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A reformulated version of quantum electrodynamics in the Lorentz gauge is shown to be identical, in all
of its physical consequences, to quantum electrodynamics in the Coulomb gauge. The reformulated Lorentz
gauge has previously been shown to differ from the usual version of the Lorentz gauge in some important
aspects.

I. INTRODUCTION
' 'N an earlier paper' we called attention to the fact
~ ~ that the subsidiary condition which is generally
used to define the physical states in the Lorentz gauge~
cannot properly be applied to a theory of photons
interacting with charged particles. This condition,

x&+&(x) jn) =0,
in which the frequency is dined in the interaction
picture, has the property that its validity at one time,
together with the equations of motion, is inconsistent
with its subsequent validity at later times. In the
course of time, outgoing scattering states that were
chosen to be in the physical space in the remote past,
drift into the unphysical space where unphysical
photons exist and where Maxwell's equations do
not hold; however, asymptotically as t +~, these
scattering states withdraw into the physical space
again.

Apart from dining a set of states which do not
always remain in the physical space, Eq. (1) in the
presence of interactions is not an invariant equation,
because the operator X&+& is not the invariant positive-
frequency part of BA„/Bx„. In spite of these two
difFiculties with the usual subsidiary condition, the
5-matrix elements for quantum electrodynamics that
follow from it have been shown to be correct, ' except
perhaps in the case of a certain class of strongly inter-
acting charged particles.

In Ref. 1 we developed a scattered formalism for
states chosen by the subsidiary condition'

Q~+&(x) i v)=0,
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where 0&+&(x) is given by

Q&+&(x) =x&+'( )x+-',i dy n(x —y)p(y, xo),

and where

S)(x—y) = (2s)—' dk e'~ &*—»/~ ir( .

0&+& is the invariant positive-frequency part of the
operator 8A„/Bx„and retains this role in the presence
of any additional interactions among the various species
of charged particles' or between the charged particles
and other neutral ones, provided Bj„/Bx„=0 is pre-
served by these interactions. This subsidiary condition
is therefore preserved, so that if it holds at any one
time it must hold forever after.

The states
~ v), which obey the subsidiary condition

Q'+&(x)
~
v)=0, are not eigenstates of the usual "free-

6eld" Hamiltonian H p but of Xp given by

Xp= 8 Hp8

where D is given by

D= ——:Z & 'E~..Rp( &)—o-~.o'p(&) j—

so that

=i dxdy p(y)PV A(y)+ilI4(y) j(87r[x y~)-', —

Xo( v)=E ( v) and [ v)=e (n).

The interaction Hamiltonian which governs the time
translations of the states in their ore interaction picture
is given by X1=H1+Hp —Xp.

The application of iteration methods to the solution
of quantum electrodynamics problems in this theory
leads to the same formal series solution as is the case
in the conventional Lorentz gauge, except that the
unperturbed-state vectors

~
v) and the perturbing

Hamiltonian 3'.q appear in place of
~
n) and Hq, respec-

tively. Moreover, the typical matrix element (v'*~ K&
~ v)

' See Ref. 1, Sec. III.
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can be written
(e'*l enxge-n le),

where

Hg, ~= —P(2k) ~ [ag, & &J(—k)'s(i)
which in turn can be written'

+ay, &'& J(k) 's(i) 1

From the foregoing, it follows that the sole di6'erence
in the dynamical content between the two formulations
of the Lorentz gauge lies in the appearance of the inter-
action Hamiltonian Hj in the new formulation, instead
of H~ which appears in the usual formulation. This
difference, however, is not trivial and has observable
consequences.

It has previously been shown' that the substitution
of Eq. (2) for Kq. (1) changes the values of the off-shell
scattering transition amplitudes in quantum electro-
dynamics, although the on-shell values remain un-
altered. Although scattering phenomena depend upon
on-shall transition amplitudes only, other temporally
nonadiabatic effects do involve o6-shell scattering
transition amplitudes and the two formulations of the
Lorentz gauge would lead to diGerent predictions in
these cases.'

II. LORENTZ AND COULOMB GAUGES

Since the two formulations of the Lorentz gauge
differ from each other in some important respects, it is
crucial to discover which of the two is equivalent to
the Coulomb gauge and thus preserves gauge invari-
ance. We will demonstrate that it is the new reformu-
lation of the Lorentz gauge which gives results identical
to those of the Coulomb gauge.

We note that the new reformulated Lorentz-gauge
theory is characterized by the "free-Geld" Hamiltonian
3'.0, the interaction Hamiltonian X~, and the basis set
of states le) for which (3.'0—E„)lv)=0. A trivial
pseudo-unitary transformation carried out on this
theory gives us a set of states le)= l v), a "free-Geld"
Hamiltonian IIo=eDKoe ~=HO, and an interaction
Hamiltonian 8q= e Xse, where' 8&NHz. This
pseudo-unitary transformation returns us to a repre-
senstation in which the "unperturbed" states are the
usual noninteracting "bare" electron and photon states
(the latter including transverse, "Q"- and "R"-type
photons).

The interaction Hamiltonian B~, in this represen-
tation ls given by

&x=HL r+Ho+Hos, (&)
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Hc= ~xayu(x)u(y)(g~lx —yl) '

H„=—P-;(k)- ( „,,P(—k)+k J(—l)jlklj
+u, at+(k)+k J(k)/l kl j}.

Of these, H~, r+Ho is precisely what the interaction
Hamiltonian in the Coulomb (or radiation) gauge
would be." In the Coulomb gauge, the transversely
polarized photon states wouM be the only ones in the
Hilbert space, and longitudinal or timelike photons
would neither arise in. initial or Gnal states, nor would
they appear in intermediate states as parts of the unit
operator lX)(P l, where

l X) denotes a complete set of
states in the space.

In the reformulated Lorentz gauge, Hgg mediates
some unphysical transitions, such as scattering to
"E."-type ket states. These photon states are not
transverse, yet they obey the subsidiary condition;
they carry neither probability value nor energy mo-
mentum, since they have zero norms in the indeGnite
metric space.

How, however, can have No effect on any physical
pmct, ss. This is because matrix elements of products of

any number of Hq~ vertices, and any number of other
terms that are free of nontransverse photon operators,
vanish when evaluated between physically observable
states (i.e., states that do not contain any nontransverse
photons). For example, a term such as

'U= UiHgzU~HgaU3. .U~—1Hg~~n)

where the U's contain no Q- or R-type photon operators,
satishes (b'*l'0

l b) =0, where
l b) and.

l
b') are physically

observable states.
That this is the case follows immediately from the

fact that '0-type terms already are normally ordered in
Q- and, E-photon operators. They can therefore eever
contribute to any virtual process in which longitudinal
or timeline photons appear only in intermediate states
but not in initial or Gnal states. The only process that
H@+ can mediate when acting on physically observable
states is the creation of E-type photons. Other H@z
vertices can create further E-type but never any Q-type
photons. Most importantly, no Hgg vertex can ever
annihilate E.-type photons created by other H@g
vertices. The matrix elements of 'U-type terms, between
physically observable states, must therefore vanish.

Note that even if the set of states l b) is enlarged from
the set of physically observable states to the set of all
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physical states (i.e., all those states ~e) for which
enQ&+'e ~n)=X~+&(e)=0), matrix elements such as
(b'*~'U] b) still vanish. This result, though true, is not
important to the question under discussion in this paper.

In any matrix element that arises in the calculation
of scattering transition amplitudes or bound-state
energy shifts, only the II», & or Hz part of H can appear
as a vertex, since the appearance of only a single
Hg, g vertex in a matrix element guarantees that the
matrix element vanishes. Therefore, in the new formu-
lation of the Lorentz gauge, based upon the subsidiary
condition Eq. (2), the interaction Hamiltonian is
composed of a part H j,r+Hc, which is identical to the
interaction Hamiltonian in the Coulomb gauge, and a
part Hqz which in principle can never contribute to any
physical process. In fact, in calculations of physical
quantities Bgg can be entirely dropped. Once the inter-

action Hamiltonian (for physical processes) has been
reduced to Hq, r+Hc, not even virtual transitions from
observable states to states containing nontransverse
photons are possible, and these latter may be entirely
eliminated from the spectrum of unperturbed inter-
mediate states. The result is that the computational
procedure in the new formulation of the Lorentz gauge
is wholly identical to that of the Coulomb gauge.

It is interesting to note that this result is made
possible by the fact that the photon annihilation and
creation parts of Hg g commute with each other. This
is normally not allowed since it keeps the Hamiltonian
from being Hermitian. This is indeed the case here, and
H» &H». However, in this inde6nite metric space, H»
should not be Hermitian but self-adjoint in the in-
de6nite metric space; i.e., it should satisfy H»*=a»,
which it does.

. erratum

Decays of Odd-Parity Baryon Resonances, J. C. CaRTER AND M. E. M. HE~D /Phys. Rev. 1'76, 1808
(1968)].On p. 1810 the following entries in Table I should read:

Observed
resonance

Calculated
branching

ratios

F=1, I=-,'
F=O, I= j

N*(1518)
Y*(&660)

F= —1, I=)

Ny*~/Nx 2
z~/~~ 20
Fg~m-/Am. 6.2

F=O, I=O EN/Yg*m. I.3
EN/x~ 21
Xx/Ez 0.28
=~~/Ez 1.8

The ratios ¹s/Ns for the ¹(1518)are in better agreement with experiment with these corrections.
In column 3 of Table II, A*w/As. should be Z*s/As, and A*s/Zs should be Zs/Z~s.


