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A theory of pressure broadening of spectral lines is presented which is applicable to micro-
wave spectra. It is an extension of the Anderson theory to the case of overlapping lines. The

interference of neighboring lines is taken into account by the use of a relaxation matrix. The

diagonal elements of this matrix correspond to linewidths and are calculated in the same way

as in previous theories. The off-diagonal matrix elements are also calculated from the inter-
molecular interaction. Application is made to the ammonia and oxygen spectra.

INTRODUCTION

The phenomenon of pressure broadening of
spectral lines has been extensively discussed in
the literature. ' The Van Vleck-Weisskopf' modi-
fication of the Lorentz theory has served as the
standard line shape used in interpreting atomic
and molecular absorption spectra. Foley' and
Anderson4 have shown how one may obtain the
widths and shifts of spectral lines from a knowl-

edge of the intermolecular potential. At low
pressures, where individual spectral lines are
isolated from each other, their theories have
enjoyed much success. At high pressures, where
the lines merge together to form a band, marked
disagreement between experimental data and
theory has been noted.

More recently, by extending Pano's' work on
relaxation phenomena, Ben-Reuven' derived a
general theory of microwave pressure broadening.
He was able to account for overlapping lines by
introducing a matrix which represented a quan-
tum-mechanical interference term between the
various transitions. A first principles calculation
of these quantities has, .not been made, however.

In the present article a theory of pressure
broadening of spectral lines is proposed which is
meant to be applicable at all pressures. Three
crucial apyroximations are employed: the bi-
nary collision assumption, the classical path
approximation, and the impact approximation.
The theory is compared with previous treatments
and is shown to be a generalization of Anderson's4
formalism. Finally the theoretical predictions
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are compared with the experimental data for
ammonia and oxygen.

THEORY

The quantity relating the macroscopic absorp-
tive properties of a gas to its microscopic proper-
ties is the dipole autocorrelation function, E(T ).
It is defined by

E(T) =Re(Trp p, (t) ~ p(t+ T))

where the collision has occurred at time 7 and

S'=Texp[-i f dt e ' V(t —T)e ' ] . (9)
—iHp t iHp t

Collisions may be classified according to their
impact parameter, b, and their relative speed,
v. Thus S will depend on these quantities. The
probability of having a collision in a time d7 is
given simply by

dP = nvf(v )dv2mbdbd T,

where p, is the dipole moment of the system and

pp is the dens ity matrix for the system in the
equilibrium state. We shall imagine the gas to
be in contact with a thermal bath so pp will re-
main a time-independent operator. The line
shape can be obtained by taking the Fourier trans-
form:

f(v) being the speed distribution function and n the
perturber density. Thus combining Eqs. (8) and
(10) gives

p (T +dT) —p (T)

=(nv fde[s' '
p '(T)S' —p, '(7')] ) dT . (11)

G(&p) = f dT cos~TE(T) .
0

(2) In a basis where H, is diagonal,

The absorption coefficient is proportional to G(v).
By using the ergodic hypothesis the time average
may be replaced by an average over all collisions

E(T ) = Re (Trp, p, (0) ~ p, (T )) .

The temporal evolution of the dipole operator
is governed by the Heisenberg equation (let h = 1)

(SI) '~bi Ts
bi

where S= Te p[x-i f dt V'(t)],

we obtain the differential equation

dp, .(T)
—Ad . p, . (T)++II . p (T)=0.

dT i ft,
' iab ab

ab

(i2)

(14)

=i [H, p, (t)] =i [H, + V, p, (t)], (4)

-I(
)

—iHpt-(
)

iHpt
(5)

In the impact approximation it is assumed that
the duration of a collision is small compared with
the mean time between collisions (or any other
characteristic period). Therefore the effect of
the impact is described entirely by an S matrix.
The post-collision dipole is related to the pre-
collision dipole by

P (T )=s' 'P'(T )s'-- (8)

where H is the total Hamiltonian. We shall make
the classical path approximation and assume that
the molecular trajectories are prescribed func-
tions of time. Then V(t) will represent a time-
dependent interaction between the partners of a
collision. It is further assumed that the pressure
is sufficiently low so only binary encounters need
be considered. It is convenient to transform to
the interaction picture

A relaxation matrix II has been introduced and is
defined by

11 . =(nv fdic[5 6 . -(S-')-'(S) .]) . (15)

A quantity similar to II has appeared in Ander-
son's formulation of pressure-broadening theory.
The crucial difference is that only the diagonal
elements IIfifi were involved in the line shape.
As we shall soon see Anderson's treatment is
obtained if the lines do not overlap.

Gordon' in his semiclassical description of ab-
sorption postulates an equation similar in form
to (14). The relaxation matrix, as we have de-
fined it, is somewhat different than his. The
fact that the relaxation matrix is indexed with
four subscripts makes it a rather strange object
from the usual quantum-mechanical viewpoint.
Ben-Reuven' recognized that such matrices do
appear in the Liouville space formulation of quan-
tum mechanics. His theory is based on this
formulation but we see from Eqs. (14) and (15)
that the basic content of the theory follows di-
rectly from the Heisenberg equations.

Under some special circumstances the relaxa-
tion matrix simplifies considerably. To obtain
criteria which will enable us to distinguish
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various limiting cases assume the pulse V(t) to
be characterized by some duration ~. In the
first case let us assume that the frequency is
high, i.e. ,

The relaxation matrix has a few simple symme-
try properties which follow from the fact that the
S matrix is unitary. Thus

co .4»1.
bz

Then neglecting time ordering for the present we
have

II* = II
fiab ifba

and Z II~. ——0 =Zf IIff b

(25)

(26)

COMPARISON WITH PREVIOUS FORMULATIONS

The integrand is the product of a slowly varying
function with a rapidly oscillating exponential so
the integral will be a small number. Similar
conclusions will result if time-ordered products
are analyzed also. Therefore we obtain an adia-
batic limit

Anderson' has developed a theory of pressure
broadening which is applicable to the case of non-
overlapping lines. We wish to show that Eq. (24)
is consistent with his results. Let us split the
II matrix into two part s; one diagonal and the
other off-diagonal

~ -0 ~

Z
(18) (27)

A second case of interest is when ~bi is small,
l. e. )

.4«1.
bi

Then

Then

(oo —(o+iII=D '(1+i QD ') '

=D —iD AD + ~ ~ ~ (as)

(bi f dt v'(t)ii) = f dt v .(t).

We shall for simplicity neglect time-ordering
effects. Arguments for the neglect of such effects
have already been given by Anderson4 and Byron
and Foley. ' Therefore

where we have introduced the diagonal matrix
D =co,-~+i~. If only the leading term is re-
tained we obtain Anderson's line shape. Thus
the trace operation in Eq. (24) becomes a sum
of terms of the form

-I & k[p I (0)]
q 0 q n

S . ={exp[-i f dt V(t)]] (21)

A formal solution to Eq. (14) can be written
down if we employ the Liouville space notation.
The combination (a, b) will be indicated by a single
index o. . Fixing our attention on a particular
spherical component of the dipole moment, Eq.
(14) can be recast into a matrix equation

Since

1 1
& (~) '& )-td)) "q

&.'+ ((o —(o)' '
i i Oi

—iv p, 7 +II p, v =0.d
d7' —0 —q ——q

This formally integrates to

p (v)=exp[- (II —ia) )~] p, (0).

Inserting Eq. (23) into (3) and (2) gives

(22)

(23)

G(a))= —~ imp (-) Trp p (0)
q 0-q

x . + . y, (0). (24)~ ~ ~

1 1
(Clp + QP +i II '()00 —m + iII q

This formula for the line shape is still rather
complicated because of degeneracy. We shall
deal with this problem shortly.

we see that the line shape is essentially just a
sum of Van Vleck-Weisskopf line shapes.

When the lines do not overlap it is easy to see
that the remaining terms in Eq. (28) do not con-
tribute. This is because the factors Dz ',
Dp ', ... are each strongly peaked only in the
vicinity of the spectral lines n. , P. .. . Since
Qo, P only connects those terms with a 4 P the
contribution will be very small.

As was mentioned earlier the Gordon theory'
has a form which is similar to the one developed
here. The essential difference between the two
formalisms lies in the structure of the relaxation
matrix. Gordon treats the rotational motion of
a molecule classically and thus attempts to pre-
scribe the II matrix a Priori. Thus in a Hund's
case b situation the S matrix is merely replaced
by a Wigner rotation matrix, and one has
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II . =&nv fdic[5 5

(30)

J'. J 1

JiIAB O' O' Ia b

The rotation angle n(b, v) is determined by an
independent method.

Let us briefly discuss the restrictions imposed
on the theory by the assumptions we have made.
The main limitation stems from the use of the
impact approximation. This assumes the col-
lision's duration to be the smallest characteristic
time in the problem. If one should happen to be
observing a spectral line in its extreme wings
then I ~ —~, I 4 could become comparable to unity.
The impact approximation will then become in-
valid and the line shape will depend sensitively
on the dynamics of the collision process. In
practice such a case arises, for example, when

one examines the microwave end of the spectra
of some systems at high pressures, such as
water vapor. At elevated pressures high-fre-
quency lines are broadened into the microwave
region and make substantial contributions. Since
these frequencies often exceed the inverse col-
lision duration we should expect impact-approxi-
mation line-shape theories to be inapplicable.

An additional restriction arises from the use
of the classical path approximation. For heavy
molecules this is probably not serious because
we are then involved with high orbital angular
momentum quantum numbers. For very light
molecules, however, this is not true and we
would probably have to replace the theory with
one that took into account the relative motion
quantum mechanically.

We must also be careful to fix our attention only
on transitions involving energy transfers which
are small compared with the kinetic energies.
This is because the classical path approximation
clearly violates the conservation of energy prin-
ciple. If the two energies do become comparable
one must somehow incorporate the reaction on
the perturber into the treatment. These three
criteria are not independent, of course.

Before proceeding with applications let us re-
write Eqs. (3), (14), and (15) in a manner in
which the rotational degeneracy is removed.
This is accomplished through the use of the
Wigner-Eckart theorem and orthogonality rela-
tions. In terms of reduced quantities we thus
obtain

f(7) =ReZI& pi&&llu(o)llr&&&ll p(~)lli &, (3')

ira ) &Zllg(~)llr)

( )
p+m5+mf

m mba,

m.

x&nv (do[ 5 5 . —(S ') (S) . ] & . (15')

In order for the present theory to give results
which are different from Anderson's theory three
criteria have to be met. First the lines must
overlap. Secondly the energy levels which give
rise to the two interfering lines must be separated
by a relatively low frequency. Finally the 8 ma-
trix has elements which couple the various levels.
In the microwave region these criteria are very
often satisfied and hence marked deviations will be
expected. The applications to be made will illus-
trate this.

APPLICATION TO AMMONIA SPECrRUM

The ammonia molecule has been the object of
intensive experimental and theoretical study.
Anderson's theoretical calculation of linewidths
agreed strikingly well with the existing low-pres-
sure data, and the line shapes were found to be
consistent with the Van Vleck-Weisskopf formula.
At high pressures, however, striking disagree-
ment between theory and experiment was evident.
In order to interpret the data it seemed necessary
to postulate a large frequency shift for the reso-
nant lines. Ben-Reuven suggested that one should
take the interference of the various lines into ac-
count. By assigning an empirical relaxation ma-
trix to the entire spectrum he was, able to obtain
quantitative agreement with the data. We will
attempt to generalize his work by making a "first
principles" calculation of these matrix elements.
Thus a unified theory applicable to the discussion
of both the band spectrum and resolved line cases
will emerge.

In a co11ision we shall regard one molecule as
the system and the other as a perturber. The
former will be treated quantum mechanically while
the latter will be described classically. As this
procedure does not permit resonance effects to
occur we shall have to account for them separately.
The dominant interaction is the dipole-dipole po-
tential
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where oz is the usual Pauli spin matrix. The
first term is just the energy operator for a
symmetric top, and the second term represents
a splitting between the states of opposite symme-
try.

To a good approximation the 4J 0 0 transitions
can be disregarded. If we assume that 4J= 1,b- 10 A, and v -5 x10' cm/sec, then

gab/v-8(J+I)» 1.

From Egs. (16) and (18) this implies that the
corresponding S matrix vanishes. On the other
hand, for inversion transitions &ob/v & 0.25. Since
this is small we shall neglect the inversion split-
ting entirely. The S matrix may then be ex-
pressed as

8=exp(-io c ~ d ),x 1

where V=K 'J df X(t). (34)

Since molecule 2 is treated classically this is of
the form d, .X(t). This potential pulse induces
transitions among the various states of the system
and correspondingly affects its absorption proper-
ties. As we have seen, the descriptios of this ef-
fect can be discussed in terms of the S matrix.
It will be expedient to treat the symmetric and
antisymmetric inversion states as forming a spinor
in some hypothetical space. The energy operator,
B'„can then be expressed as

1H II + 2@co 0

The S-matrix elements are therefore

(JKS'M'iS i JKSM)
IIRgh

= Q R, „RS„S(JM' ( e ( JM) .
S II (41)

The reduced relaxation matrix will be labeled
by symmetry indices only, since we have decided
to neglect rotational excitation. To perform the
degenerate sums implicit in the definition of this
reduced matrix it is convenient to expand the S
matrix in terms of irreducible tensors. Such ex-
pansions were originally discussed by Fano"
and later applied to the problem of the relaxation
of excited atomic states by Omont. " We define
a set of basis matrices Jl~.

J = Eg (J),

where the argument of the spherical harmonic is
the angular momentum operator. The matrix
elements of these objects are normalized so that

J M'
(JM'IZi IJM)=(-), )(mtil)'I'

(43)

By employing the orthogonality relation for spheri-
cal harmonics one can show the fact that they are
orthogonal:

(44)

By restricting ourselves to transitions which do
not couple different J states we are permitted to
write

They also form a complete set of matrices for the
expansion of any 2J+1 rowed square matrix.
Therefore, for example, we may expand

d, =nJ,

where it is easily shown that

n = p,K/J(J+1),

(35)

(36)

exp(iS "6 J)= Q sf (S")JI

e xp(-i S'V ~ X)= Q s~ (S')J*
l(0 lcd

(45)

(46)

E being the symmetric top quantum number. S
thus has the form of a rotation operator which
operates in two spaces, i.e. ,

S = pe(x- i Oo' X),

pK t df d, -3(r cl )r
J'(J'+1) J 5 r'

(37)

(38)

(39)

The o~ matrix may be rotated to diagonal form by
a matrix A:

ioeV J +S=Re

These relations may be inserted into Eg. (41)
and that in turn into the definition of the reduced
relaxation matrix, Eg. (15'). The sum over the
degeneracy index can now be found directly from
the orthogonality properties of the three J sym-
bols:

II~~~= d 5 ~5
l

EA BI II

imam /4where 8 = e (- ) Inserting Eq. (44) into (46) we obtain

(47)
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sf (S')=TrJ e
l(d l(d

(4S)

~ l
e

'
$((t) 8 0)e zS(0 8 Q)

By a rotation of the axes through some angles 8,
(t) this may be diagonalized

Let us now return to the explicit evaluation of
the dynamical vector 0 of E(I. (38). It is con-
venient to replace it with a dimensionless quantity
D by writing

V=q5,

where g = (t('/S, vb') K/J(J+1),

so

8 (s')= Z ( )
lQP l ll -M co M")

(Z) -tS'M'C +(Z)
MtlMI M'M

(49)

(5o)

and 5=vb' f dt[r, —3(r r,)r]/r' .

For very small impact parameters, of course,
one has to account for the repulsive core, but
we argue that the cross section for such collisions
is relatively small. Therefore the spherical
components of D may be expressed as (assuming
straight-line trajectories)

Using elementary properties of the Wigner ma-
trices and letting

D = —4lr&sz(-)
I ) drr(, )*

4 (,) P (
)M' -(S'M'D

(
d d 1) (21) xcos(o bu/vy (r )g (r), (58)

we obtain

II ~ = ne d5 5 ~5 + — 2l+1l

SlSll
l

JJ1 + +" dd( '((2')4)(s "s s's'd' 2-"sv ).
The only indices that need be considered are

those corresponding to transitions mith non-
vanishing dipole matrix elements. Since the di-
yole operator only connects states of different
symmetry it follows that A 4 J3 and F0 I. There-
fore the relaxation matrix will be

(4), =J/I, .

Letting 8 represent the direction of the angular
momentum with resyect to some standard frame
we can mrite

1 ' X~1K c(
(6o)

where n = sin8, cos(u, t i

where ~I is the inversion frequency. The axis
r, is actually the figure axis of the second mole-
cule, mhich is a symmetric toy. This yrecesses
around the direction of its angular momentum with
an angular speed

II
++ ~

(53)

+sin8, sin~, t j +cos8, k,

and cos8, =E', /Z, .

The sums over S' and S "are readily carried
out and me find, after some algebraic manipula-
tion,

11=—2Z ( ) (21 1) dd 1
Z

lsd�()

l M'M"

We mill assume that the angular average is to
be performed at this stage. Again, this is neces-
sary to make the problem tractable. This is tan-
tamount to replacing D by its root-mean-square
value, thus

3

22lr'r~ d (
1

)
x ll Ml ne do sin'~ M. ' —M" C

(54) xcos(d bu/v)g (r)y (r)~' . (63)

The sums here extend only over even l terms
when the indices are +-+—or —+-+ and only
over odd terms when they are —++- or +- -+.

For most b values, m, will be larger than the
duration of the collision and the integral will be
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Evaluation of this integral is quite trivial and

finally
1

m' np, ' (6
ZL4a 2 a (2

"' J(J+1)

x Z (2l+ I) Z (-)
~

l J J 1 ~!~/i

(65)

The term cos8, must, of course, be averaged
over the thermal distribution. In terms of the
moments of inertia of the symmetric top,

(cos8, ) = I,' '/(I, '~'+I, '~') . (66)

Referring back to Eq. (65) we see that the
following quantity must be known

P= Z (21+I) Z (-)J J 1

A computer program was employed to evaluate it
for the two cases where the sum runs over the
even and odd l values respectively.

,
The graphs

turn out to be just straight lines. Let

n =II =2mcn, P=II =2mcP . (68)
+ ~ + + +

. The dipole moment of ammonia is taken to be
1.46S Debye and the rotational constants are A.,
= 6.309 cm ' and A, = 9.941 cm '. The density n
is converted to amagat density p for the sake of
comparison to experimental data. Then we find
the relaxation matrix elements

n K —0.5047J + 0.1714
P

' J'(J'+ 1) + 0.5047J + 0.4952

(69)
We notice that each J,E state has associated with
it a unique relaxation matrix. This is a general-
ization of the Anderson result which specified
only a linewidth for each state. It is also in-
teresting to note that in the high-J' limit n and P
become equal in magnitude but opposite in sign.

small, unless A. =0. As before we will neglect
(og and so

D~=ascos'8 Z ~y (2m, 0))'
2 P 2P'

3

x ( fdu(1+u') ~ (cos8+isin8) ] . (64)

The final task is to evaluate the line shape for
an individual inversion transition and then super-
impose all possible absorption curves to obtain
the band spectrum. Since the matrices are two
dimensional, the algebraic operations are quite
trivial. The reduced dipole matrix elements are

= p = pÃ[(2J+ I)/J'(J'+1)] 'i' . (70)

Here f is the frequency of the incident radiation
and f, is the resonant inversion frequency, both
expressed in units of cm '.

The evaluation of the density matrix was dis-
cussed, essentially, when the average of cos8,
was evaluated. The frequencies of the lines can
be found using an empirical formula given by
Simmons and Gordy. " The temperature is taken
to be 300'K. The superposition of the various
line shapes was done on an IBM 360 computer.
All levels from (J,K) = (1, 1) to (17, 17) were
included in the calculation.

As mentioned earlier, we have not calculated
the resonance contribution. This turns out to be
relatively small, being only about 10% of the total
effect, so the major effect is the one which we
have considered. Since Anderson did, however,
calculate the resonance contribution to the line-
width, we will augment c7 by his result. This
term is discussed by Townes and Schalow. "

A comparison of the theory with the experimental
data of Bleany and Loubser is made in Figs. 1 to
6. The prediction of the Van Vleck-Weisskopf
theory with Anderson's calculation of the line-
widths accompanies each of these figures. Data
of the ammonia compressibility were used to con-
vert Amagat density to pressure. We see that at
low pressures both theories are in good agree-
ment with the data. This, of course, is what we
would expect because the lines overlap relatively
slightly at low pressure. It is just there that we
showed how our theory reduced to Anderson's.
At high pressures the deviation is quite striking,
In Fig. 7 the theory is compared with the data of
Nethercot et al. Again we see that the agree-
ment of our theory with experiment is satisfactory
whereas the Van Vleck-Weisskopf line-shape the-
ory is not.

This work can easily be generalized to the case
of foreign gas broadening. Experimental data in
this realm are lacking, however.

The population of the two states partaking in the
inversion transition are roughly the same since
they are only separated by a microwave frequency.
Therefore the power spectrum function becomes

6 = (p, '/n'c)[(2J+1)K'/J(J+ I)]p

„2nf'+(P n)(f'--f. '+P'- n')

(f2 f 2 P2 n2)2 4n2f 2
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APPLICATION TO OXYGEN SPECTRUM

Van Vleck' gave the first theoretical discussion of the absorption spectrum of oxygen. He assumed
that a suyerposition of Van Vleck-Weisskopf line shayes ought to provide an adequate description for the
proble. Since oxygen can also absorb radiation nonresonantly, he included a term with zero resonant
frequency.
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There were two groups of experiments which were performed. The first group was concerned with
measurements of absorptivity at moderate to high pressures. " The linewidth was chosen to be that
value of Tp which gave the best agreement of the Van Vleck theory with experiment. The other set of ex-
periments was performed at pressures which were low enough to enable the individual lines to be re-
solved. " These, of course, provided a direct measurement of the linewidth. Comparison of the line-
widths per unit pressure seemed to indicate considerable discrepancy. The high-pressure results yielded
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a much smaller value than the corresponding low-pressure values. Birnbaum and Maryott tried to ex-
ylain this by assuming that a pressure-deyendent frequency shift was involved. Mizushima" thought that
the collisions might be introducing some low-frequency resonance lines into the picture. These explana-
tions were not, unfortunately, theoretically justified.

Gordon' suggested that the discrepancy might be due to an inadequacy of the Van Vleck-Weisskopf line
shaye itself. By constructing a semiclassical theory which permitted the interference of various transi-
tions he was able to demonstrate that high-pressure absorption was not anomalous. Ben-Reuven and
Lightman" have recently indicated how the oxygen spectrum can be understood within the framework of
their theory. Both of these explanations, unfortunately, involved the fitting of one or more empirical
values which were not directly related to the molecular interactions. In the following section we will
show how one can go about calculating the high-pressure spectrum from first principles.

Zimmerer and Mizushima" have shown that the unperturbed Hamiltonian is almost diagonal in the rey-
resentation ]NS JM), where N is the end-over-end rotational angular momentum and S is the electronic
spin.

The intermolecular interaction we will employ will only affect the end-over-end part of the motion and
will not be coupled to the spin. Therefore the 8 matrix should be diagonal in the spin index. From the
requirements of nuclear symmetry N is restricted to assuming odd values only. The frequencies associat-
ed with 4N40 transitions are rather high compared with the inverse duration of a collision so the 8 ma-
trix for such transitions must be small. For example, the transition from the state N= 1, J= 1 to N=3,
J= 2 has an angular frequency of 2.3 x 10"rad per second, as compared with the inverse duration which
is roughly 2.5x 10"rad per second. The former quantity is around an order of magnitude greater than
the latter. Therefore we will regard the S matrix as connecting states of different mN only.

Since we have elected to stay with a given 2N+1 dimensional basis we are permitted to exyand the S ma-
trix in terms of the irreducible matrices:

S = Z s*„J„(N). (V2)

We must average over 811 orientations of the collision plane. This is accomplished through the use of
the Wigner rotation matrices. We average over all Euler angles

pig
, (f )DS 'D '[a)(b(DSD ' )z) = g Q S I. . . & (I') S, , (F)(f ] J', , )a)(bf J )z).8m' 0'p. '

Ap.

PP (73)

Employing the Wigner-Eckart theorem and the orthogonality relations we can carry out the degeneracy
sums implicit in E(l. (15') and obtain

(
)l+Ja+Jy Z. J 1

II
A

nv de5A5 + 2l1 EJ A BJ III (v4)

To proceed further it is convenient to switch to a representation where N and S are uncoupled, the relevant
relation being

(NSZ'IIJ llÃ&Z) = (-) (2J+))*(2J'+))*
I ())(IJ IIN) .

Therefore the reduced relaxation matrix becomes

(75)

II ~&=n do 5 J 6J J + 2JI 1 2J&+1 2JA 1 2J& 1
- JZJA JI3JI

B I 1 2/ ) F
I I

)'
II

B
I )

where S=1 for oxygen.
Artman and Gordon" attemyted to calculate the oxygen linewidths on the basis of Anderson's theory.

They considered four interactions which might contribute to the linewidth: the magnetic dipole potential,
the molecular electric quadrupole potential, the London dispersion force, and the exchange interaction.
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The first two of these were found to be negligible and only the exchange and dispersion forces contributed
significantly. Such a potential can be cast into the form

V=f(R)+g(R)Q 'JJ* (R)[g (r )+y (r,)], (VV)

where x, represents the orientation of the molecular axis relative to a space-fixed frame, and R is the
intermolecular separation. The reason why no 'JJ I~ terms appear is that the molecules are homonuclear.

Since we have decided to regard If, as being diagonal in N we can make the approximation

e "v(t)e ' =v(t) (vs)

so the S matrix will assume the simple form

where

(vs)

I"=f dt f(R)+Q f dt g(R)y* (R)[g (rl)+y (r2)] . (80)

The first term does not couple states of different mN so it simply multiplies the S matrix by a constant
phase factor. The complex conjugate of this quantity factors out of S ' so they just cancel each other.
Therefore, effectively,

r=Q f dtg(R)g* (R)[g2 (rl)+g (r2)] . (sl)

For the sake of simplicity we will again neglect the resonance contribution to the relaxation matrix. This
approximation will not result in more than a 10%%ug error. If we wanted to include the resonance effect we
would have to expand the S matrix in a perturbation expansion. This, in turn, mould require cut-off im-
pact parameters to prevent the divergences which would occur for small impact parameters. Since this
procedure is also somewhat approximate we feel that our approximation is not much worse.

We see that the S matrix is only Iinfluenced by the noncentral part of the potential. Thus we would ex-
. pect the study of line shapes to provide valuable information about the ainsotropy of molecular forces.

Further reduction of I' can be accomplished by replacing 'g2 (r) by an irreducible matrix. Then

'g2 (r) = aN J2 (N) .

The proportionality constant can be found by using the Wigner-Eckart theorem, i.e. ,
N (2N+1

I
N N 2&~ N(N+1)(2N+1)

N (4v) I ( 0 0 0 j 4v(2N 1)(2N+8—)

Combining Egs. (81) and (82) yields

(s2)

(88)

F =AOJ20+A2(J22+ Js-2)

where we have let

A, =- (5/16v)'I'a fdt g(R),

A, = (15/82w)'I' u fdt g(R) cos2P.

(s4)

(86)

(86)

We must next specify the form of the potential g(R). The long-range part of the dispersion force is
known to vary as R ' (except at extremely large distances as R '). The exchange interaction, on the
other hand, is short ranged and is usually taken to vary exponentially. For computational ease we will
assume a power-law potential, i.e. ,

g(R) =C/R~ . (sv)

' We will also assume that the trajectories are straight lines, as is conventionally done in pressure-
broadenjng theory. These two approximations enable Ao and A, to become a simple function of impact
parameter and hence to obtain an analytic answer for the db integration. Thus
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f 5N(N+ 1)(2N 1) ii I'(—' ( q —1))
( 64m(2N —1)(2N+ 2) ) I'(-' q)

1
15N(N+1)(2N+1) ~~' q —2 I' (k(q - 1))

128m(2N - 1)(2N+ 8) j q I'(—,
'

q)

where we have let

$ =C/vb

(ss)

(se)

(9o)

The calculation of the S matrix has thus been reduced to the exponentiation of a 2%+1 by 2N+1 matrix.
There are two ways of carrying this program out. The first consists of expanding the 8 matrix in a

power series in ( and considering each term separately. As mentioned before this leads to divergences.
Anderson' proceeded in this manner in his theory of pressure broadening. Byron and Foley' have shown
that such an approach can be circumvented. Their procedure involves the diagonalization of I directly.
If one can find a unitary matrix which does this the exponentiation becomes a rather trivial matter. For
their problem they were fortunate enough to find the matrix analytically. In the oxygen problem, how-

ever, such amatrixcan only be found for the N=1 case. For the higher N states one must have recourse
to numerical methods to find it. Let 8 represent this transformation. Then, if we factor g from the 1'

matrix,

(A=)BI'R. (91)

This expression is then combined with Eqs. (72) and (79) to obtain an explicit value for Sf~. Let us de-
fine the auxiliary quantity

(l(o)

mm'
(92)

The reduced relaxation matrix may be expressed, after some tedious algebraic manipulations, as

JB"I11„„=—2[(2Z +1)(2Z +1)(u„+1)(2Z +1)]'i'(-) Z (-)
l(0

J J 1 N J 1 NJB1
(nv fd&xsin'[ —,'](A —A )] ) . (es)

We find

w' csc[s/(q —1)]fda sin'[ —
$(Aa —Ab)] =

2(q —1) I'((q+1)/'(q —1))

C]A —A
a b

V
(94)

The thermal averaging of the relative speeds may also be evaluated analytically. Thus, letting p. be the
reduced mass and T the temperature,

j.

(v(v) ) = I'((5 q- 7)/(2q-2))(2kt/p) '
(p, /2kt) (95)

Therefore we can write the reduced relaxation matrix as

FIAB FIAB (es)

where X) represents a "dynamical" factor
1

a) =n(2kt/p)' (C p, /2kt) (97)

and MF~B is a numerical matrix defined by
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1'((5 e —7)/(2q —2))
2N

e —»((v+1)l(4 —1))»gv/(4 —1)]

x [(2J' +1)(2J' +l)(2J +1)(2J +1)]'I'(-)
JB+ I (l(o) (l(o)

P P JP 2 q (gs)

The selection rules permit only the following values of J~ and JI for a given value of ¹

J =N+1, N+1, N, N, N- 1, N-1;

J = N+1, N, N+1, N, N- 1, N, N- l.
Thus we see that the Mmatrix will be a seven-dimensional array.

The reduced matrix elements of the magnetic dipole can easily be evaluated. The dipole operator is
given by

(gg)

where po is the Bohr magneton and f is the electronic spin. The factor 2 arises from the g factor for
the electron. Its matrix elements are simply

1 J N
(JF(jp((J ) =2p 5'~'(-) [(2J +l)(2J +1)]

I
(100)

The density matrix for oxygen is also given by a rather simple expression. The nuclei are Bose parti-
cles so the nuclear weighting factor is

g=0, for N even; g= 1, for N odd. (101)

Each rotational level is split into three fine-structure levels so the partition function may be expressed
as

q = Q 3(2N+1) e
N odd

(102)

and the density matrix becomes

.p = Q e N for N odd; p =0, for N even.
N

(102)

In evaluating the energy EN we neglect the fine-structure splitting and use just the energy for a rigid
rotor. The rotational constant is B,=43 102 MHz and the temperature is taken to be 300'K.

The frequencies for the various fine-structure transitions have been tabulated by Kisliuk and Townes. "
Thus all the elements necessary for the calculation of the oxygen spectrum have been assembled. The
actual computation of the Mmatrix has been done using an IBM 360 computer. The A and R matrices
were evaluated using the Jacobi method of diagonalization for the cases N=1, 3, 5, 7, 9, 11, and 13.
The values of Mfor N=15 through 25 were obtained by extrapolating the low N results.

From Eq. (24) we obtain an expression for the absorptive part of the dielectric coefficient

e"=—(2v(on/Mt)lmTr(pp[((o, +(o+im) '+((o, —(u iw) +']] (104)

where n is the number of molecules per unit volume. We can formally expand the denominators to ob-
tain

1 1 1 1 ~ ( )n(.)n 1
ru +v+iw ru, se 1+iv(v, sv) '

td sv v sv)n=o
(105)

The imaginary part of this expression can now easily be extracted. Let
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Q =[II ~ I/((o + &u)]'
0

(106)

Then we may rewrite the sum as a single fraction

2'Nn T 1 0 1 1 1 0 1 1
(107)3kf (do+(d (do+(d 1 + Qp Mo —(0 (do —(0 1 + 'Q

All the quantities appearing in this expression are now real numbers.
The actual matrix inversion was accomplished numerically using the Gauss- Jordon reduction procedure.

The band spectrum was assembled from the rotational fine-structure components for N=1 through N=25.
We have assumed that q=6, in other words, that the dispersion forces are chiefly responsible for line

broadening. We still have no idea what the size of the coefficient C aPPearing in Eq. (87) is. We can
adjust C to obtain the best fit of the experimental data, however. The widths measured by various re-
searchers are, unfortunately, not in full agreement with one another. The experimental situation has
been summarized by Kaufman. " Anderson, Smith, and Gordy" found a width of 1.71 MHz per mm Hg
for the 3+ transition. We shall use this value to evaluate the factor g). At low pressures we have seen
that the diagonal elements of II are to be identified with the linewidths. Therefore, from Eq. (131)we ob-
tain

~~/P=2v(~ v/P) =(u/P)m .
diag

For the transition 3+ we find M=0.604, so

&//=17. 77 MHz/mm Hg.

(108)

(109)

Kaufman has investigated the variation of s" with amagat density at a frequency of 9260 MHz. Pressures
can be converted to amagat units using the tables of Hilsenrath et a/." In Fig. 8 we compare Kaufman's
data with the prediction of the present theory. We notice that the agreement is quite good at low pressures
but becomes worse at higher pressures. The Van Vleck-Weisskopf theory, however, has difficulty ex-
plaining even the low-pressure data. It also predicts a peak in the absorption curve which is simply not
observed.

Comparison has also been made with the data of Birnbaum and Maryott" in Figs. 9-11. Although the
theoretical curves seem to follow the same trends as the experimental points, the numerical agreement
is not too good here. This probably reflects the omission of the resonance contributions to the line shape.

In order to obtain an accurate theory for oxygen one would have to relax some of the assumptions made
here. Firstly, a more realistic potential should be employed which takes into account the short-ranged
overlap and exchange effects. This would require one more degree of numerical complication, however,
because the computation would then involve an integration over impact parameters. Secondly, we should
attempt to use more realistic trajectories. Finally, we could include the resonance effects. Again these
refinements would entail quite a bit of additional labor.
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