
PHYSICAL RE VIEW VOLUME 182, NUMBER 1

One-Particle Self-Energy and the Virial Coefficients*

5 JUNE .1969

C. G. Gray and D. W. Taylor

Department of Physics, McMastex University, Hamilton, ante'io, Canada
(Received 17 December 1968)

The relation between the virial coefficients and the self-energy of the one-particle propaga-
tor is discussed for the "impurity" or Lorentz model. Expressions are derived for the equi-
librium virial coefficients in terms of the self-energy parts describing the scattering of a
particle due to clusters of one, two, three, etc. , isolated impurities. In particular the sec-
ond virial coefficient is expressed in terms of the t matrix describing the scattering due to
one impurity. This expression is identical in form to that derived by Watson for a real gas.
The expression is then reduced to a form involving the phase shifts. (If a bound state con-
tribution exists, this can easily be included. ) No assumption is made about the symmetry of
the potential, and the result is a generalization of the Beth-Uhlenbeck-. Gropper result for
local spherically symmetric potentials. The model is also discussed classically.

I. INTRODUCTION

The impurity or Lorentz model, in which one
considers a number of noninteracting particles in
a large box which also contains a large number of
randomly distributed scattering centers„has often
been used for the theoretical study of nonequilib-
rium properties of gases and solids. ' ' In partic-
ular, this model has recently been employed to
study the divergences occurring in the density ex-
pansions of the transport properties of classical
and quantum gases. '

In this paper we discuss the equilibxium prop-
erties for this model using the propagator tech-
nique of Edwards, ' which has been used recently
to show the divergences in the density expansion
of the electrical resistivity. ' There are two main
purposes to the present paper. First, we indicate
a new and comparatively simple approach to the
quantum-mechanical equilibrium virial expansion
problem, using the Lorentz model. This approach
is through the self-energy. of the one-particle prop-
agator. It is planned to extend the method to in-
clude real gases. Secondly, since we use a meth-
od which has also been used to discuss the trans-
port properties, 4 it should be possible to see more
clearly why divergences occur in the one problem
and not in the other. Some preliminary results
concerning this question are given in the Appendix,
(compare also Ref. 4).

In the next three sections, the quantum-me-
chanical virial expansion problem is set up and
solved for the Lorentz model. The second virial
coefficient is expressed in terms of the self-en-
ergy parts describing the interaction of a particle
with one impurity. It is also expressed in terms
of the g matrix for the scattering due to one im-
purity. (For simplicity, the absence of bound
states is assumed. ) The higher-order virial co-

efficients are related to the self-energy parts
containing larger clusters of impurities, but the
relations are more complicated.

For purposes of comparison with the quantum
results, we give a classical discussion of the im-
purity model in Sec. 5. ' For uncorrelated im-
purities, all the classical virial coefficients be-
yond the second vanish. In contrast, the higher-
order quantum virial coefficients do not appear
to vanish.

For spherical potentials, the second virial co-
efficient has been expressed in terms of the scat-
tering phase shifts, "y" and also in terms of the
scattering amplitude. " Baumgartl" has recently
generalized the scattering amplitude expression
to include scattering from noncentral and even
nonlocal potentials. In Sec. 6, we derive a phase-
shift formula which is valid for these more gen-
eral potentials. Van Kranendonk, ' by a different
method, has previously given a partial general-
ization. His derivation is valid for "separable
scattering problems" (see Sec. 6).

II. THE IMPURITY MODEL

The model consists of a number N' of noninter-
acting identical distinguishable particles in equi-
librium at temperature T in a large box of volume
0 which also contains a large number N (N»N')
of randomly distributed scattering centers (im-
purities). To find the total free energy for the
noninteracting particles, we calculate the free
energy for one particle in the box and multiply
the result by¹.

The one-particle Hamiltonian is

H=II + V,
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where P, =P'/2m is the kinetic energy of the par-
ticle, and

e P"=Z 'G(.), (s)

V=
Zg=l

(2)
where g denotes the inverse Laplace transfor-
mation

is the total potential energy due to the N impuri-
ties. v;=v(r -5 ) is the potential energy of the
particle at r and the impurity at 5 .

For a definite impurity configuration 5N
=-51 ~ ~ ~ RN, the partition function Z=Z(% ) is
given by

Z= Tre

with p = I/kT. We shall not calculate the quantity
(3), Instead, we set up a scheme for directly cal-
culating Z, the average value of Z, the average
being taken over all configurations of impurities.
The reason we can do this is discussed in the Ap-
pendix. There it is shown that, at least for the
case of uncorrelated impurities, Z is a "self-
averaging" quantity for a sufficiently large system.
That is, for the overwhelming majority of impurity
configurations, the deviation of Z from Z is negli-
gible compared to Z. Thus because the relative
fluctuations in Z are negligible, and because Z is
easier to calculate than Z, we shall calculate Z.

The average Z =(Z&, is to be taken over all con-
figurations according to

(4)

Occasionally we consider a more general (corre
lated) average, for which we use the notation

(Z&= fd% P(% ) ZN ),

G(z) = . $dze
—1 1

the contour to be taken counter clockwise and en-
closing all the poles of G(z), which occur at the
eigenvalues of Il.

We choose the contour to run arbitrarily close
to the real axis, and assuming for simplicity that
negative energy states are absent, we can write
(9) as

g G(z) =-—1 dE8.

x . [G(E+) G(E") ], (10)

where E is real and E =Eyfz. —From (2), (S),
and (10) we obtain

Z=Z 'TrG(z)
CO +=-—f dEe ImTrG(E ) .

0

In order to calculate Z, we must calculate G(E ),
the average propagator in the impurity system.
If there are negative energy states, the contribu-
tions of the corresponding poles must be added to
(10) and (ll). We point out that the two limiting
processes implicit in (11)must be taken in the
order (1) N-~, n-~ (N/0 fixed), (2) e-0.

The propagator G(z) satisfies the "integral equa-
tion"

where P(% ) is the configurational distribution
function for the impurities.

The free energy E and the pressure p are ob-
tained from

Our aim is to calculate p as a power series in the
density n =N/0, in the limit N- ~, 0- ~ (n fixed).

III. CALCULATION OF THE PROPAGATOR

G G() + GOVG (i2)

with V given by (2). This equation can be iterated
and averaged, and the resulting terms represented
by diagrams following Edwards, ' see Fig. 1.
The only difference here is that the diagrams rep-
resent operators, so that attention must be paid
to the order of the factors in a diagram. The
contribution due to a given diagram can be written
down by writing G for the arrowed double line, G,
for an arrowed line, vz for a broken line and N
for each cross. As examples, we note that the
fourth diagram on the right-hand side in Fig. 2 is
equal to

The partition function Z depends on the average
propagator (exp(- PH)&, . We introduce, now, the
propagator in the "energy" language G(z) = (z —H) '
where z is complex. We have, of course, the re-
lation

N( G,v,G,v, G, &0,

and the third diagram is equal to

N (Gov, Gov, G,&o . (14)
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FIG. 1. Perturbation expansion for the average
propagator.

+ 0 ~ ~ ~

t. = v. +v.G v. + ~ ~ ~zzz0z
the diagrams containing repeated and uninterrupt-
ed interactions with the same impurity can be
summed. By using a wiggly line for tz, we ob-
tain the series in Fig. 6. A similar diagram
series for T can be written down. This diagram
series can also be obtained from Watson's multi-
ple scattering equation"

T=EI.+Z't.&of.+Q'I. Gof. c I + ", (22)
z

z Oj ..
k

z Og 0 k

where the dashes on the summation signs indicate
that consecutive indices must be different.

The average in (13) is over all values of 5„and
in (14) over all values of 5, and 5,.

It is convenient to introduce Watson's transition
operator" T= T(z), defined by

T = V+ VGoT.

The proyagator is expressed in terms of T by"
FIG. 2. The reducible self-energy T .

G = Go+ GoTGo . (16)

The average propagator is therefore simply given
by

G = Go+ GoTGo.

Note that T = T (z) plays the role of a total or re-
ducible self-energy, see Fig. 2. T is expressible
in terms of the irreducible self-energy Z = Z(z),
see Fig. 3, in the usual way. " The irreducible
self-energy diagrams are shown in Fig. 4. (An
irreducible self-energy yart cannot be broken into
two parts by removing a G, line. ) The diagrams
for 7.' are the same as those in Fig. 1 except that
the first diagram is omitted, and the first and
last Go line s are omitted in the othe r diagrams.

By rearranging the yerturbation exyansion for
Z as in Fig. 5, we see that Z can be decomposed
as

FIG. 3. The Dyson equation. Z is the irreducible
self-energy.

/

+ / E l E h +

FIG. 4. Perturbation expansion for Z.

Z=Z, +Z + ~ ~ ~,

where Z, contains those diagrams proportional to
N, Z, those proportional to N', etc. The series
for T can be rearranged in the same way:

T= Tz+ T2+ ~ ~ ~

From Figs. 2 and 3, the Tz and Zz are found to
be related by

pc

I
I+ I

0 ~ ~ ~ ~+

I
I I \

+ + + ~ 0 ~

++a ~

T, =Z„T,=Z, +Z,G,Z, , etc.

By introducing the one-impurity t matrix tz,

(2o) FIG. 5. Rearrangement of the perturbation series.
The diagrams in the first line are proportional to N,
those in the second line to N2, etc.



C. G. GRAY AND D. W. TAYLOR

and from (7) we have

N Ã~
P -P =kT(- b ———b + ~ ~ ~ )p 1 g2 2 g3

or p =p, (1 —5,n —b,n'+ )~.
Comparison of (28) with the standard virial series

Pg=kT (I +Bn+ Cn'+' ' ') (29)

+ cay

shows that 8 = —b„C= —b„etc.
From (27) we see that a, and a, are needed for

the second and third virial coefficients. We dis-
cuss here the evaluation of a„deferring the dis-
cussion of a, to a future publication. From (25),
(19), and Fig. 5 we find that a, is given by

a, =X'Z 'TrGo'(t, )0. (30)

FIG. 6. Multiple scattering expansion for Z.

IV. THE VIRIAL EXPANSION

From (11)we have

Z/Z, = — Z 'rrG(z),
p

(23)

Z/Z, =1+ — 2 TrG TO. (24)
Zp

When the series (19) for T is substituted into (24),
a density expansion of the form

where Z, =0/X' is the partition function for the
free particle, and X = k/(2vmkT)'I' is the thermal
wavelength of the particle. Substituting (17) into
(23) and making use of the cyclic invariance of the
trace we obtain

By writing out the trace in the momentum repre-
sentation, and using the relation (A. 3) we find
that the averaging over 8, in (30) can be omitted.
The second virial coefficient B=- a, is therefore
given by

B=-X'2 'TrGp't,

where t is the t matrix for the impurity at the
origin. The form (31) for a real gas of identical
molecules has been derived by Watson "(Ou. r
8 is a factor of 2 larger than Watson's because
we are considering a mixture of two different
types of particles. ) By using the identity

G) ——Gp+ Gp tGp,

where G, is the propagator with one impurity
present, we find

Q2Z/Z =1+a n+ —2—n2+
p 1 (25)

8= —X'TrZ '(G, —Go)

= —X' Tr(e ' —e ')

lnZ/Z, = b,n+ ' n'+ ~ ~ ~

2f (28)

Simple algebra gives for the 5's

results: The term involving T, gives rise to the
term in (25) linear in n, since T, is proportional
to N, and Zp

' is proportional to 0 '. The other
terms in (25) arise in a similar way. Further ex-
amples are discussed in the Appendix.

To calculate the free energy we need a density
expansion for lnZ/Z„

= —X'(Z, —Z,), (32)

in an obvious notation. Equation (32) is the more
familiar form for the second virial coefficient. "

In concluding this section we note from (27) and
(30) that the second virial coefficient can be ex-
pressed in terms of the irreducible self-energy
part Z, . It is interesting to speculate that the
third virial coefficient might be expressible in
terms of just Z, .

bi =+a ~ ~2 =
2 +j, etc.2 (27)

V. CLASSICAL DISCUSSION OF THE IMPURITY
MODEL

From (8) we obtain

E-F,= —kT(b,n+ -' n'+ ~ ~ ~ ),b2
2f

In this section' "we state the classical results
analogous to the previous quantum results. The
average classical partition function is
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Z/Z, =—fdr(e ), having no bound states Beth and Uhlenbeck" and
Groyper" showed that 0. is given by

where the integration is over all positions of the
particle, and V is given by (2). For uncorrelated
impurities a straightforward calculation gives

dQ

c1 = f"dze -Z(2f+I)
0 W

(38)

Z/Z, =e (34)

where B=—fdR, (e ' —1) . (35)

Comparison of (34) with (26) shows that the only
nonvanishing virial coefficient is the second,
which is given by (35). [The reason for the ap-
parent discrepancy of a factor of 2 in (35) is
discussed following (31).j

The above results can be extended to include
impurity correlations by using the Mayer classi-
cal diagram technique. The calculation exactly
parallels the quantum calculations of the previous
sections. When correlation is included, it is
found that the second virial coefficient is still
given by (35), and the third virial coefficient
is given by

52 = ffdR, dR, [ g(K,R )2—1]f,f, , (36)

ffdR, dR, f12f13f23

where f»=exp(- Pv») —1, also vanishes if there
is no correlation between a pair of the three par-
ticles (e.g. , v» =0).

The quantum third virial coefficient does not
appear to vanish for uncorrelated imyurities,
and will be discussed further elsewhere.

where f, =e (-Pv, ) —1 is the Mayer cluster func-
tion, and g(,R, ) is the impurity pair correlation
function. Equation (36) shows explicitly that the
third virial coefficient vanishes if the two im-
purities are uncorrelated, g(%,%2) = 1. The cor-
responding expression for a real gas

where 3if(E) is the phase shift experienced by
the partial wave of angular momentum E, m, and
energy E due to the scattering by the potential
v(r) V.an Kranendonk" has generalized (38) to
include all separable scattering problems (see the
definition below). The result is

(39)

Z, )z~) =zizz&, (4o)

where E, X are the quantum numbers which di-
agonalize the S matrix. We refer to the paper
of Van Kranendonk" for a discussion of earlier
work on the problem, of possible applications of
(39), and of the difficulty in trying to derive (39)
by the method of Beth and Uhlenbeck, i. e. , by
treating the scattering problem as a boundary-
value problem. The treatment of the problem in
Ref. 13 has the advantage that the limit 0- ~,
which is implicit in (37), can be carried out at
the beginning, and the transition from the quasi-
continuous' to the continuous spectrum of scat-
tering states does not give rise to any difficulties.

In this section we give a derivation of (39) which
is valid for arbitrary (short-range) potentials.
Our method is based on formal scattering theory,
as is Van Kranendonk's, but is rather different
and simple, and enjoys the same advantage, viz. ,
the use of continuum normalization for the states.

To evaluate the trace in (37) we shall make use
of a complete set of states furnished by the eigen-
value problem for +p

VI. DERIVATION OF THE PHASE-SHIFT FORMULA
FOR THE SECOND VIRIAL COEFFICIENT

where X denotes a set of quantum numbers which
completes the specification of the states. The
states )EX& belong to the continuous spectrum
and are normalized according to

From (31) we see that the second virial co-
efficient for the impurity model is proportional
to the quantity

o. = 2 ' Tr G,(e)'f (z) .

(EX iz'X'& =6,6(z-z'),

g f dZ ) E~& (E~(= I .
(41)

The expression (37) is also correct for a real
gas of molecules, "where one calculates G, and
t for the relative motion of two molecules, using
of course the reduced mass. The contribution of
two-body bound states to (37) can easily be cal-
culated, but we shall assume for simplicity that
bound states are absent. For central potentials S~z~&=e '"l1( ) ~zy&, (42)

Since H, and the S-matrix commute, [H„S]= 0,
we can choose the states [EX& to be eigenstates
also of 8:
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1 —2' (EX It(z )I EX) =e2zg (S)
(43)

For so-called separable scattering problems, '4

one assumes that in addition to H„v is also di-
agonal in X,

(zz I v I
z'x ') =5, (zx I v I z'x) . (44)

We do not assume (44) in our derivation of (39).
Before writing out the trace we transform the

operator G02t in the following way. From the
Chew-Goldberger identity applied to the two-
particle problem

where 'g~(z) are the phase shifts. We recall for
future use the relation (see, e. g. , Ref. 14) be-
tween the matrix elements of t on the energy shell,
and the phase shifts:

—.Trlnt(z )t(z ) =ZrI (E)+C, (51)
2i

where C is a constant independent of E."
To establish the identity (51) we re-express

the product tt ~ 1 as

tt = 1 —2vit5(z —Ho)
f —1

(52)

which follows immediately from the unitarity
condition

t-t = 2vit5(Z -H,)t- (53)

[We use here the notation t-=t(E+). ] The latter
relation follows from (45) and repeated use of the
identities

t=v+vG, v,

and the relations

vG, = tG0, G,v = G0t,

we get

—= —vG v= —tG tdt
1 0

and therefore

(45)

(48)

G(~) -G(z') =- (z-z')G(z)G(z')

and (46), together with

(Z -H, )-'= a/(E H, ) iv-5(Z -H, ). -
From (52) we therefore have

o.'(Z):——.Trlntt
1 f —1
2i

I= —.Trln[1 —2vit5(z —H )].2i 0 (55)

G 't= —t
dz

Substituting (47) into (37) we get

(47)
We now show that the trace in (55) is given by

Trln[1 —2mit(z )5(z —H )]

c. = —2 Trt —= —2 Tr —lnt . (48)
dt ]
dg dg

Carrying out the contour integration involved in
I ' in the same way as before [compare (9) and

(10)] we get

n= —f dze1 ~ —Pzd 1

1F 0 dE 2i
—.Tr[lnt (E ) —lnt(E )]

+

=Z in[1 —2'(EXIt (E )I ZZ)] .
A.

From the expansion

ln(1+x) =x+ap'+a, x'+ ~ ~ ~

we have

ln(1+yt5) =yt5+a, y't6t5+

(58)

= —f dEe
dZ

—.Trlnt(E )t(E )~ t

(49)

where the fact that t(z ) =t(z+)~ has been used.
[The fact that Tr(AB) = Tr(BA) has been used in
(48) and in (49). ]

If (49) is to be identical to the phase-shift
formula

and therefore

Trln(1+ y t5)

(50)

for all values of p, the expressions following the
d/dz's in (49) and (50) must differ by at most a
constant, i.e. „we must have

=y Z fdz'(z'~'It(z')5(E-H, ) Iz'x')

+amy Q fdz'dz"
XX-

x(z'y'I t(z')5(z H, )Iz"x")

x(z"x'It(z )5(E-H,)iz'~')+ ~ ~ . .

Using the relation
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6(z -a,) ~
E'~') = 5(z- Z') I z'X'&

and then carrying out the integrations over E',
E", etc. , we obtain

Trln(1+yt6) =y g (EX')t(E )]EX')

x(zy" ~t(z')~zy')+ ~ ~ ~ . (57)

The matrix elements of t(E+) in (57) are all on
the energy shell, where t(E+) must be diagonal
in X because S is [see (42)]. We can therefore do
the sums over the intermediate state X's, with the
result

Trln(l + y t 5)

evaluation of a few typical diagrams correspond-
ing to ((&Z)'&,. We show that

((n.Z)') /Z' =A/N

where A. is finite, and hence vanishes in the limit
N- ~. The method is easily extended to the high-
er-order fluctuations such as (Z'), —(Z),'. In
fact the nth order relative fluctuation is O(N "+1).

From the absence of relative fluctuations, it
follows (see Ref. 2) that for the overwhelming
majority of impurity configurations the deviation
of Z from 7 is negligible compared to Z. It also
follows that

(lnz) =ln(Z), ,

so that either of these quantities can be used in
calculating the mean-free energy.

Consider now the second-order fluctuation term

=P[y(EX'}t(z )~z~')

+a,y'{E~'~t(z )~z~')'+ "]

((«)').=(z') .—(z).' .

We substitute the expression

Z = 2 'Tr (G, + G,TG,)

(A. 1)

= P ln[1+y (EX')t(E ))EX'& ], (58)

which establishes (56).
Substituting (43) into (56) and taking the logarithm

we obtain

o.(E) = —.Q (2ig + im 2v) = Z '6 + C,1
2i

for Z into (A. 1). Writing out the traces in the
momentum representation we obtain

((~Z)2), = Z, '2, 'QQ G,(k„s,)2G,(k„z,)'
k, k

x[(T(k„z,) T(k„s,)&,

where C is a constant independent of E. This
completes the derivation of (51) and hence of
the phase shift formula. where

-(7'(k, ~ )) (7"(k,~ )),], (A. 2)

ACKNOV6 EDGMENT G(»') -=&kl G(~) Ik&, T(k, ') -=&kl 7'(~) lk&,

One of us (C. G. G. ) wishes to acknowledge
helpful correspondence with Professor J. Van
Kranendonk concerning the results of Sec. VI.

APPENDIX

Fluctuations in Z

and Z~
' indicates an inverse Laplace transforma-

tion with respect to the variable az.
The multiple scattering expansion (22) can now

be substituted into the expression

(T(k„z,)T(k„z,)),

We show here that the relative fluctuations in
Z vanish for an infinitely large system, at least
for the case of uncorrelated impurities:

((«)'&!z' = o

where 4Z =Z —(Z), is the deviation from the av-
erage for a given configuration. Kohn and Lut-
tinger' have described a large class of functions
of the impurity configuration for which the rela-
tive fluctuations vanish. Rather than show that Z
belongs to this class we shall give an explicit.

and the result represented by diagrams as in Sec.
3. The diagrams in (T,T,&, are of two types, viz. ,
those containing just self-energy insertions in the
two one-particle propagators forming the two-
particle propagator, and those containing inter-
actions between these one-particle propagators.
Typical self-energy diagrams are shown in Fig.
7. These diagrams are of the type (T,),(7', &„
and as a result give no net contribution to (A. 2).
Typical interaction diagrams are shown in Fig. 8.
We shall demonstrate that these diagrams are
O(1/N).



242 C. G. GRAY AND D. W. TAYI OR 182

—i(k —k') ~ R. —i(k' —k ) ~ R.
x e

~

~

~

~

1 1 i 1 1 je
0

"'~f1'"P'1)f2"2"k k 'k k

= n'f, (k,k, ) nf,(k, )

(a)
FIG. 7. Dressing of the two-particle propagator lines

by self-energy insertions.

which also cancels against a term in (T,),(T,), .

Figure 8(a) is equal to

—,Nf, (k,)f,(k,).

I)
))

)c

(a)

k,

k,
'

(b)

k,

x k, r

k~

FIG. 8. Interaction parts for the two-particle
propagator.

This quantity is O(1/N). When the sums over k,
and k2 occurring in (A. 2) are converted to inte-
grals in the usual way,

this term becomes O(N). Since Z' is 0(¹),the
term in the relative fluctuation ((6Z)')0/Z' be-
comes O(1/N), which is what we set out to prove.

Figure 8(b) is equal to

Z f,(k,k,')f, (k,k,')0 «l klk,
In writing down the contribution of a given dia-

gram we use the relation —ik —k' R. —ik' —k 'R
1 1 i 1 1

X 8 e

(kit Ik') =e f(kit lk'), (A. 8) —i(k —k ') R. —i(k' —k ) R
2 2 i 2 2 lxe e

n kk' (A. 4)

where t is the t-matrix for Ri=0. Note that

(klflk') = —Jdr e f(r)e Z f,(k, k,')f, (k,k2)
kl l

contains the factor 9 '. f (r) is the Schrndinger
operator corresponding to t. We shall exhibit ex-
plicitly only the phase factors arising from (A. 3),
the volume factors from (A. 4), and the factors of
N, denoting the remaining factors by f,(k,k, ' ~ ~ ~ ).

The diagram in Fig. 7(a) gives a contribution to
(T,T,), equal to

—,N'f, (k, )f,(k, ) =nf,(k,) n f,(k, )

which clearly is a term from (T,),(T,),. Figure
7(b) gives a contribution equal to

—,Q N f,(k,k,')f2(k2)Q3«,
1

4 f,(k,k,)f,(—k,k, )

and is O(1/N). The same argument as that given
above shows that this term gives a contribution
O(1/N) to the relative fluctuation.

Finally, Fig. 8(c) is equal to

Z f,(k,k,')f,(k,k,')"k, .lkl

] ky Ri i kg k3

xe e
—i(k —k') Rt —i(k ' - k, ) B~ 0
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2

Z f,(k,k,')f, (k,k,')
k, -.ckc

'kr 'l"k r'l"kk ' "kk' '

x k, +ka~ki+k~
2

Zp f,(k,k,')f,(k„k, +k, —k,')
1

= O(l/N) . (A. 5)

where zk =if k'/2m, we find that this coefficient
is equal to

dz, —Pz, "dz, —Pz,
2ri 27t'i

xP
kJ, +kg ky +kg

l 2 1 2

Again the same argument as that given above
shows that this term gives a vanishing contribu-
tion to the relative fluctuation in Z.

Since Fig. 8(c) belongs to a class of diagrams
(ladder diagrams) that individually give an in-
finite contribution to the zero-temperature elec-
trical resistivity, we shall examine the coef-
ficient of N for the term in (A. 2) arising from
(A. 5). Using the relation

G (k, z) =(z —z ) ',

(A. 6)

To estimate (A. 6) we use the first Born approxi-
mation for the f matrices, fkki (z) = vkkl, which
is independent of z. We also assume. for sim-
plicity a potential of sufficiently short range that
vkkc can be assumed to be independent of k and k'.
Converting the intermediate sums over k,' and k,'
to integrals and carrying them out by contour inte-
gration we find that the resulting function diverges
for kg ky z

y
=E zp =E, in the limit e' -0.

This-divergence is, however, integrable, and a
finite result is obtained after integrating over
z

y and z, ~ The integrals over z, and z, are not
present in Neal's expression4 for the zero-tem-
perature resistivity and this is the reason for the
divergence he obtains for the ladder diagram
contr ibutions.

The finiteness of (A. 6) can be seen more simply
by carrying out the z integrations before the k'
integrations. The residues from the poles at
ek, ekc, etc. , are clearly finite and remain

~ g
&

~
0 ~ t

finite even when k, = —k, . A similar analysis can
be carried out for the higher-order ladder dia-
grams.
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