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The rather complicated asymptotic behavior at high energies found in the preceding paper for the
Delbriick-scattering matrix element is recast in a simpler form. This is accomplished by introducing a
suitable form factor in the transverse plane. This factor, called the impact factor of the photon, also appears
in other processes. Moreover, it is verified that the transverse momentum transfer is small in Delbriick

scattering.

1. INTRODUCTION

N the preceding paper, we have studied the differen-
tial cross section for Delbriick scattering in the
limit of infinite energy. More precisely, for any fixed
nonzero momentum transfer, we have found that, to
the order a8Z* (which is the lowest nonvanishing order),
do/dt approaches a finite limit as the photon energy w
goes to infinity. Moreover, the limiting value is ex-
plicitly calculated in terms of an integral over Feynman
parameters. It is to be shown in paper VII of this
series that the existence of the limiting value also holds
to the lowest order in @ but any order in Za, i.e., to
the order o2(Za)?» for n=2, 3, 4, - - -.

If the interest were restricted to Delbriick scattering
at high energies, there would be few further questions
besides radiative corrections. However, the aim here
is to have come understanding of collision processes at
high energies in general, using Delbriick scattering as
one of the stepping-stones. For this purpose, it is
imperative to recast the result of the preceding paper in
a form more susceptible to physical interpretation.

The alternative form for the limiting value of the
matrix element is already summarized in (3.3) of paper
I. In other words, the limit is expressed as an integral
over the difference of the fransverse momenta of the two
exchanged photons, and the integrand involves as a
factor the ‘“photon impact factor” g7. As discussed in
paper I, this photon impact factor is significant be-
cause it also appears in light-light scattering, and is
furthermore altered neither by the introduction of a
mass for the internal photons nor by the inclusion of
higher-order effects in Za.

It is the purpose of the present paper to discuss the
origin of this photon impact factor and relate it to the
result of paper III. In the preceding paper, the limit of

infinite energy w is discussed carefully in the sense that,
with the exception of the well-understood and irrelevant
ultraviolet divergence of the box diagram, every ex-
pression is mathematically meaningful. This entails,
at a suitable point, the combination of the contribu-
tions from the two Feynman-Dyson graphs. As an
example, consider (3.4) of the preceding paper, where
the large braces contain four terms added together, two
from each graph. If these four terms were taken sepa-
rately, the resulting integrals would all be meaningless,
because they each contain divergences from the neigh-
borhood of (i) 8=8"=0 and (ii) 8=8"= a;=0. However,
all divergences are cancelled in the sum, i.e., no
logarithms of w appear in the final results. If we take
for granted that these types of divergences can cause no
harm, then there is no necessity of being so careful in
combining the contributions from the two graphs. In
Sec. 2 here, we shall take this point of view and extract
the photon impact factor directly from the Feynman
integrals, or rather (2.16) and (2.17) of paper III.
This direct extraction has the advantage of being easily
understandable physically. On the other hand, since
valid questions may be raised about the manipulation
of divergent quantities, we show in Sec. 3 that the
integral over the photon form factor is indeed equal to
the result of the preceding paper. Although it is possible
to derive the photon impact factor 97 from the result of
paper III, the process seems to us rather artificial;
indeed, before 97 was found, one of us tried in vain for
a long time to get it from the result of paper III.
Eventually, a guess was made and the procedure of
Sec. 3 was carried out to verify its correctness.

In Sec. 4, we give another derivation of the impact
factor of the photon in an alternative form without
Feynman parameters.

2. HEURISTIC DERIVATION OF PHOTON IMPACT FACTOR

Define

Ri=200e)4 [ 8t Lrsk ) =m T (=it 99— L) —m T ko=
X{8pow 2r1ipi—2pirsy+2r12651+8poL4pipi—2pi(r1—r2)+2(n+r2) pi+di(rt—rD ]} (2.1)
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and
Ra= )t [ atp [(=trctra—p—3g—mi T
XL[Gritira—p+39)2—m* T [(—in—3r—p+39) 2 —m* T [ Gri—ira—p—39)*—m*]™
X {20 —(2p—q)i(2p+9);+2¢%6:;]1—8wpol —2r1ip;—raigi+2pir1y+qirs—2(r1g) 0]
+8po [ (r1+r2)i(ri—r2);i+(2p+9)i(2p—@)i+0i(r*—r?) 1} . (2.2)
A comparison with (2.15), (2.16), and (2.17) of paper III shows that, fori=1, 2,

My =i(2m)~3e2Z? / d*q [(n+¢)*1'[(n—9*1'R; 2.3)
and

M~ i(2r) 222 f @ [(ri+9)* T Ln—g)' T (Rt Ro).. 24)
As a first step, we introduce Feynman parameters for both R, and R,. Since, for any a,

/d"p (p2+a2)—-4 =1ir%(a?)~?

and (2.5)

[t ot iminar,
it follows from (2.1) and (2.2) together with (2.19) of III that
Ri~ 2i(d) 24 / 1 dondasdaydasd(1 —ay—as—as—as)@-ie)2(163p7)
0
and X{wlridp; —8piri+r128:;14(8po (289 6p; —8i;61—20p ir1;+2r1:0p +0ur 1} (2.6)

1
R2~i(4r)—284/ da;daadasda@(l —al—ag—as——a4)(52+'ie)"2
0

X {202 — (289" —q)i(28p" +q);428:;82+24%8:;1—8wdpo " [ (269" —q)ir1;—11:(28p" +);—2(r19)6:;]
+8(8p0” ) [4r1iri;+ (289" +) (26" —9);—26:82+285m*]},  (2.7)

where
&1= —2a105(r29)+ 2a5(0z—as) (71- @)+ doserst as(—arteant ) Hgas(artartal) —m?, 2.8)
Co= — 2 (alas -_ a2a4) (”2g) + 2(0[10!2 —013014) (f1q) + %t(al —'014) (012 —as) + q2 (Ol1+ a4) (a2+ as) —m? y (2.9)
5P,= —ayre+ (0[2—014)71—0[3q y (2'10)
and

8" =3tz —as—ag) +3r1(—artas—azta) +3g(—artartas—as). (2.13)

Note that the 8p' and 8’ defined here are not related to those of (2.28) and (2.29) in paper III.
Consider R; as given by (2.6). Since it is known that the dominating contribution comes from the vicinity of
a3=0), great simplication is possible by omitting most of the as’s as follows:

C1~ —2a10ts(7’2q)+ logag—m? (2.12)
5P,~ —a11’2+ (az—a4)f1, (2.13)
so that
5Po'= —ow,
opd ~(—artos—agri,
and (2.14)

8p/ ~ (a1t as—ag)ryj,
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The substitution of (2.12) and (2.14) into (2.6) gives explicitly

1

R1~2i(47r)‘2e4w2/ daldagdasda45(1——a1—ag—as-—ou) [—2a1as(r2q)+ta2a4—m2+ie]‘2(16a1){ —[2(111’11:71_,"}—%15‘7]

0

Far[2(—artas—as)(artas—as)+4ar Jrir;—a1dil — 2enas(re- @) +tesas—m2 —3 1]}

1
= 2’1:(47!‘)_264(«)2/ duldagdaada,;&(l —0l1 02 —Olg'—a4)|:— Zalas(fzq) +ta2a4—m2+1'e]"2(16a1)
0

X{ —Salaga,;rl.-rl,-—ﬁij[—2a12a3(r2q) +ta1a2a4—a1m2+%t(a2+a4)]} . (215)

The corresponding formula for R; is

1

Ro~i(4m)2etw? / dandasdosdasd(l —ay—as—as—as) (Cot-ie) 4 {8(1taz) (s tas)[ (a2 —as)riit(astas)g:]

0

X[ (1 —aa)rij+ (e1tas)gi]+ 65l g+ (aataz—as—adr*+4dii(ar+az) (as+as)és} . (2.16)

In both & and &, as given by (2.8) and (2.9), 7.
appears only in the combination (r.g). It is therefore
convenient to choose coordinate axes so that r lies in
the direction of the z axis. In other words,

rag= — (w?-+18)'/%gs. (2.17)
Note that ¢; can be either positive or negative, and that
the photon propagators [ (r12=¢)? ]! are invariant under
gs — —gs. Furthermore, for any 4 and B with 450,

f LA+ B+ie+(~Ay+B+ie11=0. (2.18)

Therefore, the dominating contributions to 9y and
N’ as expressed by (2.3) must be from the vicinity of
g3= 0.

It is the most important point of the present paper
that the longitudinal momentum transfer is small. This
is to be discussed in detail in Sec. 5; for the moment we
merely mention that this has been conjectured before?
and is indeed incorporated in the droplet model.?

Since g¢; is small, it is natural to attempt to integrate
over g;. From this point on, the considerations become

more formal. Let

5;=(2w)_1fw dgsRi/w (2.19)

for 1=1, 2. These integrals are to be further studied in
Sec. 4. Because of the form of ¢ and &, ¢; may be
treated on the same footing as Feynman parameters.
Let 4 and B be two real numbers with 4>0; then by
symmetric integration

00 1
/ dgs f dy(Ayge-tB-piey?
—00 0

= —miA~Y(B+ie)~t, (2.20)
and moreover by integrating with respect to B
00 1
f dgs / dy(Ayqs+B+ie)!
—o0 0
=mid~ ! In(—B—ie)+C, (2.21)

where € is a constant of integration. (Actually @ is not
finite but, as seen below, is cancelled out.) In order to
use (2.20) and (2.21) to find 95 and 9, we must apply the
changes of variables (2.43) and (2.44) of paper III to
(2.15) and (2.16). Thus,

1
Ry~ 2i(4m) % w? f dg dp'dx dy B2(1—x)6(1 —B—B")[—288' (1 —x)ywgs+182x(1 —x) —m2+ie ]-2(168’)

0

and

X{—88%'x(1 —x)r1ir1;—8;[ —268"* (1 —x)ywqs+18%6'x(1—x) —8'm>+-1181}  (2.22)

1
Ro~2i(dr)~2? | dB dB'dw dy B8’ (1—2)5(1—B—B") (61412

X4{866'x(1—x)[(B—B")r1it+qul (B —B")r+q1;]— 0L (B—B)r1+q.]2+46,88'C2} ,

where q. is the projection of q in the xy plane, and

&2= — 268 (1—2)yogs—2(8—B)a(1 —2)rs- q+ H(B—B)a(1—2) —a(1 —2)qt—m.

1T, T, Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).
2N. Byers and C. N. Yang, Phys. Rev. 142, 976 (1966).

(2.23)

(2.24)
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The substitution of (2.22) and (2.23) into (2.19) then gives

g1~ (4m)2et f 1 dp dB’ dx 886(1—B—B"){[18%x(1 —x) —m?*]!
i ’ X[ —88%8"w(1—x)r1rs;— 318635 ]+88;; In[ — 18%(1 —x)+-m?*4-6'6,,€}  (2.25)
s ()t [ 05 0805 261 ~5 =) (1= G~ rckasTr =)

X{868"x(1—2)[ (8 —B")r1i+qull(B—B")ry+qu]—84[ (8811 +4a.]%

—46;,868" In{x(1 —x)[(B—B")t1+q. J*+m?} —45;;88'C]. (2.26)
It is seen that the sum 91+ 9, does not contain the divergent quantity @.
We therefore define the impact factor of the photon as
97=£i§£ (91+92) =sum of the right-hand sides of (2.25) and (2.26). (2.27)

By (2.4) and (2.19), the impact factor is related to the matrix element to the order €822 of Delbriich scattering by

lim w291 @) =i(27) %222 / dqu[ (r1+q)* L (11 —q) 197 (r,q0) , (2.28)

and is given explicitly by
97(11,q.) =2(4m) %t / dB dg'dx §(1—B—p") [[|¢]B%(1 —x)+m*T[328%"x(1 —&)r1irs;—B2| 1] 8]

—{x(1 —2)[(6—B)t1+q. I +my~{888'x(1—x)[ (8 —B8rutqu LB —B)rii+qu]
—8;,L (8—B)r1+q.]2} —48:;88" In{[x(1 —2)((B—B")t1+q.)+m*]/[ | 1] 82(1 —x)+m?T} 1. (2.29)
Alternative forms and properties of this impact factor for the photon have already been given in paper I.

3. COMPARISON WITH RESULT OF PAPER III

Since it seems difficult to improve significantly the heuristic procedure of Sec. 2, it is essential to verify that the
result (2.28) is indeed correct. Fortunately, the left-hand side has already been studied in detail in paper III. This
section is devoted to a direct evaluation of the right-hand side of (2.28), with 97 given by (2.29).

Feynman parameters are introduced once more to combine the denominators. Let the new Feynman parameters
for [(r1+q.)27! and [ (r1—qu)?]! be, respectively, as and ae. Also let

B=v/(1—as—as) and B'=v"/(1—as—as), (3.1)

then the combined denominators are

]t 82x(1 —x)+m?J(1 —os—ae)+ (11t qu) s+ (r1—qu) as
= (a5t as)[qut (os—as) (st as)~rs P+ (a5t as) L (y+v)"les  (3.2)

and
{e(1—x)[(B—B" )11+ P+ m*} (1 —as—as)+ (ri+qu) s+ (11 —qu) s

= [(as+as)+ (v+v")2(1 =) Hqut[(os+ae)+ (v+v") (1 —2) T [(as— )+ (v+7") 2 (1 —x) Jr1}?
F+ ) Lastas)+ v+ )e(1—x) e, (3.3)

where
. c10= | | [asas(y+v") v (as+ae)a(1—x) TH-m?(y++")*(es+as) (3.4)
an
S c20= | ¢| Lasas(y+v")+ (v 2as+v?ae)x(1—x) JH+m?(y++")[(os+ae)+ (v+v")2(1—x)]. (3.5
ince

1 1~ap
/ d(Jls/ dol(;(l —a5—a6)‘1{[Aa5+Ba6+C(1 —015—-015)3_2
¢ —[Aas+Bag+-C'(1—as—ag) 2} =A-1B-1 In(C'/C), (3.6)
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the integral on the right-hand side of (2.28) is found to be
/ dqu[ (r1+q0)? ][ (11 —q1)*T 97 (11,95
1 1 1 1 ag
= (4m)~e* / dy / dy' / dx / dag / dasd(1—y—v"—as~—ae) (y+v) [ (astae) (v +v')%e10® T
0 0 0 0 0

X323y (v +v) (L —a)rairy— v (y+v)2[ 1] 5] — { (y +7) [ (estae) + (v )x(1 =) T oa?}

1903

X[ (estae)+(v+v)2(1—2) T2 (vas—v'as) 2{32vy (v ')~ a(1 —x)ryir;— (v —v') 2| ] 83}
—{ (v v ) [(astae)+(y+v)a(1—=) Jeao) 28 4vy' (v +v')"20(1 —x) —1]

Straightforward reduction then yields that
[right-hand side of (2.28)]

1 1 1 1 g
—Li(2m) 822 f dy / ' / dx / dat / datsd(1—y —' —as—as) (y-Hv')~5
0 0 0 0 0

XIL32yy 2(1—x)rvrs;— (v ") 2| ] 835 { v (s +ae)ers ™ — (yas—"as) [ (as+ae) + (v +v")2(1 —x) T a2}

With ¢19 and ¢z defined by (3.4) and (3.5), a comparison
with (3.2) of paper I shows that the right-hand side of
(3.8) is just the limit as w—> 0 of w9y ?). Accordingly,

=487y (v +v ) e =] (3.7)
—di{4vy e —[4vy (astae) + (v +v) 1L (es+ae) +(v+v)x(1—2) T e} . (3.8)
region:
ps=w,  p=w, (4.1)
and
2:=~0(1), (4.2)

(2.28) is indeed correct.

It should be emphasized that the present verifica-
tion of (2.28), unlike the formal developments in Sec.
3, is completely honest and involves no divergent
quantity.

4. IMPACT FACTOR IN MOMENTUM SPACE

Because of the importance of the impact factor, it is
desirable to obtain it in as direct a manner as possible.
In other words, we want to calculate

lirg (91+92)

from (2.19), (2.1), and (2.2) without introducing
Feynman parameters. Such a calculation may also
facilitate physical interpretation.

For the purpose of orientation, we discuss roughly the
magnitudes of various quantities in the limit where
w— but A remains fixed at a value different from 0.
We again choose the coordinate system as in Sec. 2,
where r; is in the direction of the z axis, and a subscript
L denotes projection into the xy plane. From Bethe-
Heitler formula for pair production and also (2.18),
it is seen that, in the limit just mentioned, the dominat-
ing contribution to 9P’ comes from the following

while pi, qi, and po—ps are all at most of the order of
max(m,A). We shall concentrate on this region.

The polarization vector for the incident photon is
perpendicular to 2y= —7;47,, while that for the scat-
tered photon is perpendicular to —ks=7r1+75 Thus,

pi~ prit parii/w

and
pi~ pri—pari/w. (4.3)
Define %, v, and 4 by
po=—u—v,
ps=—utv,
and (4.4)
A=u/w.
Then it follows from (4.3) that
pi~pri—Ary
and (4.5)
pi~putAni;
moreover,
pri= —(uto)ort (u—1) (a2 — 3] 1] 11
~—3A|t| —2vw. (4.6)

The approximations (4.5) and (4.6) may be used in the
numerators of (2.1) and (2.2) with the results

8pow[ 2r1ipi—2pir1j~+ 2028 14 8po[4pip;i—2pi(r1—12) i+ 2(r1t12) ips+ 8sj(ri2 ~12%) ]
~ —Aw?(1—A4)"{ —165,;Q:°+ 16(Quipri— p1:Q1;) — 324 (1= A) (ps+ Q1) i(p1—Q1);}  (4.7)
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and

20 [— (2p—q)i2p+q)i+2%0:;]1—8wpol —2r1ipi—r2igi+ 2pir1i+ qirei—2(r19) 84 ]
+8po*[(r1+72) i(r1—r2)i+ (2p+q):(2p — @)+ 8s;(ri2 —12%) ]
h ~w*{ —168:,Q2*+16(Qaipri— p1:02;) —8(1—4A42) (pu+02)i(p1—Q2);}, (4.8)
where

Qi=(1—A4)r; and Q,=%iq.—Arn. (4.9)

Note the similarity between the right-hand sides of (4.7) and (4.8). It is convenient to define i, and Ns as
the quantities in the braces in (4.7) and (4.8). Thus, the right-hand sides of (4.7) and (4.8) are, respectively,

—Aw?(1—A)" 191, and w?Noy.
The substitution of the approximation (4.7) into (2.19) with (2.1) yields

91~2(2r) B¢t / d4p wps(1 —A)“E)h,,[(rg+p)2—m“’-{—ie]‘l[(—;r1+p)2-—m2+ie]‘1[(rl+p)2—m2+ie:|—1

X / dgs[ —2psgs+po®— ps?— (Put-qu) 2 —m2+ie ]

-

~3i2n)te [ @4p1— Ay L PP T Tk PP m i Lk g =il
~,~(2,)~464/ dpudu do(1—A) T — 4o —u)v+3(1— ) |t| — Py —mP+ie][4ur— (— rrtp.)*— mi+ie]™

o X[4uv—(r+pi)2—m?+ie]*
=(2m)~%* / dps / du(1—A) "9 [4(w—u) ]!

X{u(w—u)""[1(1—4) [t] —p2—m>+ie]—(—r1+pi) 2 —m?+ie} ™!
X{u(w—u)"[1(1—4)|t] —p2—m>+ie]—(r1+p) > —m?+ie}

1
=2(4m)"%* / dp. / dA [ p2—2(1—A)ry put-(1—A4)2r 2+ m2+1e]!
0
Xp 221 —A)rr- pit+(1—A4) 22 +m2+ie] 1
1
= 2(4m)-%¢* / dp. / JA{—165;{(1—A)r, P —324(1—A)
0
X[+ =) dLpi— A=A H{[pe— A=At P+m?}H [po+-(1 —A)r P Hm?} 1. (4.10)
A similar but more complicated computation with (4.8), (2.19), and (2.2) gives
o~ (27) Sew / d*p Mo, / dqs[ (3ra—p)sgs+(—3r1+3ra—p—3q.) 2 —m2-+ie ]!
X[ —Gra—p)sgs+Gritire—p+3q) —m*+ie | Grat+p)sgs+ (—sr1—3re— p+391) 2 —m?-ie ]
X[—=Gratp)sgs+Gri—ira—p—39.)* —m*+ie}™
= —i(2m)etw / d*p Moo (—3r1t+3r2—p—392)*+ Gritira—p+390) 2 —2m?H-ie ]
X[(—3r—3ra—p+59)*+Gri—§ra— p—5q1)*—2m2+ie ]!
X{LGratp)sGritire—p+390)2+ Gra—p)s(—3ri—3re— p+21q0) 2 —rogm?+ie 1
+LGratp)a(—drit+ira—p—390*+Gra—p)sGri—3rs—p—5q1)* —ram?+-ie ]}
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~ —3i(2r)~tetw / dpududy Nao[ (du+-20)v+3(A43) || —p2— Gri+3q.)? —m?+-ie]
X[(4u—2w)r—3§(4—3)[t| —p.2—Gr1—3q.)? —m?+ie]?
X{[—w(p1—3q:)?—3ud |¢| —urs- 2pi—qi) —m?+-ie]!

+L—w(pit39.)2—5ud |¢] uri- (2pitq.) —wm?+-ie]1)

/2
=2(4n)"tetw! f dps / du Mool (14+24)[—3(A+D) 1] —p— G11-39.)*—m?]
—w /2

+(1-24)3(A+D) [t —p2—Grit+390 —m* 1 H{[(p1—3qu+Ar) +m* T [ (39— A1) +m? T}

1/2
= —2(4m)~%* / dp, / dA[ —165;;(kq.—Ar))?—8(1—44?)
—1/2

X(p1+3q—Ar)i(pr—3qi+Ar); L1 —3qu+ A1) +m* T (. Hqu— A1) 4-m? ],

Thus the impact factor for the photon is, by (2.27),

@.11)

97=—}n %! / dp, / dA{[84°1*+24 (1 —A) (pr+Ar)i(pr—Ar1); L (pr— A1) +m* T [ (po4-A11) > H-m? ]
—[6:Q24+24 (1—4) (91 +Q)i(p2— Q)i L1+ Q)2 +m* T [(p.—Q)2+m? ]}, (4.12)

where

Q=1(q+r)—Ar,. (4.13)

This is the desired answer. It is shown in the Appendix
directly that (4.12) and (2.29) are indeed equivalent.

5. DISCUSSION

The present paper is devoted exclusively to obtaining
the impact factor of the photon, and to verifying its
relation to the matrix element for Delbriick scattering.
Nothing is said about other properties of the impact
factor; they are already summarized in paper I.

In both Secs. 2 and 4, infinite quantities are manipu-
lated. At least for the procedure of Sec. 4, this can be
avoided by considering only the sum J,+9;. For the
reader who is concerned with mathematical rigor, he
may ignore both Secs. 2 and 4, because all the results
are already contained in Sec. 3 together with paper III.

However, Secs 2 and 4 are essential for future develop-
ments, the reason being that the development in paper
IIT is by comparison much more complicated and
hence too difficult to be readily generalized to higher-
order diagrams. In a later paper, not to be included in
this series, we shall study the electrodynamics of scalar
particles to higher orders by the procedures of this
paper.

One of the most important findings of the present
consideration is that the longitudinal momentum trans-
fer gs is small. However, it does not seem possible to
state how small. For example, in obtaining (2.25) and
(2.26), the important region of integration is

3qs ~el,

(5.1)

But (5.1) can be satisfied by making y and/or g; small.
This point is also of great importance in connection
with higher-order diagrams.

APPENDIX

In this Appendix, we derive (2.29) from (4.12). Introducing the Feynman parameter x and remembering that,

for positive @ and @/,

/ dpu(p*Ha)2=n/a

and

/ dppeL(piHa) = —(pi+a')y*]=r In(@'/a),

(A1)

(A2)
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we obtain from (4.12) that

CHENG AND T. T.
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1 1
g7= —%w‘se“/dpl/ dA/ da{[0:;4%0:24-24 (1~ A) (pr+-Ar1)i(ps—Ar); [ P2 =24 (1 —2%) py- t1+A 2 24m2 ?
0 0

~[8:02424 (1= A)(pr+Q)(pr—0) Tps2+2(1—2)p:-Q+Q+m7 T

1 1
=-1 —264/ dA/ dr{[36:;42%|t| —843(1—A)x(1—x)r1ir1;]
0 0

X[A*|t]2(1=x)+m* T —[8,/0* =84 (1— A)x(1 —2)Q:Q,;][4Q**(1 —2) +m? ]~

A (1~ A)6:; In[4Q%(1 — ) +-m? /[ 42| t| (1 — ) +-m2T]} .

By (4.13), it is seen that (A3) is identical with (2.29).
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=N Scattering in the Virasoro Model
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A representation of the =V scattering amplitude that contains Regge behavior, crossing symmetry, and
analyticity is given by making use of the Virasoro model.

OLLOWING Veneziano’s discovery! of the scatter-

ing amplitude that contains Regge behavior,
crossing symmetry, and analyticity, an alternative
construction of the amplitude has been proposed by
Virasoro.2 In this paper we apply Virasoro’s model to
7N scattering. That is, we construct the simplest 7V
scattering amplitude that satisfies the following pro-
perties: (a) crossing symmetry between the s and «
channels; (b) Regge behavior at asymptotic energies;
(c) it satisfies all superconvergence sum rules; (d) the

PG —3a(sTGE —3a(u)

only singularities present (for linear trajectories,
narrow-resonance approximation) are the simple poles
corresponding to resonances on Regge trajectories;
(e) there exist four leading trajectories, a,(f), as(f),
an(s), and aa(s).

We find a simple solution if these linear trajectories are
parallel and if? J=q,(f) =a;(t) [=ap (f)]J=ao+'t and*
J—%=an(s)=aa(s) =als)=ao+a't. Our solution is as
follows®:

r(1—3a(?)

A<+>=B<—2

L(—3a(s))T (G —30(u)

I'(3—3a() —3e()TG —3a() —3a(h) ' T(L~3a(u)—}a())T(1—bals) —}a(t))

(1 —3a(s))T(1 —da(w)) >
T'(1—}a(s) —ta(u) ’

r(l—3e(®) (1

B<+>=27<

(1 —3e(s)TG —a(w))

TG —3a() —3a@)T(A—}als)—3a()) TG —}als)—3a())I (1 —da(w) —3a(®)

(1 —3a@)T (G —3a(s))

I'(—3a(w)TG —3a(s)) )

I'(—3a(s) —da())’

\  TG—1a)

A= ,
6<1‘(1 —ta(u) —3a()TG—3els) —3a()) T(1—dals)—3a()TG —~3a(n) —3a())/ TG ~tals) —dau))

1 G. Veneziano, Nuovo Cimento 57A, 190 (1968).
2 M. A. Virasoro, Phys. Rev. 177, 2309 (1969).
3 Experimentally, a,() =ap/ () =~ (0.5—0.6)41.0¢ GeV~2,

4 From the known nucleon resonances Barger and Cline have found ay= —0.89+1.0s GeV~2 and aa=—0.35+0.9s GeV~—2. See

V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966); Phys. Rev. 155, 1792 (1967).
& We use the notation introduced by G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1345 (1957).



