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High-Energy Collision Processes in Quantum Electrodynamics. IV
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The rather complicated asymptotic behavior at high energies found in the preceding paper for the
Delbriick-scattering matrix element is recast in a simpler form. This is accomplished by introducing a
suitable form factor in the transverse plane. This factor, called the impact factor of the photon, also appears
in other processes. Moreover, it is veri6ed that the transverse momentum transfer is small in Delbriick
scattering.

1. INTRODUCTION
" 'N the preceding paper, we have. studied the differen-

tial cross section for Delbruck scattering in the
limit of in6nite energy. More precisely, for any fixed
nonzero momentum transfer, we have found that, to
the order o.'Z' (which is the lowest nonvanishing order),
da/dt approaches a finite limit as the photon energy ~
goes to infinity. Moreover, the limiting value is ex-
plicitly calculated in terms of an integral over Feynman
parameters. It is to be shown in paper VII of this
series that the existence of the limiting value also holds
to the lowest order in o. but any order in Zo., i.e. , to
the order n'(Zn)'" for n= 2, 3, 4, .

If the interest were restricted to Delbriick scattering
at high energies, there would be few further questions
besides radiative corrections. However, the aim here
is to have come understanding of collision processes at
high energies in general, using Delbruck scattering as
one of the stepping-stones. For this purpose, it is
imperative to recast the result of the preceding paper in
a form more susceptible to physical interpretation.

The alternative form for the limiting value of the
matrix element is already summarized in (3.3) of paper
I. In other words, the limit is expressed as an integral
over the difference of the transverse momenta of the two
exchanged photons, and the integrand involves as a
factor the "photon impact factor" 8&. As discussed in
paper I, this photon impact factor is significant be-.
cause it also appears in light-light scattering, and is
furthermore altered neither by the introduction of a
mass for the internal photons nor by the inclusion of
higher-order effects in Zo, .

It is the purpose of the present paper to discuss the
origin of this photon impact factor and relate it to the
result of paper III. In the preceding paper, the limit of

in6nite energy or is discussed carefully in the sense that,
with the exception of the well-understood and irrelevant
ultraviolet divergence of the box diagram, every ex-

pression is mathematically meaningful. This entails,
at a suitable point, the combination of the contribu-
tions from the two Feynman-Dyson graphs. As an

example, consider (3.4) of the preceding paper, where
the large braces contain four terms added together, two
from each graph. If these four terms were taken sepa-
rately, the resulting integrals would all be meaningless,
because they each contain divergences from the neigh-
borhood of (i) P=P'= 0 and (ii) P=P'= n = 0. However,
all divergences are cancelled in the sum, i.e., no
logarithms of or appear in the 6nal results. If we take
for granted that these types of divergences can cause no
harm, then there is no necessity of being so careful in
combining the contributions from the two graphs. In
Sec. 2 here, we shall take this point of view and extract
the photon impact factor directly from the Feynman
integrals, or rather (2.16) and (2.17) of paper III.
This direct extraction has the advantage of being easily
understandable physically. On the other hand, since
valid questions may be raised about the manipulation
of divergent quantities, we show in Sec. 3 that the
integral over the photon form factor is indeed equal to
the result of the preceding paper. Although it is possible
to derive the photon impact factor 8& from the result of
paper III, the process seems to us rather arti6cial;
indeed, before d~ was found, one of us tried in vain for
a long time to get it from the result of paper III.
Eventually, a guess was made and the procedure of
Sec. 3 was carried out to verify its correctness.

In Sec. 4, we give another derivation of the impact
factor of the photon in an alternative form without
Feynman parameters.

2. HEURISTIC DERIVATION OF PHOTON IMPACT FACTOR

De6ne

g&=2(2g) g4 d p E(rm+p)~ rn 7 ~L( r&+p) yg 7 L(p+q) rn27 E(r&ip) rn

Xf Spoa&t.2rz;p; 2p;rq,+2r~'8;;7+—Spo't 4p;p; 2p;(r~ —rm);+2(r—~+rm);p;+8;;(r~' —r~')7) (2.1)
~ %'os supported in part by the National Science Foundation.
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&s= (2tt) 'e' d'p p( —,'rs+ssrs —p —,'q)' —ttssj-'

&&L{srs+krs P+—sq)' ~'—3 'L( srs—kr—s P+—lq)' ~'—3 'L(srs —mrs —P —sq)' —~'j '

&&(2~ [—(2p —q);(2p+ q);+2q'b;;] —8~ps[ —2r„p;—r„q;+2p;r„+q;r„—2(r,q) b;;]

+8P 'E( + )'( — ) +(2P+q)'(2P —q)t+~*t( '— ')j) (2 2)

A comparison with (2.15), (2.16), and (2.17) of paper III shows that, for s= 1, 2,

9R =s(2 ) 'e'Z' d'q L(rs+q)'1-'f(rs —q)'P'E; (2.3)

Ã&o'o&~s(2tt) test-s dsg L(r +q)sP'L(r —q)sj '(E +E ). (2.4)

As a erst step, me introduce Feynman parameters for both R~ and. R~. Since, for any e,

dsp (ps+os)-s Lotto(gs) s—

dsp ps(ps+os) —s —Ls~s(os)-s

(2.5)

it follows from (2.1) and (2.2) together with (2.19) of III that

Zs~ 2s(4%)8 'dnydnsdasdesb(1 ns u—s n—s a—s)(Bs+M) (16bpo )

X(os(r„bp bp r,+r sb;;—j+(bp, ')[2bp bp b;;c 2bp—';r;+—2r;bp +b;,r 'j} (2.6)

s(4s)-se' dnsdasdesdasb(1 —as —es —ns —a4)(co+so)-s

where

X(2~'L—(2bp" —q),(2bp"+q);+2b;,cs+2q'b;;] —8~bpo"p(2'" —q);rs; —r„(2'"+q)—2(rsq)b;;]

+8(bpo")s$4rs;rs;+(2bp"+q);(2bp" —q);—2b,tcs+2btsrss j), (2."/)

os= 2esus(rsq)—+2ns(ns n4)(rs q)+—gt(4nsns+as( us+as+a—s)$+q'as(as+us+us) —tts',

as = —2(uses —nsn4) (rsq)+ 2(uses —uses) (rsq)+ pl(as —ns) {es—e,)+qs(us+us) (us+ a,)—ttss,

bp = nsrs+ (es —as)rs —asq,

bp =srs(ei+es —as —ns)+srs( —as+as —us+a4)+sq( —ax+et+as —«).

(2.8)

{2.9)

(2.10)

Note that the bp' and bp" de6ned here are not related to those of (2.28) and (2.29) in paper III.
«»ider Rs as given by (2.6). Since it is known that the dominating contribution comes from the vicimty of

a3= Oi great slIQpl1cat1on ls posslb1e by omlttlng Dlost of t4e Qss s as follows:

cs~ —
2 uses(rsq) +Axsus —tts

bp' —a,rs+ {us—ns)rs,

Bpo = —asot ~

bp (—as+as —as)rs;,

bpt ~(us+as —ns)rst,

(2.12)

(2.13)
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The substitution of (2.12) and (2.14) into (2.6) gives explicitly

1

Ri 2i(kr) 'e'ie' dnidn2dnadn45(I —ui —nm —n, —u4) f 2nin~(r2q)+tnmn4 m—'+iej '(16ni){—$2air»rij+it6j 'j
0

+n1L2( ui+u2 u4)(ni+n2 n4)+4nl]riirij al~ijf 2nlu3(ri'q)+ta2u4 m gtj}
1

=2i(4') 'eiie—2 daidn2dnlda48(1 ni —ai—n~ —ni)—P 2u—ing(r2q)+tnmui m'—+i ej-'( 16 ni)
0

X{—8ninz«r&;rij —8;;L—2ui'nz(r2q)+tnlu2u4 —nlm +it(ug+u4) j}. (2.15)

The corresponding formula for E2 is

R2 i(4ir) 2e4N2 dnldu2du8du4~(I ul u2 ua u4)(~2+i&) 4{8(ul+u2)(u3+n4)L(u2 u8)r1'+(n2+uS)q'j

XP(ni ni)r—i;+(ui+u4)qj5+8;;fq+(ni+um us —n4)r—ij'+48;j(ui+n2)(ng+n4)c2}. (2.16)

In both ci and c2, as given by (2.8) and (2.9), r2 more formal. Let
appears only in the combination (r2q). It is therefore
convenient to choose coordinate axes so that r2 lies in
the direction of the s axis. In other words,

dqIR /ix)( (2.19)

(2.1'/)

Note that q3 can be either positive or negative, and that
the photon propagators L(ri+q)'j ' are invariant under

q3
—+ —q3. Furthermore, for any A and 8 with A/0,

for i = 1, 2. These integrals are to be further studied in
Sec. 4. Because of the form of cj and c~, g& may be
treated on the same footing as Feynman parameters.
Let A and 8 be two rea1 numbers with A&0; then by
symmetric integration

dye(Ay+B+i e) '+ ( Ay+B+-i e) ']—=0. (2.18)-

Therefore, the dominating contributions to 5R~' and
OR&' as expressed by (2.3) must be from the vicinity of
q3=-0.

It is the most important point of the present paper
that the longitudinal momentum transfer is small. This
is to be discussed in detail in Sec. 5; for the moment we
merely mention that this has been conjectured before'
and is indeed incorporated in the droplet model 2

Since g3 is small, it is natural to attempt to integrate
over q~. From this point on, the considerations become

de dy(Ayqs+B+se)

sriA '(B—+ie) '(2, 20-)

and moreover by integrating with respect to 8

dql dy(Ayq&+B+i e)

=s iA ' ln( —B—ie)+t', (2.21)

where 8 is a constant of integration. (Actually 6 is not
finite but, as seen below, is cancelled out. ) In order to
use (2.20) and (2.21) to 6nd gati and its, we must apply the
changes of variables (2.43) and (2.44) of paper III to
(2.15) and (2.16). Thus,

Ri 2i(4n.) 2e4co'i dp dp'dh dy pm(1 x)t'j(I —p —p')( —2—pp'(I —x)yioq8+tpmx(1 —x) —mm+ie j 2(16p')
0

X{—8P'P'x(1 —x)r»r&i —8;jL—2PP"(I—x)y&eq3+tP'P'x(1 —x) —P'ms+ 'tPj} (2.22)-

R2~2i(4r) 'e'io' dP dP'dh dy PP'(I —x)h(1 —P —P')(ci+ie) '
0

X4{8PP'x(1 *)[(P P')r»—+q»j(—(P P')ri+qi; j—b;;[(P—P')rz—+ili]'+4&;iPP'cs}, (2.23)

where q& is the projection of q in the xy plane, and

c2 —— 2PP'(I x)yc—oqa 2(P—P') x(1 —x)ri—if+ i t(P—P')'x(I —x) ——x(1—x)its —m'.

' T. T. Wu and C. ¹ Yang, Phys. Rev. 137, 3708 (j.965).' N. Byers and C. N. Yang, Phys. Rev. 142, 976 (j.966).

(2.24)
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The substitution of (2.22) and (2.23) into (2.19) then gives

y,-(4r)-2c4 dP dp' d*8PS(1—P —P'){L~Ps*(1—~) —m2j-'

&&i 8P-'P"(I- )"' '—e&-; j+P'&; »L ~p"(I- )+ 'j+P'~;, ~} (2.»)

dp dp'd. »(1-P-P')[{- {1-)L(p-p') +«3'- '}-'

X{8PP"(1-.)L(p-p');+&.;X(p p')-~+&.~] ~;;L{p-p') +q ]}
—4b; pp' In{a(1—*)L(p—p')r +q j'+m'} —4S;;pp'e]. (2.26)

It is seen that the sum 8,+d2 does not contain the divergent quantity e.
We therefore de6ne the impact factor of the photon as

g& = lim {8q+d2) =sum of the right-hand sides of (2.25) and (2.26) . (2.27)

Qy (2.4) and (2.19), the impact factor is related to the matrix element to the order e'Z' of Delbriich scattering by

lim cv-'mo~n& =i(2m)-'c'Z' d«, I (rg+q, )'j-'L(rg —q,)'j—'d&(rg, q,), (2.28)

and is given explicitly by

~'( «.) =2(4 ) ' ' dP dp'd* &(I—P —P'){Ll&IP'~(1—)+ 'j-'L32P'p' (1—);;—p'I~Is;;1

-{(1- )L(p-P') +q.j + }-{8PP'*(1- )L{p-P').„+&„~L{p-p).„+, ~

—~' L(P —P')r~+«.3'}—4~' PP' »{L~(1—a)((p —P')ri+«. )'+m'$/L I ~) p'~(1 —~)+m j}]. (2.29)

Alternative forms and plopcl tlcs of tI]Lls impact factor for thc photon have already been given in paper I.

3. COMPARISON VGTH RESULT OF PAPER HI

Since jt seems dif5cult to improve signilcantly the heuristic procedure of Sec. 2, it is essentia& to verify that the
result (2.28) is indeed correct. Fortunately, the left-hand side has already been studied in detail in paper III. This
section is devoted to a direct evaluation of the right-hand side of (2.28), with d& given by (2.29) ~

Feynman parameters are introduced once more to combine the denominators. Let the new Feynman parameters
for L(r&+q, )'g ' and I (r&—q&)'] ' be, respectively, «and «. Also let

P=v/(1 « «) —and—P' =v'/(1 —«—«),
then the combined denominators are

(3.1)

LI &I p'~(1 —~)+m'3(1 —«—«)+(r~+«.)'«+(rl «J) «
(«+«)I «&+(««)(«+«) rlj +(«+«) (v+v ) cyo (3.2)

{*(1 &)Dp P')r~+—«3'+—m'} (I « «)+ (r~+—«.)—'as+ {ri «.)'«—
= D-.+-.)+(v+v )*(1-.)1{'+L(«+«)+(.+v')*(1-*)]-L{-.-«)+{v+v )*(1-*)j.,}

+(v+v') 'L(«+ «)+ (v+v')*(1—*)&'c20, (3.3)

Since

c»= I &I L««(v+v')+v'(«+«)&(I —*)3+m'(v+v')'(«+«)

c o= I &I L~ ~ (v+v')+(v"«+v'«)*(I —*)j+m'(v+v')'I («+«)+(v+v')*(1—*)j.
(3.4)

(3 5)

dC16(1 —Qg —o'6) {pACIg+BQS+C(1—Ag —CX6)j
L~o's+&&6+C'(1 —&s—«)] '}=& '8 ' ln(C'/C) (3 6)
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~—pi(2s.)-'e'au dp, duds Xs„g(4u+2(a)s+g(A+-,') [ t (
—y,'—(-', rg+-', q,)'—m'+i~]-'

XL(4u —2~)s—x(A ——,') [t) p—i' —(-', rg —,'q,)' m—'+is]

X{/—~(p&——,'q&)' —4uA (t~ —urq (2p~ —q|) —m'+is] '

=2(4r)-'e4(o —' dp,
co/2

co/2

+L—~(p&+-,'q&)s —~uA i t )+urq. (2p,+q|)—~m'+is J ')

du Xg„{(1+2A)(—~~(A+s') [t~ —p~' —(-'r, --'q,)'—m~]

+(1—2A)Lk(A+s) ( t
f
—p,'—(—',r,+kq,)'—m']) —

'{p(p&—sq&+Arx)'+m']-'+ j(y~+~sq~ —Ar, )'+m']-'}

2(kr) —'e'f dp dA f—168@(~~q,—Ar, )'—g(1 —4A s)

X(pz+sgz —Art);(pz ——gz+Ar&);]L(pz —qz+Arz) ~m ] 'L(p~+&q„—Ar~)&pm&]-& (4 11)

Thus the impact factor for the photon is, by (2.27),

8&= ——,'x-'e4 dye dA {Eb;A'r&'+2A (1—A) (pi+A&a) a(pi —Are);]p(yx —Ary)'+m'] —'L(y +Arg)'+m']-'

—Ei'' Q'+2A(1 —A)(P +Q)'(P —Q)t]L(y.+Q)'+m']-'[(y. —Q)'+m ]- )

where
Q=-', (q+rg) —Arg. (4.13)

This is the desired answer. It is shown in the Appendix
directly that (4.12) and (2.29) are indeed equivalent.

5. DISCUSSION

The present paper is devoted exclusively to obtaining
the impact factor of the photon, and to verifying its
relation to the matrix element for Delbruck scattering.
Nothing is said about other properties of the impact
factor; they are already summarized in paper I.

In both Secs. 2 and 4, in6nite quantities are manipu-
lated. At least for the procedure of Sec. 4, this can be
avoided by considering only the sum d&+d&. For the
reader who is concerned with mathematical rigor, he
may ignore both Secs. 2 and 4, because all the results
are already contained in Sec. 3 together with paper III.

However, Secs 2 and 4 are essential for future develop-
ments, the reason being that the development in paper
III is by comparison much more complicated and
hence too dificult to be readily generalized to higher-
order diagrams. In a later paper, not to be included in
this series, we shall study the electrodynamics of scalar
particles to higher orders by the procedures of this
paper.

One of the most important findings of the present
consideration is that the longitudinal momentum trans-
fer q3 is small. However, it does not seem possible to
state how small. For example, in obtaining (2.25) and
(2.26), the important region of integration is

Pg3 GO (5.1)

But (5.1) can be satislMd by making y and/or g& small.
This point is also of great importance in connection
with higher-order diagrams.

APPEN'DIX

In this Appendix, we derive (2.29) from (4.12). Introducing the Feynman parameter x and remembering that,
for positive a and e',

dp, (pP+a)-'=s/a (A1)

dylp 2L(p 2+a)-2 (pals 1a&)—2] s jn(a&/a) (A2)
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we obtain f1olll (4.12) that

s& = ——',)r-'e' dy, dA dx(C(),;A'rz'+2A (1—A)(p)+Arz);(pz —Arz);jCyzz —2A (1—2x) y, rz+A'rzz+zzz'j '"-

C—t)'Q'+2A(1 A—)(p +Q)'(p. Q—);]Cy"+2(1 2—x) y'Q+Q'+ zzz'1-'j

dA dx(Bb,,A ~
tt —SA (1—A)x(1 —x)rz;rz;]

&&CA'~ t~ x(1—x)+z)z'] ' —C(),,Q' —gA(1 —A)x(1 —x)Q,Q;jC4Q'x(1 —x)+z)zzj '

+A(1—A) i);; lnC4Q'x(1 —x)+zzzz jj[A' [t [ x(1—x)+zzz'j) (A3)

Hy (4.13), it is seen that (A3) is identical with (2.29).
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uN Scattering in the Virasoro Model

VASUO HARA

Department of Physics, Tokyo University of EducuIion, Tokyo, Japan
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A representation of the ~X scattering amplitude that contains Regge behavior, crossing symmetry, and
analyticity is given by making use of the Virasoro model.

FOLLOWING Veneziano's discovery' of the scatter-
ing amplitude that contains keg ge behavior,

crossing symmetry, and analyticity, an alternative
construction of the amplitude has been proposed by
Virasoro. ' In this paper we apply Virasoro's model to
~Ã scattering. That is, we construct the simplest xS
scattering amplitude that satisfies the following pro-
perties: (a) crossing symmetry between the s and u
channels; (b) Regge behavior at asymptotic energies;

(c) it satisfies all superconvergence sum rules; (d) the

only singularities present (for linear trajectories,
narrow-resonance approximation) are the simple poles
corresponding to resonances on Regge trajectories;
(e) there exist four leading trajectories, n, (t), nt(t),
n)(((s), and ng (s).

%e And a simple solution if these linear trajectories are

parallel and ifz J=n, (t) =()(f(t) C=np (t)j=ao+n't and4—
J——', =n)(((s) =oq(s) —=(z(s) =no+a't. Our solution is as
fo11ows'.

F(1——,
' (s))F(-,' —-', (zz)) I'(1—', (u))I'(-', ——,

' (s)) I'(-,' ——,'a(t))
A(—)=

r(1—,' (u) ——,'a(t))I'(-', —,'(s) ——,'a(t)) F(1—,'(s) ——,'a(t))I'(-,' —,' (u) ——,'a(t)) I'(-,' —,' ()——,
' (u))

' G. Veneziano, Nuovo Cimento 57A, 190 (1968}.
~ M. A. Virasoro, Phys. Rev. 177, 2309 (1969}.
~ Experimentally, n (t}=aJ.(t}={0.5—0.6}+1.0$ GeV 2.

From the known nucleon resonances Barger and Cline have found nN ———0.89+1.0s GeV ' and 0.~ ———0.35+0.9s GeV
V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966};Phys. Rev. 155, 1792 {1967}.

5 We use the notation introduced by G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1345 {1957).


