

S =~/s. (21)

where g, is the unperturbed wave function is
equivalent to a first-order perturbation-theory
calculation with unspecified perturbation param-
eter. Such a calculation has been performed by
C. Smith~ and is equivalent to considering only
the diagonal terms of our sum. Thus his result
E~ can be written as

E /Z =E +6+ QE.2=
S j=

(i7)

Such a calculation will give the correct result for
the first-three orders in e. In fourth order, the
term E, ~ and (CT), would be omitted in Es. Thus
in any order higher than the third, first-order un-
specified parameter perturbation theory gives in-
correct results for the coefficient of the appro-
priate power of e. We shall see this explicitly
later.

From the foregoing, it is seen that the solution
to Eq. (8) can be expanded in powers of e as

By setting the coefficient of Z equal to zero, a
first-order differential equation for a, is found to
be

a,'/a, = —1/x+n(e /r) +nxC, .

Equation (22) can be immediately integrated to
get

a, =r" exp[n[W(r) + gC,r]j, (22)

~ ~ ~

where W(~)= Z (-1) X r /ii!
1=1

(24)

a. ' + [(1/x) —n(e /r) -nXC„]a.j+1 1

=n(-,'a."+(a' /r) [-', f(t+1)./~']-a. ]j

Upon setting the coefficient of Z j equal to zero,
the general lower-order (first-order) inhomoge-
neous recursive differential equation is found to be
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+n Q [xj ' -C. 2]a,
r=O

with j =0, 1, 2, .... (25)

x(1+Z [-,'n'(e /r —ne /r)

+n'i). (C, —l)lnr+n~X(C, W-B)

+ x'(-,'n'C, '+nC, )r+n g l (l + 1)/r] +...j. (29)

The integrating factor for Eq. (25) is

exp[ f(1/r ne — /r —nXC, )dr] = 1/ao.

In order to show that this solution goes over to the
hydrogen solution, in the limit X- 0, note that g(r)
in Eq. (29) becomes

By multiplying through by the integrating factor,
one reduces the formal solution of Eq. (25) to
quadratures. For aj+1, one gets

a. I =ao(r) f dx(1/a, (x))
+ for n =1,

8 f1+2 [~n'(I -n)/r

+ —,'nl(l +1)/r] +...j; (30)

l=0,

ll(l 1)x n —Q. + ——
~ Q x2j x 2x' j

+n Z [1 ' C. 1a (x)] I. (1a)
r=O

For j = 0, the result of integrating Eq. (26) is

a, =ao &n' e x -n e

+n'a(C, —1)lnr+n'y[C, W(r) —B(r)]

+&'(gn'C, '+nC, )r+ —,'nl(l + I)/rj, (2V)

where If)(r) is given by Eq. (24) and
4 ~ ~

B(r)= Q (-I) (2X) r /fz.
$=1

(28)

)I)(r) =r (exp[- Zr/n+n(W- yC, )r]j

Now that ao and a, have been found, the basic
asymptotic expansion can be written to first order
in (1/Z). The result is

n=2 l=0, y = re (1 —2/Zr);
—Zr/2

—Zr/2n=2, l =1, (=re

This demonstrates that the basic expansion car-
ried to Z ' gives the correct corresponding hy-
drogen solution for the above cases. In point of
fact, carrying the process to all orders in Z
yields the correctly truncated solutions for all n,
l states. '

We shall show through matching that C, =1 and
therefore no logarithmic divergence occurs in the
basic asymptotic solutions [Eq. (29)]. In general,
such a basic asymptotic expansion will give a good
approximation to the wave function away from the
origin. Thus if one is interested in the expecta-
tion values of observables that are not sensitive
to the behavior of the wave functions near the
origin, it would be reasonable to use expression
(29) or for higher accuracy the basic asymptotic
expansion with terms of higher order in 1/Z.
Such cases would exist when applying the large
parameter technique to the problem of finding
scattering amplitudes or when looking for
(r~) (m & 0) in bound state problems.

IH. HIGHARDER PERTURBATION THEORY

In order to find the correct asymptotic expansion in the neighborhood of the origin, one must seek the

solution to Eq. (8). Substituting Eq. (18) and Eq. (15) into Eq. (8), one obtains

j=0- 2 j $ j f j 2 $' 0j, , (f) f jZ ——%'- —C. ——0'. +—, j-C %. e + Q (B $ -C )4'.z =0,1 „1& 1 ll(l+1) 0'. j f —1 f+j (31)

where the prime now indicates the derivative with respect to the variable g. Letting

+. (5) =e &.(h)j
Eq. (31) becomes

00 ( I 00

~(1 1 1/m-1 l()+1) )' r 1 —1 ~ I(1
2 j ), n g j g j g j (t)
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Setting the coefficient of eo equal to zero in Eq. (33) one gets

- -,'bo'+ (I/s - I/g)50+ [(I/~ -1)/g]f, + [x'I(I+ I)/g']b, = O (34)

which is the familiar Laguerre differential equation. The solutions to Eq. (34), well behaved at the origin,
are the Laguerre polynomials. Setting the coefficients of e equal to zero, one obtains the second order,
linear, inhomogeneous, recursive differential equation for the bk as

1 „1 1 I/n- I 1 I(I+I) k —1 k-se-1——
b~ (

—'—
~) &6+

~
b&+&

~
b&+ Z [B~~ ~(

—C& jb =0, fork-1.
tv=0

(35)

Equation (35) can be reduced to a first-order inhomogeneous equation by factoring out the homogeneous
solution b p.

Thus, in this regard, we let

bk ——b0uk, (36)

where u, = 1. Substituting Eq. (36) into Eq. (35), it can be seen that the differential equation reduces to

k-1
ff 2bp 2 2 k —sg —1u + '+——— u =2+ [B( )( C ]u

Using a suitable integrating factor, the solution to Eq. (3V) is immediately reduced to quadratures.
The result is

k-1
uk—- 2 Z f dy[e /y bo (y)] f dx[B x + —x C ]5 (x)u (x)e +y

zo =0
(38)

where yk is an arbitrary constant of integration. Thus, for a given n, E state, where b0 is specified as
the appropriate Laguerre polynomial, the integral of Eq. (38) can immediately be evaluated.

To illustrate the method of solution, uk is found to some order (k = 5) for the principal quantum number
n with I =n —l. In this case, ho=)"

Putting 5, into Eq. (38), the integral reduces to

k —1
=2 g f$d [e2y/n/ 2n]f ydx[B xk I —C ]x2 u 8

2x
+y

k k —av k- zv ze
so=0

For k = 1, Eq. (39) can be immediately integrated to give

(39)

u, =(C, —I)q([)+y, ,

2"
1

where Q($)=n)+n in)+ Z n /(2n —r)i2 (1 —r)(
r=2

and y, is an arbitrary constant of integration. It may be chosen equal to ~n (2n —1). In so doing, it will
be shown later that the matching condition with the basic solution is satisfied, although any nonzero choice
of this constant in no way affects the values of the observables of the system. " It is also seen that the
constants of integration for other orders are zero.

Demanding the good behavior of u, near the origin, one is forced to pick C, = 1. In doing so, we have
automatically determined, self-consistently, the first-order correction to the energy expansion of Eq.
(15). It should also be noticed that this choice of C, =1 has removed the In(r) singularity from the basic
asymptotic solution of [Eq. (29)]. Thus for k =1,

u, = ,n'(2n —1)— (41)
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and C, =l. (42)

In carrying the recursive process of Eq. (39) to second order we find that

u, = [C,y ~ (2n + 1)]Q (& ) + ~4$' .

Thus for the perturbation wave function to be nonsingular at the origin, we see that

j. 2u, =mph

and C, = —~~n(2n+1).

Continuing in the same way to third order, we find that

u, = (n'/24)(sn' —Sn —2)$'- (n/18)$'

and C3= (n'/12)(2n+ 1)(n+ I).

We can continue this process indefinitely and in any order we would find

(43)

(44)

(45)

(45)

(47)

&k = (Ck -&k)Q($)+ $(5)

(49)

(50)

and where Bk &
are functions of principal quantum number n, Ak being a number. Thus by setting

Ck =Ak our solution is always nonsingular and the energy is determined. From the foregoing we demand
that the solution for any order k be of the form

k

&k
=-

p&
= Z Bk .$, ~he~e k = 2, 3, 4, ...,

and substitute it into Eq. (37) with 5, = )N . For k ~ 2 one obtains

k-2
l

k —1
/ —1 2

k —1
(l+2)(l+1)Bk

l $ +2n Z (l+1)B $ = Q (I+1)B
3=0 k, l+2

k —1
=2 Z [Bk &' '-c, ]. . (s1)

m=0

For k=2, Eq. (51) reduces to

2B, ,+4nB, ,—(4/n)B, ,( =- $

Setting powers of $ equal to zero, one obtains the result that

1
B2 2=~~

and C, = —4 n(2 n+ 1)

as expected from Eq. (44) and Eq. (45).
For k & 2, we obtain a power series jn g as

(52)

(s3)

(s4)

k —2

[Ck+ 2 n'(2n —1)Ck I+ (2n+ 1)B ] + Q [(l + 2)(l ~2~+1)B (2/s)(1 + I)B ] ~
+ k, l+i

(-1) kk k —1, (-1)
k! — „' 5 +~'(2 tt —1)

(k 1)!
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k —f
1

k —u k+t' —w —1

k —se
(55)

Upon setting powers of $ in Eq. (55) to zero for a given k order, one can determine the Bk f and Ck ex-
plicitly from the resulting linear equations. The solution of this equation through fifth order (k = 5) gives
for the wave function and energy expansion

4($) =$ e Il+ 2 n (2n —l)e+ &n$ e +[(n /24)(6n —4n —2)$ —(n/18)$ ] cn 1 $/n 1 2 g 2 2 2 2 2 3 3

y[((n/96)(n+1)(8n+3)- (n /24)(2n- 1)(n+1)) $
3 2

+ ((n/144)(8n+3) —(n /36)(2n —1))$ + (n/96)(3n+ 1)$ ]e2 3 4 4

+ [(n /2880)(n + 1)((2n + 3)(90n —75n —141n —12) —(2n + 1)(60n —105n —30n))$'3 2 3 2

+ (n /4320)((2n+ 3)(90n —75n —141n —12) -(2n+ 1)(60n —105n —30n))$
3 3 2 3 2 3

+(n /2880)(90n —75n —14ln —12)$ —(n/1800)(25n+3)$ ]e + ~ ~ ].2 3 2 4 5 5
(56)

E/Z' = ——,
'

(1/nm) + e —m(2n + 1)e '+ (n'/12)(2n + 1)(n + 1)e'

—(n'/96)(n + 1)(2n + 1)(8n + 3)e'+ [ n'(n + 1)(2n + 1)/2880]

x [15n(2n —l)(8n + 3) —(2n + 3)(90n' —75n' —141n —12)

+ (2n+ 1)(60n'- 105n' —30n)] e'+ ~ ~ ~ . (57)

For k ~ 6, a general form for the linear equations in k unknowns is found. In particular, for the 1.S
state, the equations are

(58a)

a —3a =0, (58b)

k —2
—6Bk 3+20Bk 4

———2 Q Ck .B. (58c)

k=2 l —1 .
( )—2(l+l)B 1+(l+2)(l+3)Bk

& 2
= —2 Z Ck .B ~

&

2 Z (- 1) B. ~ . /(-j+l+1). ,
k, l+1

—2(k —1)B„+k(k + 1)B

for 3~l &k-3, (58d)

k —3
= —(-1) /(k —1)! —2C B 2 Q ( 1)

+ B /( j~k 1)t
2 k —2k —2 . j+1 j (58e)

k —2
kB =(—1) /k! + Z (-1) B. . /(k-j)!kk ' . jj (58f)

The results carried to tenth order for the wave function are given in Table I, whereas the energy ex-
pansion was found to be
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E/Z2 = ——'(1/n2) + t —(0. V5)e'+ (0. 5)e —(0. 68V 50)e4+ (1.312 53)e' —(3.02090)e

+(7 88557)ev (22 60230)ta+(69 76020)es (228 900)do

(59)

TABLE I. The perturbation wave function coefficients for the 1S state carried out to tenth order. The
meaning of k, l, and By~ are understood from Eq. (50) .

0.250 000
—0.041 670
—0.055 560

0.145 833
0.048 611

0.041 667
—0.322 927
—0.107 642
—0.047 917
—0.015 556

0.788 211
0.262 737
0.109030
0.028 496
0.006 982

—2.125 640
—0.708 347
—0.279 693
—0.073 369
—0.016452

—0.002 759
6.219840
2.073 280
0.788 264
0.207 745

9
10
10
10
10

10
10
10
10
10

6

7
8

9
10

0.047 043
0.008 317
0.001 082

—19.4S6 200
—6.495 450

—2.398 490
—0.633 315
—0.144 426
—0.026 766
—0,003 962

—0.000 408
64.675 700
21.558 600
7.778 860
2.054 770

0.470 371
0.089 632
0.014 211
0.001 776
0.000 149

For comparison purposes we now evaluate expression (16) to reproduce the first-order perturbation
result of C. Smith. In so doing, we must evaluate

Z/Z =- —,'(1/n )+Z Q B( )X'(r' . )
Z=

The values for (rj) can be found explicitly in many standard quantum-mechanics textbooks to j = 4. "~ "
By using these values and the B(f) of Eq. (9), an explicit expression for Eq. (60) canbe written in the
leading terms as

(60)

E/Z' = ——,'(1/n')+ e ——,'[3n' —f(f+ 1)]e'+ (n'/12)[5n2 —3I(f + 1)+ 1]e'

—(n2/192) [35nm(n' —1) —30n'(I + I)(f —1)+ 3 (I + 2) (I + I)(f—1)]e4+ ~ ~ ~ .
For the state n, f=n —1, Eq. (61) reduces to

(61)

E /Z'= ——,'(1/n')+ e —~n(2n+ 1)e + (n'/12)(2n+ 1)(n+ 1)ta
Sp 6

(62)—(n'/192)((n+ 1)[35n(n —1)+ 3(n —2)]- 30n'(n —2)] e 4+ ~ ~ ~ .
Comparing Eq. (62) with the perturbation-theory result of Eq. (57), we see that the energy coefficients
of the fourth order differ as expected (see Sec. II).

Now that the stretched solution, namely 4($), has been obtained for any n, I =n —1, we wish to examine
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the behavior of the basic asymptotic solution of Eq. (29) as compared to 4(g). For the ca.se of any n, I
=n —1, with C, =1 and C, = —(n/4)(2n+1), Eq. (29) reduces to

q(r) =r" (exp[- Zr/n+ F(r)])

x(l+Z [—,'n (e /r-ne /r)+n X(W-8) —A. n /4+ —,'n (n —1)/r]+ ~ ),
—1, 2 -xr —B~ 3 2 2 g 2

where W(r) and B(r) are given by Eqs. (24) and (28) and F(r) is given by

(63)

r(r)=n 2 (- I)'~V/aft
1=2

(64)

In order to relate the stretched solution to the basic asymptotic solution, we invoke the "matching prin-
ciple" so often used in fluid mechanics. " For convenience in stating this principle, let us use the follow-
ing nomenclature. I et p.(Z, r) represent the truncated basic asymptotic expansion after the Z j term
and consider 4'm(e, $) to be the truncated expansion after em. One re-expresses g.(Z, r) in terms of the
variables e, $ and 4m(e, $) in terms of Z, r We. then obtain

g.(Z, r) -P.(~, 5)j
(e, g) -4 (Z, r).

(65)

(66)

Truncating g after mth order and 4m after jth order, we then define

[g.(e, $)] =g. (truncated expansion after e term)T (ev)

[4 (Z, r)] =4'. (truncated expansion after Z term).
m ' T

The "matching condition" is then stated as

[~,],=[~ ],.
Substituting $ = Zr in Eq. (63), one finds P(r, Z) in terms of the stretched variables to be

g(e, f)=P e (1+~n (2n —1)e+ 4ng e +[(n /24—)(en —5n —2)$ —(n /18)$ ]e +O(e ))
Comparing to the stretched solution which was found to be (including constants of integration y&)

(68)

(69)

(vo)

e(e, 4)=g e (I y+, +e( , y-.'+$n)e +[y, +(n /24)(6n 5n 2)$ -(n/18)$ -]e -+O(e )).n —1 —g/n, 2 2 2 2 2 3 3 4
(vl)

We see that by choosing y, =-', n'(2n- 1), y, = 0, and y, =0, the matching condition of Eq. (69) is satisfied to
third order in e. Thus for our problem, j =1 and m = 3 are the appropriate values which satisfy the match-
ing condition. In carrying the basic expansion to first order in 1/Z, we have accounted for three orders
of the perturbation-theory solution. It then follows for this nonsingular problem that the perturbation-
theory result to any order can be obtained by keeping higher-order terms in the basic asymptotic expan-
sion and re-expressing them in terms of stretched variables.

Since numerical calculations have been done for the 2S state, we have also obtained the perturbation-
theory result explicitly for this case for purposes of comparison. The results obtained to fifth order are

4'=e ((f —2)+y, ($ —2)e+( 2( +~2/—)e +[(~~ —2y, )$ +(-~~+~2y, )$ -~g ]&
—$ 2 2 3 2 2 3 4 3

+ [(~y —~~)g'+ (—+y +~)g~+ (- ~y, —~~)t'4+ —' g']e'+ [(124—~my )g'

p( LVL+lkly )tS+(11 lory )t4+ ( ~+My )(5 ~)6]g~+ e e

and E/Z'=~8+ e —3e'+ ve'-~~a + 186''+ ~ ~ ~ . (73)

Upon multiplying Eqs. (57) and (73) by —2, the energy expansions, to fifth order in e, for the 18, 2S,
and 2P states are put into the convenient form:
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—2E /Z' = 1 —2e+ (~)e'- e'+ (~8)e'- (~)e']$ (74)

—2E /Z = (~4) —2f+6m —14' + (~~)e' —372'

—2E /Z' = (~)—2m+ 5e'- loe'+ (~)e4 —138&'2I' 2

One observes from these results that a .lower l state gives rise to a lower energy eigenvalue for the same
principal quantum number (I E2gl & 1E2~I ). Thus for the screened Coulomb potential problem, we obtain
the well-known result that l degeneracy is no longer present.

TABLE II. The first-five partial sums of the large-Z energy expansion [Kqs. (74), (75), and (76)] are given for
the lS, 2S, and 2P energy states, and compared with the numerical results of Rouse (last column).

0.001 996

SO

1.000 000
0.500 000

S1

0.996 008
0.998 004

S2

I-S State
0.996 014 0.996 014
0.996 011 0.996 014

S4

0.996 014
0.996 014

S5

0.996 014
0.996 014

0.996 012

0.019610

0.111418

0.201 711

0.340 808

0.412 337

0.524 027

0.722 204

0.895 596

1.000 000
0.500 000

1.000 000
0.500 000

1.000 000
0.500 000

1.000 000
0.500 000

1.000 000
0.500 000

1.000 000
0.500 000

1 ~ 000 000
0.500 000

1.000 000
0.500 000

0.960 780
O.980 390

0.777 164
0.888 582

0.596 579
0.798 289

0.318383
0.659 192

0.175326
0.587 663

—0.048 053
0.475 973

—0.444 408
0.277 796

—0.791 192
0.104 404

0.961357
0.961068

0.795 785
0.789474

0.657 610
0.627 094

0.492 609
0.405 497

0.430 359
0.302 842

0.363 853
0.157 899

0.337 960
—0.053 224

0.411946
—0.189623

0.961349
0.961353

0.794 402
0.795 093

0.649 403
0.653 505

0.453 024
0.472 817

0.360 252
0.395 306

0.219 953
0.291 902

—0.038 727
0.149 617

—0.306 404
0.052 771

0.961349
0.961349

0.794 613
0.794 508

0.651 679
0.650 540

0.471 574
0.462 299

0.400 000
0.380 306

0.323 638
0.271 795

0.335 335
0.148 304

0.961349
0.961349

0.794 568
0.794 591

0.650 802
0.651 240

0.459 504
0.465 539

0.368 711
0.384 355

0.961357

0.794 496

0.650 994

0.464 601

0.382 549

0.274 604

0.130395

0.050 131

0.000 996 0.250 000
0.125 000

0.248 008
0.249 004

2-S State
0.248 914 0.248 014
0.248 010 0.248 013

0.248 014
0.248 014

0.248 014
0.248 014

0.248 012

0.009 619

0.050 448

0.085 321

0.131586

0.182405

0.228 009

0.250 000
0.125 000

0.250 000
0.125 000

0.250 000
0.125 000

0.250 000
0.125 000

0.250 000
0.125 000

0.250 000
0.125 000

0.230 762
0.240 381

0.149 104
0.199552

0.079 357
0.164 679

-0.013 172
0.119414

—0.114810
0.067 595

—0.206 017
0.021 991

0.231317
0.231 040

0.164 374
0.156739

0.123 036
0.101197

0.090 717
0.038 773

0.084 820
—0.014 995

0.105 910
—0.050 054

0.231 305
0.231311

0.162 577
0.163 475

0.114340
0.118688

0.058 820
0.074 769

—0.000 145
0.042 337

—0.060 041
—0.022 934

0.231 505
0.231 305

0.162 968
0.162 772

0.117546
0.115944

0.076 958
0.067 888

0.066 828
0.033 416

0.103475
0.021 716

0.231 305
0.231 305

0.162 847
0.162 908

0.115865
0.116706

0.062 283
0.069 620

0.231306

0.162 880

0.116476

0.069 259

0.033 272

0.012 997
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TABLE II (cont)

0.000 996

SO

0.250 000
0.125 000

0.248 008
0.249 004

$3

2-I State
0.248 013 0.248 013
0.248 010 0.248 013

0.248 013
0.248 013

0.248 013
0.248 013

—2E~/Z'

0.248 024

0.009 617 0.250 000
0.125 000

0.230 766
0.240 383

0.231 228
0.230 997

0 ~ 231 219
0.231 224

0.231 220
0.231 220

0.231 220
0.231 220

0.231 221

0.050 187

0.084 017

0.126 505

0.167 780

0.250 000
0.125 000

0.250 000
0.125 000

0.250 000
0.125 000

0.250 000
0.125 000

0.149627
0.199813

0.081 967
0.165 983

—0.003 011
0.123 495

-0.085 560
0.082 220

0.162 220
0.155 923

0.117261
0.099613

0.077 007
0.036 999

0.055 191
—0.015 185

0.160 956
0.161588

0.111330
0.114 295

0.056 762
0.066 885

0.007 960
0.031576

0.161257
0.161 106

0.113697
0.112513

0.068 927
0.062 845

0.045.601
0.026 781

0.161213
0.161235

0.113119
0.113408

0.064 457
~ ~ ~

0.027 253
~ ~ ~

0.161197

0.112941

0.064 015

0.028 150

Bottom row indicates values obtained using averaging technique of Ref. 18.
These terms are deleted since the series begins to diverge at these partial sums.

For various values of e, Table II shows the perturbation-theory results of Eqs. (74), (75), and (78) as
compared to the numerical results of Rouse. ' It is seen that for small values of e(e 10 s) t-he perturba
tion-theory results agree with the numerical calculations to five significant digits, whereas for large val-
ues of e(e-10-') significant accuracy is lost. However, by using a suitable averaging technique'8 which
leads to another asymptotic series, each term of which represents an average of two consecutive terms
in the original asymptotic expansion, it is seen that two to three place accuracy can be achieved for very
large values of e. For example, for the ground-state energy, using c = 0.412 337, the agreement with
Rouse using the averaged summation technique is to within 0.47%. The original summation value is only
good to 3.75'%%uo. As we go to higher values of n, for a given e, the perturbation theory naturally gets worse.
For the 28 state using a value of e = 0.182405 the averaged summation gives a result to within 0.43% of
Rouse's numerical calculation, a result which represents a considerable improvement over the original
summation result.

%'e note that for the three states in which computations were performed, the total time consumed on the
Burroughs 5500 digital computer to find the perturbation-theory wave functions and energy coefficients
for all the values of & listed in Tables I, II, and III was less than 2 min.

An additional comparison of the perturbation-theory tenth-order [Eq. (59)J results for the 18 state with
the variational calculations of G. Harris' and the numerical work of V. Bonch-Bruevich' et al. is made
in Table III for typical semiconductor values of X. Since the quoted results of G. Harris are due to a
three parameter variational wave function, they must give an upper bound to the correct energy value.
Thus for c = 0.250 in Table III it is seen that the numerical result of V. Bonch-Bruevich falls outside this
upper bound and therefore must be less accurate. Our results agree with G. Harris' to four significant
digits using the averaged summation technique and are certainly superior to those of Bonch-Bruevich.
Note also that in Table III for a value of e = 0.8 (hardly what one would consider a normal perturbation
parameter value) a third-order result gives agreement with Harris to 14.6%.

Plotting the partial sums of Table IG for e = 0.3 and e = 0.4, Fig. 1 illustrates the oscillatory and asymp-
totic behavior of the energy expansion. Since the energy expansions are oscillatory in nature, it then
follows that, in the limit e 0, successive partial sums set upper and lower bounds on the true energy
values. " In particular, examination of Fig. 1 for e =0.4 indicates that the energy expansion begins to
diverge at the partial sum S, (Sj denotes the sum of the first j terms). In fact, for any e, the perturba-
tion-theory expansion for the screened Coulomb potential is observed to be nonconvergent when carried
to sufficiently high order. In this regard, in order to have a convergent perturbation-theory expansion
within some radius of convergence &p, bound states for the perturbed problem must exist for any I E) & E'p.

Moreover, since the screened Coulomb potential with e = —
I el does not give rise to bound states (tunneling

is present), it necessarily follows that the energy expansions are divergent but asymptotic.
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TABLE QI. .Tabulation of calculated perturbation-
theory (PT) energies [Eq. (59)] compared with the vari-
ational calculations of G. Harris (H) and the numerical
calculations of V. Bonch-Bruevieh et al. (B).

-2E
Z2

0.5—

6'=0. 3

0.150

—2EPT/Z'

0.730 922a
0.730 921

-2E~/Z

0.730 920

-2'/S
0.4-

0.250

0.300

0.582 039
0.581 821

0.516637
0.515 285

0.581830

0.515 270

0.581 25

0.3
4 5 6 7 8 9 IO

S„(PARTIAL SUMS)

0.400

0.500

0.383 227
0.396 147

0.253 904
0.294 921

0.396 750

0.296 230 0.296 20

FIG. 1. The 1$ energy state (-2E/Zt) is illustrated
to tenth order in the perturbation theory for e= 0.3 and
e= 0.4.

0.600

0.667

0.700

0.800

0.302 200
0.213 100

0.308 643
0.172 838

0.322 138
0.157 069

—0.152 000
0.104 000

0.212 660

0.143 660

0.08940

0.164 80

(78)

where D = 1/X and is usually referred to as the
Debye screening radius. For S states, the re-
sulting relation is

where Nl is the number of bound states with an-
gular momentum I. When V(x) = —Ze —&+/r is
used in Eq. (78), we obtain

N & [1/(2l+ 1)]ZD/a
l

aFor values of 0 ~ e ~ 0.3 the perturbation theory re-
sults are given to tenth order in e, whereas for a= 0.4,
0.5, and 0.6 e 0.8 the results are given, respectively,
to eighth, fifth, and fourth order in e only since the
series [Eq. (59)] begins to diverge after these orders.

f cd~I v(~)i (v7)

exists there are only a finite number of bound
states. "The result of the proof is stated math-
ematically in terms of the inequality

Nf & [I/(2l+1)]f Chrl V(r) I,
0

(vs)

IV. THE NUMBER OF BOUND STATES IN A SCREENED
COULOMB POTENTIAL

Recently there has been some controversy over
whether there exists an infinite or finite number
of bound states in a screened Coulomb potential.
C. A. Rouse has asserted there are an infinite
number of bound states. Other authors y' claim
there are a finite number of bound states but their
arguments lack mathematical rigor. Actually,
the question is easily resolved using the following
theorem derived independently by J. Schwinger"
and V. Bargmann" which states that "it is a fun-
damental property of any spherical potential V(r)
for which

n* &nU = ZD/a (so)

where nU represents an upper bound to the number
of bound states. A close look at the proof by J.
Schwinger which utilizes the integral form of the
Schrodinger equation for the canonical problem
of variable potential [U(r) = n V(r) where n is a
variable constant] and zero energy indicates that
the upper limit may be much higher (see Table
IV) than the actual cutoff level. It should be
noted that Rouse in his work' studied a much
wider class of potentials than that given by Eq.
(1) and for all the other forms of potential con-
sidered, his conclusion that there are an infinite
number of bound states is born out anew by direct
application of Eq. (78).

A lower bound on the value of n* for the last
allowed bound state for the screened Coulomb
potential may be found by following a procedure
analogous to that of H. Margenau and M. Lewis. '
We perform a variational calculation using gen-
eral hydrogenic state wave functions for arbitrary
n and I =n —1 and with variation parameter $ (in-
stead of Z). We then minimize the variational
energy E~ using

sz (n, g)/eB=o. (sl)
V

We observe that the variational wave function
with l =n —1 is orthogonal to all the exact wave
functions corresponding to states of lower energy
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TABLE Ip. Calculation of the Debye radius from Eq. (87), and of nL from Eq. (86) and nU from Eq. (80) for various
values of T and N~. R( ) indicates the results for T and N~ reported by C. Rouse in Ref. 27, whereas I( ) represents
the resulting T and N& calculated by G. Ivanov-Kholodnyi et al. in Ref. 33.

R(Photo)
R(Photo)
R(Chrom)
I (Chrom)

5750
5150
5150
5000

N~
(electrons/cc)

7.44 x 10
5.44 x 1Q

1.51 x 10
1.00x10 '

D

(cm)

1.92x 10"
2.13 x 10
1.28 x 10
1.55 x 10

nL

164
173
422
465

36 282
40 251

241 882
292 904

since all such exact ~ave functions contain
Legendre polynomials with values of l ranging
from 0 to n- 2 while our variational wave func-
tion has an angular dependence given by a Le-
gendre polynomial with l =n —1. Therefore Ev
must be an upper bound to the n, l=n- 1 state. '4

For a given n, states of higher l have a larger
energy. Therefore Ev gives an upper bound to
all energies of the nth level. We determine the
last bound state nv from

E (n, g)=0. (82)
v v

Combining Eq. (81) and Eq. (82), we eliminate
g, obtaining the result (details can be found in
the Appendix)

(n )'& 0.736ZD/a
v

(83)

From the foregoing discussion it follows that the
exact energy E(n~) for any fth level of a state
with principal quantum number nv satisfies

E(n )&E (n, g)=0. (84)
V V V

where

(n*) &~ (n ) & (n*)
v

(n*)' = 0.736ZD/a0.

(85)

(86)

V. DISCUSSION OF SPECTRAL CUTOFFS AND
PHYSICAL PROCESSES IN PLASMAS

The question of the number of bound states of
a hydrogen atom immersed in a plasma is of
importance in understanding the disappearance
of spectral lines originating from energy levels
with high principal quantum numbers. This

From the way we have chosen nz, Ez(nz+1, 8)
with 8 determined by Eq. (81) is certainly
greater than zero. However, since E„(n„+l, g)
is an upper bound to E(n„+ 1), the fact that its
greater than zero does not preclude E(n„+ 1)
from being less than zero in which case the nv+ 1
state is a bound state. It then follows from Eq.
(84) that nz represents a lower bound to the prin-
cipal quantum number of the last occupied en-
ergy state n*. Therefore we obtain

phenomenon has been shown to occur both in lab-
oratory discharge tubes"y" and in solar observa-
tions. " "In Ref. 22, the Balmer series is
shown to have an abrupt cutoff at principal quan-
tum number n = 20. For observations in the pho-
tosphere, the various series appear to terminate
at about n = 16. For observations in the chromo-
sphere, Mitchell, ~ using data obtained during
eclipses finds lines originating from n as high as
37 in the Balmer series and from n =40 in the
Paschen series. R. N. Thomas and R. G. Athay"
find lines up to n=31 in the Balmer series of the
chromosphere. Thus there appears to be some
difference in the maximum bound state observed
in the chromosphere by the authors cited. G. S.
Ivanov-Kholodyni and G. M. Nikolskii" referring
to other" chromospheric data state that "near the
series limit the lines do not merge because of
their broadening and convergence, but instead they
disappear because of a rapid fall in intensity. As
a result, we fail to observe the last few lines of
the series even though their half-widths are
smaller than the separation between them. " We
will refer to these observations later. The ex-
istence of a finite number of bound states is also
of importance in order that the hydrogen partition
function be finite. "

Using our results for nl [Eq. (85)] and the ex-
pression for the Debye length"

D = 6.91(T/ N)'+cm,

where T is the temperature in K and Nz is the
electron density in cm ' we evaluate ng and np
for the appropriate data in the chromosphere and
photosphere in Table IV. Comparing these with
the experimental values, it is observed that the
results of the screened potential model are high
by an order of magnitude. It is, therefore, con-
cluded that the effect of electron screening alone
in the screened Coulomb potential model does not
adequately account for the rapid fall in intensity
of the hydrogen spectral lines in this temperature
and density region. As we go to higher electron
densities (Ne-10" cm-') such as occur in the
plasma focus" and laser spark devices, "Debye
shielding may become the dominant effect in
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log = 21.88 —6 log10n*U10 e
' 10 UnsoM

and log N = 21.65 —6 log (n*~+ 1).
10 e

(88)

(88}

For the data in the chromosphere (see Table IV
for data} they both give values of n* of about 60
which appears to be much too large. The effect
of the external field is also to cause a Stark Effect
broadening of the levels which leads to a merging
of the upper levels. This effect has been studied,
using the first-order Stark Effect result for the
maximum displacement of a level from its unper-
turbed energy by D. R. Inglis and E. Teller~ (IT}
and they obtain the result

log + =23 26 7'51 g1pn (8o)

causing the spectral emission cutoff s. Of couse,
the question of the validity of Debye theory then
comes into play (see Sec. I).

In our use of the screened Coulomb model to de-
scribe a hydrogen atom embedded in a plasma, we
have ignored the effect of the electric fields pro-
duced by the free protons (and electrons) on the
atom. Such fields lower the maximum of the po-
tential energy curve below zero and tunneling and
ionization can occur for a high lying level. The
ionization effect of a neighboring proton has been
studied both by Unsold" in a static approach and

by G. S. Ivanov-Kholodnyi ef al. 3' (IK) who obtain
an expression for the fraction of time (I'n) spent

by level n above the potential barrier. For I'n+ = 1,
the electron is ionized. They also show that in-
cluding the effects of tunneling decreases n* by 1.
The expressions derived are, respectively,
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APPENDIX. CALCULATION OF nq

To obtain an upper bound for the n, l = n —1
state of the screened Coulomb potential, we choose
as our variational trial wave function a general
hydrogenic n, l =n —1 state wave function for ar-
bitrary n and with variable charge $ of the form

(IA)

We then find the variational energy E to bev

E (n, 3) =g /2n —Zg[$/($+nK)] /n, (2A)

where K= X/2. Using the minimization condition

sz (n, $)/s8 = o, (8A)

we obtain the result

8—g( ) 1+2m(1 — ) = 0. (4A)

where the field due to the electrons is also in-
cluded. In fact, this equation was shown to give
very good agreement with Mohler's experimental
results. If we apply it to the chromospheric data,
we obtain the value n* = 41 in perfect agreement
with Mitchell's data. However, in the photosphere,
values of 22 and 26 are found for the two sets of
data given. Thus the error in n* for the photo-

sphere is far more than the 15% attributed to the
Inglis- Teller formula by H. R. Griem. " Also
this merging effect which is the basis of the
Inglis- Teller formula does not appear to occur in
the data of Schluter2' or that of Ref. 26 as men-

tioned earlier.
In a future paper, a more systematic perturba-

tion treatment including electric field effects and

Debye screening simultaneously will be performed
in the hope of better explaining the existing data.
Certainly more experimental work is called for
—especially on the dependence of n* on tempera-
ture which is not at all included in the Inglis-
Teller formula. Although this dependence is
known to be weak, its functional form represents
an important test of the validity of any accurate
theory.

Eliminating 3 from Eq. (5A) using Eq. (4A) with
n set equal to nv we obtain

(n )'=(2Z/~)Z, (6A)

where

E=2n [(2n —1) " /(2n ) "].
v v v

(7A)

To obtain a good estimate of F for nv large we
take logarithms of both sides of Eq. (7A) and
then use Stirling's approximation giving

lnF = ln(2n ) + ln[(2n —1)l ]v v

+ (2n —1)—ln[(2n ) }]—2n
v V V

which results in

F&e '

(8A)

and therefore

To find the last bound state with angular momen-
tum l=n-1, we demand that

z (n, 3)=o. (5A)
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(n )'&0.726ZD/a, (10A)

where we have used X =a,/D. The reason for the
greater than sign is that the use of Stirling's ap-
proximation gives a result for E [Eq. (9A}]which
is below the exact value of Eq. (VA). Including

the next term in the expansion for 1ogxl would

lead to a multiplying factor [2n~/(2n„— 1)]'& on

the right-hand side of Eq. (9A). For n„'s of

astrophysical interest this factor has a value very
close to 1.

The material in this article wiQ be used in part
toward a Ph. D. thesis.

~This research was supported by the Science Develop-
ment Program of the National Science I"oundation.

D. P. Duclos, USAF Air Research and Development
Command AEDC- TN-60-192, 1960 (unpublished) .

S. Raimes, The Wave Mechanics of Electrons in
Metals (Interscience Publishers, Inc. , New York,
1961), p. 194.

R. D. Mattuck, A Guide to Feynman Diagrams in the
Many-Body Problem (McGraw-Hill Book Co. , Inc. ,
New York, 1967), p. 81.

C. R. Smith, Phys. Rev. 134, 1235 (1964).
G. M. Harris, Phys. Rev. 125, 1131 (1962).
H. Margenau, and M. Lewis, Rev. Mod. Phys. 31,

594 (1959).
C. A. Rouse, Phys. Rev. 159, 41 (1967).
V. L. Bonch-Bruevich and V. B. Glasko, Opt. i

Spektroskpiya 14, 495 (1963) [English transl. : Opt.
Spectry. (USSR) 14, 264 (1962)].

L. B. Mendelsohn, Phys. Rev. 141, 113 (1966).
L. B. Mendelsohn, Phys. Rev. 160, 16 (1967).
L. B. Mendelsohn, Phys. Rev. 176, 90 (1968).
V. Bargmann, Proc. Natl. Acad. Sci. 38, 961 (1952).
J. Schwinger, Proc. Natl. Acad. Sci. 47, 122 (1961).
E. Merzbacher, Quantum Mechanics (J. Wiley @ Sons,

Inc. , New York, 1961), pp. 373, 394.
H. A. Bethe and E. E. Salpeter, Quantum Mechanics

of One- and Two-Electron Atoms (Springer-Verlag,
Berlin, 1957), p. 17.

E. U. Condon and G. H. Shortley, The Theory of
Atomic Spectra (Cambridge University Press, London,
1959), p. 117.

M. Van Dyke, Perturbation Methods in Fluid Mechanics
(Academic Press Inc. , New York, 1964), p. 90.

P. M. Morse and H. Feschbach, Methods of Theoret-

ical Physics (McGraw-Hill Book Co. , Inc. , New York,
1953), Vol. I, pp. 435-437.

J. B. Krieger, J. Math. Phys. 9, 432 (1968).
B. A. Trubnikov and Y. N. Yavlinskii, Zh. Eksperim.

i Teor. Fiz. 48, 1618 (1965) [English transl. : Soviet
Phys. —JETP 21, 1088 (1965)].

F. L. Mohler, Astrophys. J. 90, 429 (1939).
H. Schluter, Z. Naturforsch. 16a, 972 (1961).
R. Redman, Atti convongi accad. Naz lincei 11, 72

(1953); R. Redman and Z. Suemoto, Monthly Notices
Roy. Astron. Soc. 114, 524 (1954).

S. A. Mitchell, Astrophys. J. 105, 1 (1947).
R. N. Thomas and R. G. Athey, Physics of the Solar

Chromosphere (Interscience Publishers, Inc. , New

York, 1961).
G. S. Ivanov-Kholodnyi and G. M. Nikol'skii, Soviet

Astronomy-A. J. 5, 339 (1961).
~C. A. Rouse, Nature 212, 803 (1966); contains several

other experimental referenceS.
S. G. Brush, Progress in High Temperature Physics

and Chemistry (Pergamon Press, Ltd. , London, 1967),
Vol. I.

J. D. Jackson, Classical Electrodynamics (John Wiley
@ Sons, Inc. , New York, 1962), p. 342.

D. D. Burgess, B. C. Fawcett, and N. J. Peacock,
Proc. Phys. Soc. (London) 92, 805 (1967).

J. Davis and D. E. Roberts, J. Phys. B 1, 239
(1968).

A. Unsold, Z. Astrophys. 24, 355 (1948).
G. S. Ivanov-Kholodnyi, G. M, ¹ikol'skii, and R. A.

Gulyaev, Soviet Astronomy-A. J. 4, 754 (1961)~

D. R. Inglis and E. Teller, Astrophys. J. 90, 439
(1939).

H. R. Griem, Plasma Spectroscopy (McGraw-Hill
Book Co. , Inc. , New York, 1964), p. 126.


