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We obtain explicitly the asymptotic behavior of the matrix elements at high energies for Delbriick
scattering, i.e., the elastic scattering of a photon by a static Coulomb field via a virtual electron-positron
pair. This is the simplest nontrivial two-body elastic scattering process in quantum electrodynamics besides
those discussed in the preceding paper. The considerations are limited to the lowest order, Z2%s$, for the matrix
elements, and it is found that, to this order, lim,.,,, do/dt exists and is nonzero for any fixed positive momen-
tum transfer. This limiting value is expressed in terms of integrals, which are evaluated numerically. The
behavior of these integrals is also studied in detail for the cases where the momentum transfer is either much
larger or much smaller than the mass of the electron. Moreover, the scattered photon is significantly polarized
in the scattering plane. None of the present results agree with the earlier ones of Bethe and Rohrlich using

the impact-parameter approximation.

1. INTRODUCTION

HIRTY-SIX years ago, Delbriick! first proposed
the possibility of the scattering of a photon by a
static Coulomb field. In spite of the great advances in
our knowledge of quantum electrodynamics in the
intervening years, theoretical analysis of this process
remains fragmentary. On the basis of the result obtained
by Racah and by Jost, Luttinger, and Slotnick,? the
particular case of Delbriick scattering in the forward
direction, which is related to pair production by the
optical theorem, has been calculated exactly, to the
lowest order in the fine-structure constant «, by Toll
and by Rohrlich and Gluckstern.® In the limit of high
energies, their exact result is asymptotically

w7/ 20 109 1
NP ~4iadZ2— —(ln————~-—-i1r>5,~j, (1.1)
m2O\ m 42 2

where w is the energy of the photon in the laboratory
system (i.e., the frame where the Coulomb field is
static), m is the mass of the electron, Ze is the charge
responsible for the static Coulomb field, and é;; signifies
that there is no change in photon polarization. No com-
parable result is so far available in the literature for
nonforward scattering. By the impact-parameter
approximation, Bethe and Rohrlich* have studied the
case where w>m, and wdZm, where 6 is the scattering
angle in the laboratory system. As will be discussed
presently, their result is not completely correct.

It is the purpose of this paper to study Delbriick scat-
tering by conventional relativistic perturbation theory.
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Before launching into this rather complicated calcula-
tion, let us discuss the various scales involved. Only one
mass appears in this problem, namely, that of the elec-
tron. Let A be the magnitude of the momentum transfer,
then m certainly is one of the scales for A. However,
there is actually a second scale for A. To see this, con-
sider the photoproduction in a Coulomb field of an
electron-positron pair of equal energy and momentum.?
In such a case, the momentum transfer is given by

A=w—2[ (Fw)2—m?]!/2, (1.2)
When w>>m, (1.2) simplifies to
A~2m?/w. (1.3)

Therefore, at high energies there are two scales for the
momentum transfer A, namely, m and m2/w. An alter-
native way of expressing this is that there are two scales
for 6, namely, m/w and (m/w)2.

A complete understanding of Delbriick scattering at
high energies therefore requires the consideration of
two regions:

W>S>mS>A (Region A) (1.4)

and

w>m, A>Dm?/w  (Region B). (1.5)
The present paper (III) is devoted entirely to region B.

More precisely, we compute here, to the order Z2e8,

(1.6)

lim w2917, P

>0

for any fixed nonzero momentum transfer. The existence
of this limit (1.6) implies that, as w—o for fixed
=—A?% do/dt in the lowest nonvanishing order in oz
approaches a finite limit. The detailed study of region A,
5 The matrix element for pair production ha.ppens to be zero at

this point, but this fact does not affect the estimate of the order
of magnitude here.
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which includes the forward direction, is to be carried out
in paper VIII of this series.

Without any computation, we can get some informa-
tion about the region common to A and B. Let A; be
the components of the momentum transfer, then N7,?’
can always be expressed in the form

Mo P =4ia®Z%m— fidij+ foAA;/AZ].
It follows from (1.1) that, when w>>m and A=0,

7/ 2% 109 1
f1~—(ln———~~——-—i7r)
o\ m 42 2

1.7

and (1.8)
f 2~0 .
Accordingly, in region A, f; and f; are of the forms

Jf1~(7/9) In(w/m)+function of (Aw/m?)
and 1.9)
fa~function of (Aw/m?);

while, in region B, we have instead, for n=1,2,
fa~Tfunction of (A/m).

A comparison of (1.9) and (1.10) shows that smooth
connection is possible only if, in the overlapping region
WDMDAD>m?/w,

Ji~(7/9) In(m/A)+Cy

(1.10)

(1.11)

and

fg’\'Cz,

where C; and C; are two constants. In other words, if

we are only interested in this overlapping region, it is

sufficient to determine these two constants C; and Co.
The present calculation shows that [Eq. (3.32)
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below ]
C1=19/27 and Cy=-—%. (1.12)

This is to be compared with the result of Bethe and
Rohrlich*

C1 BB =(7/9)(3+1In2—y)~0.47906
and (1.13)

Cz(BR)=O.

It is seen that there is no resemblance between (1.12)
and (1.13). This discrepancy is clearly due to the in-
adequacy of the impact-parameter approximation that
they employed.

There are several practical motivations for the present
consideration. First, since the differential cross section
for Delbriick scattering is extremely large at high
energies, the question may be raised whether the scat-
tered beam is useful. Second, there is a recent attempt
at the Cambridge Electron Accelerator to measure
Compton scattering near the forward direction using a
tagged photon beam of 2-4 BeV. If and when this
measurement can be pushed to sufficiently small scat-
tering angles, a knowledge of Delbriick scattering
becomes essential.

Results are summarized and discussed in Sec. 4.
Readers who are not interested in the derivation can go
directly to that section.

2. EXTERNAL FIELD APPROXIMATION

A. Formulation

In the external field approximation, the graphs under
consideration are the two shown in Fig. 7 of paper I.
Their contributions to the matrix element of Delbriick
scattering are, respectively (z,7=1,2,3),

Ma=2i(m) 702 [ 84p ALt P —m T L= rik PP =mT [+ =T

X[(r14-p)2—m* T [ (r1+@)* T 'L(r1—)* T Tryi(ritp+m)vo(p+g+m)vo(—r14-p+m)y;(ro+p+m) (2.1)

and

o =i(or) 6022 [ atp L~ m—p=h0) =T Lretdremp o —m T

X[(=3r1—3rs—p+30) 2 —m* T [ Gri—3r:—p—3¢)* —m* ][ (r1+¢) ][ (r1—¢)* ]
XTryi(3ri—3r:—p—3g-+m)yo(—3r1—3r2—p-+3q-+m)

Xy;iGr+ara—p+3q+m)yo(—3n+ir—p—iq+m).

In (2.1) and (2.2),
7= —%(kl-{-kz) and 7’2=%(k1—k2) N (2.3)
where %; is the four-momentum of the incident photon,

and —Fk; that of the scattered photon, so that Zio
= —kgo=w. We make the following remarks about (2.1)

(2.2)

and (2.2): (i) In the external field approximation, the
static Coulomb field can absorb any momentum transfer
and cannot take up any energy. Thus, ¢ means (0,q).
(i) The metric g, is given by gop=1, gu=—1 for
i=1,2,3. (iii) Since there is no confusion, all +ie have
been omitted in (2.1) and (2.2). (iv) A factor of 2 has
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been incorporated to take into account the two possible
directions of drawing the internal electron loop. (v)
Strictly speaking, both 917; and 91, are really not defined
because of ultraviolet divergences associated with the
p integrations. This divergence is, however, well
understood and does not appear in the sum

NP =N, +NTs. (2 4)

Moreover, this divergence is irrelevant in the limit of
interest w/m—. (vi) Because of gauge invariance,
the two graphs of Fig. 7 of I must be supplemented by
a third graph involving a four-photon contact inter-
action. In the limit w/m— o, this third graph is im-
portant only when the momentum transfer is of the
order of m?/w. A detailed discussion of this point is
therefore postponed until paper VIII of this series.
(vii)) A question may be raised about the range of
validity of the external field approximation. More
precisely, is the said approximation valid when the
incident photon has a larger energy than the mass of
the target? That the answer is yes is discussed in detail
in Appendix A for the special case Z=1.

The divergent terms mentioned above in (v) come
from the term —4(p2)25;; contained in the trace of (2.1)
and the term 4(p?2)25;; in the trace of (2.2). If these two
terms are deleted, it is found that, as w— o, both 9,

Consider 9, first. By (2.1),
1 =2po Try:i(r, +p+m)yo(—ri+p+m)y;(re+-p-+m)

—Tryi(ri+p+m)(p+g—m)(—ri+-p+m)yi(re+p+m).
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and 9, are of the order of magnitude w(lnw)?, while
N+ is of the order w. Therefore, a great deal of
cancellation exists between 9; and 9. In Sec. 2C,
we rearrange the various terms in 917; and 9, so that a
number of the cancellations are taken care of in a trivial
manner, and in Sec. 2 E a convenient set of variables is
introduced for the other cancellations. For this purpose,
we first study the traces in Sec. 2 B.

B. Traces

Let 91y be the trace that appears in the integrand of
(2.1), and 97, that of (2.2). In this section, we obtain
the leading terms of 97; and 97, as w—. These
quantities 9; and 9, are studied in greater detail in
paper VIII.

We must first define leading terms. Basically, they
are those terms that have contributions of the order w
or larger to the integrals as w— . Since r20=w, we are
therefore looking for terms of the forms

wpo, or pot. (2.5)

However, note that the integral in 91; contains the
denominator (rs+p)?—m2. In the absence of this
particular denominator, the integral (2.1) has no
dependence on w. Thus, this combination (rz+p)2—m?
is negligible in 97;. There is no such simplification in ..

w?,

(2.6)

The second term in (2.6) does not contain anything of the desired form (2.5), and hence can be neglected. The

first term of (2.6) leads to

Ju~2p? Tryi(—11+p+m)yi(rat-p+m)+2po? Tryi(ri+p+m)yi(re+p-+m)

+2po(w+po) Tryvi(rit+p+m)(—ri+-p—m)y;. (2.7)
Simple, explicit evaluation of the right-hand side yields
Na~ 16pe{ pi(ratp)itpi(ratp)itoi[p (fz-!-?)—mz]}+8P0(w+1>o)[2'u:1?: 2piri—0ii(p*—ri2—m?)]. (2.8)
Since (ra+p)2—m? is negligible, (2.8) is finally simplified to
T~ 8pow 2r1ip;—2piryy—8ii(p> —ri® —m?) 14-8po’ [ 4pip;—2pi(ri—r2)i+2(ritra)ipi+-di(r2—r®)].  (2.9)

Attention is next turned to 9, for (2.2). Instead of the three terms on the right-hand side of (2.7), there are

now four terms as follows:

Mo~ —2&"-’2—?02) Tryi(3r1—3r2—p—3q+m)y;Gri+3r:—p+5q-+m)
+2Gw+p0)? TryeyiGntira—p+iq—m)(—in+3ra—p—3q+m)
+2Gw—po)? Tryi(3ri—3r2—p—39—m)(—3r1i—3r:—p+3q+m)y;

—2(3w?—po?) Tryi(—5ri—3r2—p+3q+m)v,(—3n+ir.—p—

The rest of the computation is rather straightforward and leads to the desired answer

Mo~ 2w —(2p—q)i(2p+q);—8:;(4p*—

ig+m). (2.10)
q*—4m?) 1—8wpol —2r1:p;—r2igit2pir1it+qire;—8:;2rap+rig) ]
+8p[(r1tr2)i(ri—r2);+(2p+9)i(2p— )i+ 8i(ri2—r2)].  (2.11)

In (2.11), we have omitted a term (r;—r2)i(r1+72); because the photons are transverse.
The approximations (2.9) and (2.11) are to be used in (2.1) and (2.2).
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C. Cancellation
A few of the terms in 917; and 917, cancel each other as follows:
2 [ 9 LG P = T =i )= L=t
XLk T L= T (8 o+ —m)+ [ 9 (bt p—hapi—m
X[ Gritbr—p+30 = T L(—dn—br—pH3*—m [ —dr—p—he—m?
X[ (ri+) T Llr1—9)* T 16:[ —8w(p2+1g* —m®) +8wpo(2rsp—r19) ]=0. (2.12)

This identity is easily proved by partial fractions, since the left-hand side of (2.12) is

Z/d“{’ gL (ratp)—m* T [(p+9) 2 —m* T [ (r1+p) 2 —m* T [ (ri4¢) T [ (r1— @) 2] (— 4powds;)
+2 / d*p [ (ro+p)*—m* T [(—ri+p) 2 —m* T [(p+9)*—m* ][ (r14¢)* ][ (r1—g) 2T (—4powd;)

+ [ Lnctine—p 0P —m T L= o) =T (= p= o) =T
XLt T L= T~ 2o —ap-+ [ 0 L~ it bramp =gy —mT
XE(—dn—drs—p+10 = mT Ln—dra—p—30) =m0 T L= 10— 2o — o)
+ [0 Lt bri=p = hP =T Lo =T (= p=ha) =T
XLt T =0T (=2 +dopo+ [ dtp L~ bbb p=hgi— i

XLGritir—p+39* —m T [(—ir1—3r:—p+30)* —m* T [(n+9) T [(r1— )2 105i( — 202 +4wpo) . (2.13)

In writing down (2.13), we have used
ri2+r2=0. (2.14)

Linear transformations on the variables p and g then show that, in (2.13), the fourth and sixth terms taken together
cancel the first terms while the remaining three terms also give zero. This proves (2.12).

It is a consequence of (2.12) that
Mo @) =N+ Mo~ M M, (2.15)

where

o =2i(m) 022 [ 4 oLl £ =T L=k =T L P —mT

X[ (r4p)2—m* T [(n+) T Lr1—g)*T*
XA8powo[ 2r1ip;—2pir1;+2r1205 1+-8poX[4pipi—2pi(r1—r2)i+2(r1+r2)ipiF8ii(ri2—r2) ]}  (2.16)
and

e =i(am) 6822 [ 4 (b p =40 = T lrebdrampHg P

X[(=3n—3rs—p+39)2—m* [ Gri—3re~—p—59) 2 —m* T [ (r1+9)* T [ (r1—)*T*
X{ 2~ (2p =) i(2p+9)i+2928:;]—8wpo[ —2r1ip;—r2iqi~+2pir1j~+qirsi—2(r1g) di;]
+8p’ [ (r1-tr2)i(ri—r2);+(2p+q)i(2p—q)j+8is(r2—r?) ]} . (2.17)



182 HIGH-ENERGY COLLISION PROCESSES. III

Note that, because of the transversality of the photon,

k1i=k2j=0,
or
rei=r1; and re=—ry;.

D. Feynman Parameters

The next step is to introduce Feynman parameters for the various denominators:
1

E)Tll, = 2i(27r)"7e6225 ’/ daldazdasda4da5da65(1 —Q]— 03— 405 —as)
0
/ d*p d*q Di5{8pow[ 2r1ip;—2pir1;+5105 1+8po’[4pip;—4pirtdriipi+516,1}
1
Sngl = ’i(21r)_786225 ![ daldazdaada4da5da65(1 —Q] =034 —ae)
0
f d*p d*q Dy~5{20’[ — (2p —q)i(2p+9); 1292841 —8wpo —7r1:(2p+9) i+ (2p — ) ir1;—2(r19)6:5]
+8po[Arir+(2p+9)i(2p—)i+5t8,1}
where ‘
Dy = (artastas+tas) p2+2aspg+(astas+as) g+ 2p[ (—asta)ri+ar:]
+2(as—ag) (r1g) +[; (—artastastastas)t— (ertastasta)m?]4-ie
and
Dy= (a1 +astastad) pi—4 (a1 —as—astas) pg+[ 3 (ert-aetaztag) Fastas g
+pl(a—aztaz—adri+(—a1—aztaztag)r: ]
+2¢{[§(a1taz—az—aq)tas—asJr1—;(e1—astas—asdra} +[}(astae)t— (tartas+a)m?]+ie.
In (2.20) and (2.21), we have used the notation
{= (k1+k2)2=4r12= —'41‘22<O .
Both D, and D, are quadratic forms in p and q. Remembering that ¢o=0 is not a variable, let
po=0pd +po’ =8pd" +pd”,
p = 5pl+pl = 6pll+pll ,

and
q=6q/+ql =6q//+q1/ ,
so that
Dy = (ar+aztastas)(po?—p'?) —2a5p’ - ' — (as+as+ae) ' *+c1
and

Dy =(a1taztastag)(po’?—p") —(e1—az—asta)p” - q" —[Fartertasta) +astas]q?+co.

In (2.25)-(2.27), the various quantities are explicitly

8po = —an(artastastas) ',

p' =AY [ (s —as) (as+as+as) +asles—as) Jr1—ar(as+as+ae)rs} ,

8q' = —Ar Y[ (ertastastas) (es—as)+ (e —as)as Jr1—anasra}
8pe’ =t (artar—as—as) (a1 tastastas) v,

op" =3As Y —[2(c1 —az)as+2(as —as)as+aras —as Jt1+[ (1t —as —as) (@s+as) +aras —asas Jra}
8q" = —As Y[ (rtastastas)(as—as) Farae—azas 11— (@ras—azas)rs)

=AY o1tastostas) tartesw? — (o +astastas)m?
+tA1“1[a5a6(a1+a2+a3+a4) +a4a5(a2+a3) +052016(013+014) +0120136Y4]+’56 5
and
co=Ay"Yartastastag) " (aes —asy) w? — (1 F-az+astag)m?
“+iAs L asas(artartasztaq) Farasastasesas J4-ie,
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
(2.26)

2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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where

A= (a1 Far+tostas) (es+as+as) —as?, (2.32)

and

As=(onFartastas)(astas)+ (a1 as) (@atas) . (2.33)

In order to obtain the leading terms for My’ and 9Ny’ as w—>c0, it is permissible to replace the po’s of (2.20)
and (2.21) by 8p¢’ and 8p¢”, respectively. This replacement has the further advantage of removing the ultraviolet

divergences mentioned in Sec. 2 A. Therefore, by (2.28) and (2.29),
1
My~ 2i(2m)~"e8Z%w?5 ] / daydasdasdasdosdagd(l —ay—ae—az—as—as—as) / a4y’ a3
0

X[(atastas+as)(pe'2—p'H) —2azp - ' —(as+as+as) g >+ ]
X { —8ai(crtaetastas) [ 2r1:8p] —2(6p Yri;+318:5]
+8ar*(artastastas) 2 4(8p) (8 )+ 50:0 2 —4(8ps Irij+4ridp/ +318,])  (2.34)

and .
3TZ2’~i(27r)‘7e“ZZw25!/ daldagdasda4da5das8(1—a1—az—ag—a4-a5—¥a6)/d4p" d3q”
0

X {(atastastas)(po’2—p"?H) — (a1 —as—asta)p” - ¢ = [ (er+astostas) +as+as g 24-c2) 6

X{2[—(28p" —38¢")(26p" +3q'");—3(4p"2 — ¢'"?)8:;—2(5q"")%0:;;— 2q""%5;;]
—4(taz—as—ag)(artastasta) [ —ri(28p" +0¢") ;4 (26p" — 8¢ )ir1j+2(r1- 69" 8:;]
+2(ertaz—as—as)(ertartasta)4rir+ (20" +8¢7):(20p" —8¢");+5 (40" —q"" ) +316,1} . (2.35)

Application of the formula

1 (=c)?
/ d*p d3%q[ A (po*—p?) —2Bp-q—Cq?+c]% | p?| = | C(AC— B2 |im*A=12(AC—B2)~3/2(—c)~3/2/160 (2.36)
g (AC—B)

to (2.34) and (2.35) yields, without additional approximation,
1
N~ —3(2m) 28 2Z%0? / dardasdasdosdasdagd(l —ay—o—as—as—as—as)(@1+oetas+tos) 52082 —cp) =52,
0

X {Ot1A1'“l?'m’1j["' (2a2+a3) (2014+013) (a3+a5+a5)2+a32(—a1+a2+a3+a4) (Ols+015+016)
+2(as—as)as(astastag) (as—as) Fas?(as—ae) 2] — i $A1(aetastas) +iar(astas+as)er ]} (2.37)
and
1
Ny~ —3(2w) 22 %w? f daondasdasdosdasdasd(l —ay—as—az—os—as—ag) (@1tastastas) =120 58/2(—cy) 512
0

X [—4(artaztastas)2As riir{ (asos—asas) (asos—aas) (@1tas—az—aq)?

—[(asos—az0e) (1 tastas+ag) +(astas) (@res—ases) ]

X [(asas—aias) (01+-aztas+as) — (a1t (aas—asas) 1}

+84{3 1A (a1t —as—as) (e1tastastas)As— (a1tastastas) (as—as) — (102 —aza) ]2

—}A s onos —ag0s) 24 (cr o) (astas) (01tastastas)~2(as+as)ce
— 302 a1 —ases) 23 (@itastastas)e}].  (2.38)

E. Change of Variables

As given by (2.37) and (2.38), 9y’ and 91y’ depend on w through the presence of the combinations w?, ¢;, and c..
In view of the fact that the integrand of (2.37) contains an over-all factor a;, an examination of (2.30) and (2.31)
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shows that the major contributions to 91%," and 91T’ come from the regions

ag~0 (2.39)

and
aiag—agay~0, (2.40)

respectively. More precisely, in (2.38) we can neglect aja;—asas except when it is multiplied by w as in the next-

to-last term, and in (2.37) we can neglect as compared with a;+ag. [It is, however, incorrect in (2.37) to neglect

as compared with aj+as+as. A great deal of caution must be exercised in making the approximations.] The

results are
1

mll’\' —3(27r)"3e“Z2w2/ daldagdasda4da5da66(1 -0 Qg 04 —a,r,—ae) (a1+012+0£3+a4)—5/ZA1—5/2('—61)"5/20(1

0

X { —4aiArr1im1 [ es(os+as) +asas Laa(astas) Fazep]— i EtA1(eetastas)Fiar(astag)er]}  (2.41)

and

1
N~ —2(2m) 38222 / dondasdazdoydasdagd(l—ay—az—as —ay—as—ag)(@1tastas—toas) 82552 —cp) 52
0

X {4Asr1n1i(ca+as) (@stos) (asos—asae) (caas —arae)
+ 0, [RA s - astas) Hasast+asas —aras —asae) 5 (e +az) (es+as) (astas)cs ]
+38ij(e1tastastad)’ (artastastas)cs—w? Ay (aas—asag)*]} . (2.42)
Because of the symmetry of the graphs shown in Fig. 7 of I, it is actually sufficient to integrate over the region
as<ag for My (and 9My') and the region as<ag and ayas>asay for N, (and NT,').

The next step is to introduce a new set of variables so that the regions (2.39) and (2.40) coincide in terms of
these new variables. This seems essential in order to effect the numerous cancellations between 91" and 9.’ all
at once. A particularly convenient choice of variables is the following:

for N':

B=aztastau,
ﬂ, =aq,
r=as/(astastad),

y=as/(as+a4); (2.43)
and for 9N, :

B=a1taz,
ﬁ' =Ola+014 ’

x=ay/(01tas),

y =q1"1(a3+a4)_1(a1a3 -"012014) . (244)

With (2.43) and (2.44), (2.41) and (2.42) lead to exactly

1
Ny ~ —6(21) 5 Z % / dg dg’ dx dy / dasdagd(1—B—B' —as—as)B(1—x) (B+B')~512A /2 (—cr) 812’
0

ag>as>0
X{ =48/ A rry[Ba(as+as) +8(1—2)yas JLB(1 — ) (1 —y) (as+ae) +B(1 —x)yas ]
— 8 3BtA1+16 (as+as)cr]}  (2.45)

and
N ~ —6(27) %8222 /

0

1
B dp’ dx dy / dosdogd(1—B—B' —as—as)BB’ (1 —x)(B+B')~8/2A5~5/2(—cp)~5/2

ag>as>0

X {483 A5~ r1iry[B (x+y—xy)as—Bras ][’ (1 —x) (1 —y)as—B(1—x)as]

0,145 (8+B")2(8'as—Bas)?+388" (astas)ce]

+36,,(8+8")L(B+B")ca—As w8282 (1—x)*y*]} . (2.46)

The similarity between the right-hand sides of (2.45) and (2.46) is already striking.
Since the major contributions come from the region y~0, we may ask whether y can be neglected when not
multiplied by w. The answer to this question is in general no, because of the complicated structures of the inte-
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grands in the corner where 8, 8', and a5 are all small. However, a careful examination of this corner reveals that,

in (2.45) and (2.46), we can neglect
By, By, and asy. (2.47)

For example, in (2.45),
(2.48)

B =x)(1—y)(as+ae) +B(1—2)yas
appears. The second term of (2.48) cannot be neglected; fortunately, it is cancelled by the first term, and by (2.47),

(2.48) can be approximated by B8(1—=x)(as+as).
After neglecting terms of the form (2.47), we get

A~ (B+8") (as+as)
Ao~ (848" (astae) +(B+8")x(1—x)], (2.50)
and the substitution of (2.45) and (2.46) into (2.15) gives

1 1 1 1
M@~ 6(2) 368 2% f ds / dg’ / d / dy / desdogd(1 —B—B' —as—ar)B8 (1 —x) (3-H6')5
0 0 0 0 ag>a>0

X [{488' (B4B")a(1 —x)rrr;+38:;¢(B+6"))

X {BHastas)~32(—61) 82— (8'as—Bas) [ (as+ae)+ (B8 )2 (1 —2) T-7/2(—co)—5/2}

—301;86' (astae) { (as+ae) ™ /2(—c1) 32 —[(as+as) +(B+8")x (1 —x) J5/2(—c,)~3/2}
—50i;(B+8")L(as+ae)+(B+8)2(1—x) J-52(—co) 52 (B+B")co— A5 'w2328"2(1—x)2y2]].  (2.51)

(2.49)

By (2.30) and (2.31), in (2.51) ¢; and ¢, can be approximated by the forms
B4 (B+B')*as+as) (1 —x)2y?w?+terms independent of y (2.52)

and
(2.53)

B28"2(8+B") [ (as+ae) +(B+B")x(1—x) (1 —x)2y%w?+terms independent of y,
respectively.
F. Asymptotic Behavior for Large o
The last approximation is to replace, in (2.51), the upper limit of integration for the variable y by infinity. Once
this is done, (2.52) and (2.53) show that the integration with respect to ¥ can be easily carried out. The final result

is that, as w—o for fixed ##0, the matrix element 97 for Delbriick scattering is given by (3.2) of paper I.
The right-hand side of that expression is rather complicated, and we study some of its properties in Sec. 3.

3. SOME PROPERTIES OF RESULT FOR o>m
A. Formalism

Let G be defined by
right-hand side of (3.2) of I=%i(2r)%°Z%|{|~'G; 3.1)

then G is of the form
(3.2)

G=—G1di+Gorvry/|n?|,

where G; and G are functions of
r=t|/m* (3.3)

only. In this section, we study the behavior of Gy and G in the two limits of large and small |¢|. Explicitly, the
two functions under consideration are

i(r)= d ag’ d. da asda 5(1 —B—pB' —as—ag \—3
Gi(7) /0 ﬁ/o B/O x/o 6/0 s0(1—p—p )(B+6")
X((B+8) 7185 +as){ L (8+6"Dersas+B%(1 — ) (as+a) ]+ (8-+6") (s ae) )2

— (B'as—Pae) (as+ae)+(B+L)x(1—2) T
X{r[(B+8")asas+x(1—) (Bas+6"%ws) 14+ (B+8") [ (as+as) + (B+8")v(1—x) ]} 2]
+7 488" ([ (848 ascrs 8% (1 —) (as+ae) ]+ (B+8") (o5 +6) }
~[46B' (es+as)+(B+8") I (as+as)+(B+B")x(1 —x) T
X{r[(B+8")asas+a(1—2) (Bae+8"%0s) ]+ (B+6") [ (astas)+(B+8)2(1—2) 131D  (3.4)
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and
1 1 1 1 ag

Gz(T)=/ dﬁ/ dﬁ’f dx/ das/ dasd(1 —B—B' —as—ag) (B+B') %836 x(1—x) 2
0 0 0 0 0

X [B*(as+ae) { r[(B+8")asas+B% (1 —x) (as+as) ]+ (848" (as+as) }
— (B'as—Pas)’[ (as+ae)+(B+8)e(1—2) I
X{r[(B+8")asas+x(1—)(B%as+B"as) ]+ (B+6") [ (es+ae)+(B+6)x(1—x) ]} 2], (3.5)
The difficulty in studying the behavior of G stems from the following fact. Let (3.4) be symbolically written as

Gi(r)= / integrand,

where [ stands for the fivefold integration over 8, 8, %, as, and ag. Then it turns out that

T->00

lim [ integrands= / lim integrand, (3.6)

even though both sides of (3.6) exist. This is perhaps one of the few natural examples in physics where an integration
and a limiting process fail to commute.

We shall employ Mellin transforms to discuss the asymptotic behaviors of Gy and G,. The reason is that Mellin
transforms are particularly convenient when various powers of Inr appear.t Let

G.(¢) =/ Gn(r)r¥dr 3.7
0
for n=1,2. Since
/ (Ar+B)'rtdr=mn(cscay) B4~
0

and

0

/ (A7+B)2r'tdr =mn(cseri) (1 -—-f)B‘rlA_z_r , ‘ (3.8)
0

the substitution of (3.4) and (3.5) into (3.7) gives

1 1 1 1 ag
Gi(§) = cscnt f a8 f ag’ f dx / da f darsd(1 —B—B' —as—an) (BHB')3
0 0 0 0 0

X[A=8)B+B)**{B*(s+ae) 7L (B+B")asas+B%(1—x) (as+ae) ]*H

— (B'as—Lae)’[(as+ae)+(B+6)2(1 —2) 1L (B+B")asast-5(1 —) (Bas+6"%es) T4}

1486’ (B+6") "% (as+ae) L (B+B")asers+B(1 — ) (ers+ae) I~ — [486" (s +s) + (8+67) "I (B+6) %
X[(astae)+@+8)2(1 —2) T L(B+B ) asas+x(1—2) (B*s+6"%s) JH]  (3.9)

and

1 1 1 1 ag
@) =mr csmrg'/ dﬂ/ dB’f dx/ dae/ das6(1—B—p —as—as)(B+B)"%888'x(1—x)(1—¢)
0 0 0 0 0

X {B%(as+ae) [ (B+B")asas+B2(1 —x) (as+ag) T4
— (B'as—Bes) [ (astas)+(B+6")x(1 —x) L (8+B ) asas+x(1 —x) (B2as+8"%s) 2} . (3.10)

We need to know the behavior of G1(¢) and G.(¢) in the vicinity of their singularities at { =integer.
As the initial step in the reduction of (3.9) and (3.10), it is convenient to let

o=B+6'. 3.11)
6J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963).
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Then
(3.12)

1 -0 =a5+a6 N
and (3.9) and (3.10) can be rewritten as

1 1 1 1 1/2 1
(-;'1(3') =7 CSCW{/ dﬂ/ dB'/ dx/ daG/ (la5/ do 6(1—B—B")0(1 —as—ag)o—2(1—0)
0 0 0 0 0 0

X{(A=5)o*(1—0) B (1 —0)asas+o5%(1 —x) [ — (1 =)o ¥ (1—0)*(8'a5—Pas)?
X[(1—0)Fox(1—2) [ (1 —0)asas+(B%as+B"as)ox(1 —x) 2440 (1 —0) 188’
X[(1 = o)asagto82(1—a) FH —o'=F(1—) 486" (1—0) +o [ (1 —0) Fox(1l—a) -t

X[(1 —0)asas+ (Bas-+B%as)on(1—2) ) (3.13)

and

1 1 1 1 1/2 1
Gole) = csent / a8 / e ] dx / des / dars / do 5(1—B—B")3(1—as—ag)80—%(1—0)36 w(1 — &) (1—¢)
0 0 0 0 0 0

X {1 —o) B (1 —0)asas+oB2x(1—x) ] — ot (1 —0)5(8'as—PBas) (1 —0)Fox(1—x) ¢
XLl =o)asas+ (Bas+B%as)ox(1—x) T2} . (3.14)

A further change of variable to
p=0x(1—x)/(1—0) (3.15)

makes it possible to carry out the « integration:

1 1 1 1/2 00
1) = csemt [T PLT QO T f a8 f i’ / da / das / dp 3(1—B—B)5(1 —as—ag)p=—t
0 0 0 0 1]

X{A =) [asas+B2 ] HB8%— (1 —§) (8 as—PBas) *(1+p) " [asas+ (8%as+B"%as)p I *p
+4868'[3¢ (1428) Lasas+B2 1 —[ 286" (14-20) " +pJ(14p) ¢ [asas+ (626 +-6"2a5)p T} (3.16)

an

1 1 1 1/2 o0
Ga(t) =m csemf [TA+) L2420 T (1—5) f dg / ag’ / das / dess / dp 8(1—B—B")8(1—as—as)p4865"
0 0 0 0 0

XA{BLasae+B2% 2 — (8'as —Las) 2(14-p) " [asor+ (B2s+06"%s)p 2} . (3.17)

Use of Euler’s integral representation for hypergeometric functions? finally yields the desired forms for Gy(¢)
and Go(¢):

1 1 1 1/2
@1(;') =T CSCW{[P({)]ZEP(Z‘()]_I/ dﬁf dﬁ’f daef da56(1 —3—8’)6(1 —a5—as)a5—1a6‘1
0 0 0 0

X{[1—266"(1425)7J8% — ¢ (csemd) (1—¢) (asae) 7+ (B%as+6"as)F 2—§, 1§53 25 2)]
—w§? csend (esas)[1—486'(1+20) " IF (1=, 1§53 2;2)) - (3.18)

and

1 1 1 1/2
Go(§) =7 csem{[T(1+) T (2+20) 1 / a / g’ / day / dasd(1—B—p")0(1 —as—as)88B as lag™!
0 0 0 0

X[BE—1(1 =) csemd(asas) M (B'as—Bas)F(2—¢,1—¢; 3;2)], (3.19)

where
(3.20)

g=1—(B%s+B"%s)/ (asas) = — (B'as—Las)?/ (asas) -
In obtaining (3.18) and (3.19), the following special cases of the relations of Gauss between contiguous hyper-
geometric functions® have been used:

(B2as+B"%as)F (2—§,1—5; 25 2) —asaeF (1=, 1—§; 2; 2) —3(148) (B'as—Bas) F (2§, 1—¢;5 3;2) =0

and
2asasF (1=, 155 2; 2)+(1—8) (BPas+B"as) F(2—5, 1 =55 2; 2) — (1 asasF (1 -5, =5 2;2)=0.  (3.21)
7 Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill Book Co., New York, 1953),

Vol. I, p. 60, Eq. (12).
8 See Eqgs. (38) and (33) on p. 103 of Ref. 7.
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So far, no approximation has been made on the G’s, and (3.18) and (3.19) are exact. The rest of this section is
devoted to the approximate calculation of G4(¢) and G,(¢). Further properties of these functions are to be found
in Appendices C-F.

B. Behavior of G4({) near {=1
To study the behavior of G1(¢) near ¢ =1, let £=¢—1. Then, for small ¢

1 1 1 1/2
GO~ — - [TU+H T +20 T f a8 / as [ das / datsd(1 =B —8')3(1 —as—ar)as—lag"
0 0 0 0

" X ([1— 388" T8 (Bae-H8%as) ] £ (1 4-£) asae) {1 — 488" (3291}
~—p / dorsxser) [1—3 (34281

~—(T/18)E24-(19/27) .
In other words, when { is near 1,

G1(6)=—(7/18)¢ —1)~*+(19/27) (s —1)'4+0(1). (3.22)

C. Behavior of G:({) near {=1

The computation for Go(¢) is even simpler, namely, as a consequence of (3.19),

1 1 1 1/2
Go()=—3(C—1) / a8 / dg’ / dos [ dasd(1—B—p")8(1 —as—a)888 a5 ag  [32— (8'as—PLas)*]+O0(1)
0 0 0 0
= —3(—1)7+0(1). (3.28)
D. Behavior of G,({) near {=0

This case is somewhat more complicated. In view of (3.18), we need the two leading terms of F(2—¢, 1—¢; 2; 2).
This can be obtained as follows:

FQ-5,1-8;2;5)~F (2,185 2;2)+F(2—8, 15 2;2) —F(2, 15 25 %)
~ (=84 5 T Q=) [ DITE=0]- (=2

~(A=z) = (1=2) "+ (1 =) [(1—2) T —1]. (3:24)
With z defined by (3.20), (3.24) yields immediately

BE —m¢(cserd)(1—¢) (ases) 8 (8% +B"%as) F(2—§, 1—¢; 2; )
~B% —(1—1) (B%xs+B"%as)s + (1 =) (este) -+ (8'cs—Bas)~2{ s (Bas+B"2ets)s — [ (8'cts —Baxs) *asrs J(ses)’ }

~{ —In[(B%xs+B"%e5)8~*]+as0s(8 a5 —Las) 2 In[ s g~ (B2s+8 %) 3 . (3.25)
The substitution of (3.25) into (3.18) then shows that G4(¢) has a simple pole at { =0 given by
G1(9) =¢"4Gs+Gi+Gs)+0(1), (3.26)

where Gs, G4, and G5 are three real numbers given by?

1 1 1 1/2
Gs=4 f ag / g / dog / dasd(1—B8—B")6(1—as—ae)BB (8'cs—Bas) 2 In[as as(B%e+6"%5) ],
0 0 0 °

1 1 1 1/2
Gi=4 f a8 f ag f da f dorgd(1—B—B')3(1—ats—ate) 38 ag=lorg=" In[B—*(Bare+-6") ],
0 0 0 0

and
1 1 1 1/2
Gs=—2 / ag / dag’ / dosg / dasd(1—B—B")6(1 —as—ag)es as™! In[B~2(82%xs+8 %) ] . (3.27)
0 1) 0 0

9 Note that F(1,1;2;8) = —z"1 In(1—3).
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As a matter of fact, Gs is the difference between the
right- and left-hand sides of (3.6). These three integrals
(3.27) can all be evaluated explicitly (see Appendix B):

Gs=2 )
Gi=(2r*/9)—4%,

Gs=—1x2. (3.28)

and

Therefore, for ¢ near 0,

Gi()=[3—n?/9)J+0(1). (3.29)

E. Behavior of G»({) near {=0
This is again simple. Since
F(2,1;3;2)=—27"3s+In(1—3)],
a comparison of (3.19) and (3.27) shows that

1 1 1 1/2
o)~ / a8 / a8’ f da f das
0 0 0 0

X8(1—p—p')868" a5 as™
X[1—3(ases) " (8'as—PBas)?F (2,1;3;2)]
=2G3/¢

(3.30)

or _
Ga(§)=4"10(1) (3.31)

for ¢ near O.

F. Results
By (3.7), (3.22) and (3.23) show that, for [¢|<<m?,

Gi~[—(7/18) In(m?/ |¢])—19/27]|¢| /m?
and (3.32)
Gz’\'%itl/’mz.

On the other hand, (3.29) and (3.31) show that
lim Gy=%—4rn%/9

[t]—>c0
and (3.33)

|t] >0
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We have obtained much more precise information
about G; and Gs: For |#|<<m?,

Gr~[—(7/18) In(m?/ |¢])—19/27]|t] /m*
+L(13/450) In(m?/ |¢])—91/3375](|¢] /m*)?

and (3.34)
Gao~3 || /m24-[(2/225) In(m?/ |t])
+17/33757(|¢| /m?)2.
Similarly, for |¢|>>m?,
Gi~ (3 —4r%/9)—{6[In(|¢| /m*) *
+20 In(|¢| /m?)+[36—8¢(3) 1y m*/ | ¢]
and (3.35)

Go~4—{3[In([¢] /m) J*+4{In(| ¢ /m*) ]
+(8—167%/3) In(|¢] /m?)
+8[1+3x2+12¢(3) ym?/ [¢]

where {(3) is the value of the Riemann { function at 3.
Numerically,"(3.35) is

Gi~ —3.719824178 — {6[In(¢| /m*) ]
+20 In([¢] /m?)+26.383544774}m?/ | 1] ,
(3.36)

and
Go~4—{4[In((t] /m*) P+4[In(| ¢| /m*) ]
—44.63789014 In(| ] /m?)
+176.03535284}m?/ | ¢] .

The derivation of (3.34) and (3.35) is rather lengthy
and given in Appendices C-F.

4. SUMMARY AND DISCUSSION

Let 9 (or 9My;) be the matrix element of Delbriick
scattering by a Coulomb field due to a charge Ze when
the photon is linearly polarized in the direction perpen-
dicular to the scattering plane (or in the scattering
plane), then, for high energies w of the photon and fixed
momentum transfer As<0, the matrix elements are
given approximately by

ml 1 1 1 1 ag
[ ]~—%¢<27r>—w% / a8 / a8’ f dx / dan / dargd (1~ —ats—a) (BH8)
Ny 0 0 0 0 0

X ([486"{ AL (B+8")ersers+B26(1 — ) (s +re) JHm2(B+B") (s ae) )
—[466’ (as+ae)+(B-+6") I (es+ae) +(B+B)a(1—a) I
XA (B+HB")asas+(1—2) (B +8"2es) ]+m*(B-+B') [ (astae)+(B+6)x(1—2) ]} ']

Az[ B+6?
B+p")—886'x(1—x)

][52(a5+ae){A2[(ﬂ+ﬁ’)aaae+52x(1 —x)(astas) ]

+m2(B+6")(as o) 2 — (8'as—Bae)*[ (as+as) + (B+8")x(1—x) !
X{ A2 (B+B")ascs+x(1 —) (82as+8"2s) ] +m2(B+8") (as+as)+B+8)2(1—2)]}72D, (4.1)
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where the units are so chosen that ¢2/4r~137.04~1 is the fine structure constant. When the incident photon beam
is not polarized, the differential cross section is

do/dQ=%(4m)~?[ |91| 24 |90 | 2], (4.2)
and the polarization of the scattered beam is
P=[|o]2—|ow,| 2]/C| 9] 24 |9nn| 2. (4.3)
When w>A>>m,
M~ §i(2m) e Z%(— 14-372) A2, (44)
N~3i(2m) 3822w (S+272) A2, (4.5)
and
P~ (124472 /[ 13+ (872/3) + (474/9) ]~ 62.3136%. (4.6
When e>>m>>A>m?/w,
N~31(2m) %8220 (7/9) In(m/A)+19/27m2, 4.7)
N~ 31(2m) 222 (7/9) In(m/A)+22/27 m2, (4.8)
nd
’ P~1/1)[(n(m/A)4-41/427/{[In(m/A) ]2+ (41/21) In(m/A)+845/882} . (4.9)

More accurate asymptotic expansions for the matrix elements can be easily found from (3.34) and (3.35).
For «>>A>>m,
M~ 2i(2m) 68 Z2A2[(— 14 22) +-6m2A-2(6[In (A /m) 210 In(A/m) +[9—2¢(3) T} ]
~3i(2m) %5 Z2wA[5.57973627 +6m2A~2( 6[In(A/m) J24-10 In(A/m)+6.59588619} ] (4.10)
and-

My~ 3i(2m) 38 Z2wA=2[(5+3m%) +6m2A~2( — (8/3)[In(A/m) J*+2[In(A/m) ]2
(64 (872/3)) In(A/m)+ [T —4r2—26¢(3) 1} ]
~3i(2m) 8 Z2A2[11.57973627 +6m2A=2{ — (8/3)[In(A/m) T+2[In(A /m) ]2
+32.31894507 In(A/m) —74.82590403}].  (4.11)

Note the appearance of [In(A/m)]? in the second term. 1000¢ ' T T T T
So far as the authors are aware, the appearance of so 700f
many logarithms all at once is very rare. Thus, the
correction is not negligible even for fairly large values 400F
of [¢]/m2 On the other hand, for w>m>>A>m?/w, "

My~ 3i(2m) %52 20m—2{[(7/9) In(m/A)+19/27]
A2 —(13/225) In(m/A)+91/3375T}  (4.12)

100}~
and o 70
2 I
My~ 3i(2r) 268 Z2om—2([ (7/9) In(m/A)+22/27] S 4
+A%m~[—(1/25) In(m/A)+4/125]} . (4.13) ST A
> 20l N
When A is comparable to m, there is no longer such s
simple formula, and (4.1) must be used. Numerical &
calculations have been carried out by integrating (4.1), 10
7

and the results are shown in Figs. 1-3. To get the
differential cross section for Delbriick scattering from
a nucleus of charge Ze, it is necessary to multiply the
value obtained from Fig. 1 by Z4.

As stated in the Introduction, the present results do 2f
not agree with the earlier ones of Bethe and Rohrlich.*
We make some further qualitative comparisons. Fil:st, 1§ 12 "
as seen from Figs. 1 and 2, the differential cross section MOMENTUM TRANSFER IN MeV
is a monotonically decreasing function of the momen-

D

IR B S e

Fic. 1. Differential cross sections at high energies. (To get
do /dQ in ub /st for a nucleus of charge Ze, multiply by Z4w?, where
10 We thank Professor L. Howard for this numerical calculation.  w is the energy of the photon in BeV.)
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Fic. 2. Differential cross sections at high energies (continued).

tum transfer. If the result of Bethe and Rohrlich? is
taken seriously to large momentum transfers, the
differential cross section is not monotonic. This
peculiarity due to their approximation was known to
these authors and was probably the reason for their re-
striction A <m. Secondly, Bethe and Rohrlich* obtained
no polarization, while the polarization is actually quite
large as shown in Fig. 3. Indeed, their lack of polariza-
tion was originally the reason why we were suspicious
of their calculation.

Moffatt and Stringfellow!! have measured Delbriick
scattering some time ago at around 90 MeV. A com-
parison of their result and our asymptotic formula is

3
T

8

PERCENTAGE POLARIZATION
8 8 & 3

3

1 L 1
4

1
° 1 2 3
MOMENTUM TRANSFER IN MeV

F16. 3. Polarization of the scattered photon at high energies
when the incident photon is unpolarized.

17, Moffatt and M. W. Stringfellow, Phil. Mag. 3, 540 (1958);

Proc. Roy. Soc. (London) A254, 242 (1960).
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b=
S

Fic. 4. Numerical com-
parison with the experimental
data of Moffatt and String-
fellow on uranium. The upper
curve is the result of the present
consideration, while the lower
curve is that of Bethe and
Rohrlich.

S
T

s
T

DIFFERENTIAL CROSS SECTION IN b/sr
I
T

1 2 3 4
SCATTERING ANGLE IN mrad

shown in Fig. 4. We attribute the discrepancy to the
fact that Za is not small, and return to this point in
paper VIII of this series.

We next discuss the physical limitations due to other
processes. First, the effect of the muon can be easily
obtained by reinterpreting m, and is in any case quite
small. Secondly, because of the sharp decrease of the
differential cross section as shown in Fig. 2, processes
due to strong interactions become important at large
momentum transfers. If Z=1, ie., if the target is
hydrogen, Compton scattering is comparable to
Delbriick scattering at about A~S5 MeV.!? On the
other hand, when the target is a heavy nucleus, nuclear
breakup may be of importance at very roughly A~30
MeV. Thus, there is little point in extending any further
the curve of Fig. 2.

Finally, we discuss briefly the experimental deter-
mination of Delbriick cross sections at high energies.
At energies of a few BeV, the experiment seems feasible!?
with the most straightforward setup, namely, a well-
collimated photon beam on a very thin uranium target
(for example) together with a photon detecting system
about 2 m away. The photon detecting system can be
similar to the one used by Cronin, Kunz, Risk, and
Wheeler!* on their early experiment on K7 — 27° With
intensities like that available at the Stanford linear
accelerator, a counting rate of a few events per second!?
is not unreasonable. From the theoretical point of view,
there are many reasons for wanting such a measure-

r+q

r3=n

rz+rg ra+q
Fi1G. 5. Schematic Feynman-Dyson diagram for the scattering
of a photon by a bare proton.

12 We thank Sau Lan Wu for these estimates.

13 We thank Professor K. W. Chen, Professor M. Deutsch, and
Professor J. K. Walker for discussions on the feasibility of this
experiment,

14 J. W. Cronin, P. F. Kunz, W. S. Risk, and P. C. Wheeler,
Phys. Rev. Letters 18, 25 (1967).
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ment. First, the process is intrinsically of interest
simply because it is large—the differential cross section
at 3 BeV on uranium can be of the order of 10° b/sr.
Second, the diagrams of importance for Delbriick scat-
tering are of rather high order. Those considered in this
paper are already of sixth order in e; those considered

HIGH-ENERGY COLLISION PROCESSES.
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in paper VIII of this series are at least of tenth order.
Thus, diagrams of the tenth order contribute very
roughly 20%. There seems to be no compelling reason
why perturbation theory need be correct to such high
orders. It will be an important discovery if experimental
data fail to agree with the theoretical prediction.

APPENDIX A

In this Appendix, we derive for Z=1 the external field approximation used in Sec. 2 A. More precisely, we
show that (2.1) and (2.2) apply when the target particle is a bare proton. Consider the diagram of Fig. 5, where
the details of the four-photon vertex II,,(r1—g, 71+¢) (with the other variables and indices not explicitly written)
are of no interest here. The diagram corresponds to the integral

i(2m)~ / qlyu(rstg+M)y, w(ri—g, n+)[(rs+9)* — M*+ie] ' [(rn—q)*+ie]'[(n+g)*+ie]™, (A1)

where M is the mass of the proton. The four-photon vertex has the symmetry

IL(r1 -q 71+11) = me(frl'q, 71 -—q) .

(A2)

When the momentum transfer is small, the proton is approximately at rest both before and after scattering. Thus,

Since M is large, approximately

By (A3) and (A4),

when taken between (f| and |:). Moreover,

Accordingly, the expression (A1) is approximately

2yt / 4% 2M Tao(ri— g, Q)2 M aubie T [ (ri— @) +ie L (ret-g)* i

=(2m)~* / dgo / d*q M[Moo(r1—q, r1+q)+Moo(r1+g, r1—q) IL2M go+ie ][ (r1—q)*+ie] [ (r1+g)*+ie]!

—i(2m)s f d% f dgsM Thoo(ri—g, i-- LM go-ie) =+ (= 2M qu+i0)IL (ri—g)Hi€ L rs-t @) ie]

—i(2m) f dq f dgoM Tn(rs— g, -+ q) [ —2wid @M g I (r1—q)*-i€ T [ra+g)+ie]

{fl(1=v0)=(1—70)|4)=0. (A3)
rs+q+M~M(1+70). (A4)
'Yﬂ(r3+q+M)'Yv~ 2Man06v0 (A5)
L(rs+q)2—M2+iel'~[2Mgo+ie]. (A6)
(A7)

=3(2m)~3 / d% Moo(r1—q, n+q)[(r1—q)2 —ie] [(r1+q)2—ie] .

This is precisely the external field approximation used in (2.1) and (2.2).
The important point here is this: External field approximation holds when the momentum transfer A is small
compared with M ; but there is no condition on the relative magnitude of w and M.
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APPENDIX B
In this Appendix, we derive (3.28) from (3.27). First,

1 1 1 1
Gs=2/ dﬁ/ dﬁ’/ dOl(;/ da55(1—-,3—-,8')5(1—-a5—a6)ﬁﬁ’(ﬁ'a5—[>’as)“2 ln[a5_1a6‘1(ﬂ2a6+6'2a5)]
0 0 0 0
1 1
=2 [ d8 [ dasp(1—) (o= ot~ (1= (1= 2900
0 0

= —2/ dos In[as(1 —as)]/ B[ =14+ (1 —2a5) (8 —as) ' Has(1 —as) (8 —as)~7]

1 1
+2 / 88(1—p) / dars(as—B)~* In[B*+(1—28)ass]

=2, (B1)
where the contours of integration have been deformed slightly to avoid the double pole at a;=p.
Second, since a5 lag =a5 a7},
1 1 1 1
G4=4/ dﬂ/ dﬁ'/ da;;/ dasd(1—8—B")0(1 —as—ag)BB as™ In[~2(6%x+B"2as) ]
0 0 0 0
1 1
=4/ dﬁ/ dasB(1—B)as™ In{B~2[B2+(1—28)as ]}
0 0
2 1 1
=—/ da5a5“l{ln(1 ——oq,)—}—Za;,/ aBB(1—p)3—28)[B2+(1—28)as ]!
0 0
8 ! 1-83
S / 48 6(1—6)(3—26) (1—26)" In—
3/ B8
= (2r/9)—*%. (B2)
Finally, very similar to (B2), we have
1 1
5= —2/ da5a5“1{ln(1 —015)+20l5/ dB(l *6)[62+(1—2ﬂ)015]_1
0 0
1 1__6
=§—7r2—8/ dB(1—p) In——
0 B8
g (B3)

= 3T,
APPENDIX C

In this Appendix, we study the behavior of G5(¢), as given by (3.19), in the neighborhood of {= —1. In this
case, it is useful to define £=¢-1. Let

Gaf) = —m csert [T(§) LT (29T Ha(8); (C1)
then H,(£) is given by

1 1 1 1/2
Ho(%) =/ dﬁ/ dﬂ’/ (1056/ dasd(1—B—B")6(1 —as—ae)8B8 a5 as™!
0 0 0 0

X[B % —3T(1+HT 3 —§) (8'as—Bas)*(B%as+pas) *HF (¢, 2—£; 3;2)], (C2)
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where
Z=2(3—1)"" = (8'as—Bas)?/ (B*as+B"%as) < 1 (C3)
from (3.20). In deriving (C2) from (3.19), we have used (see p. 105 of Ref. 7)
F(3—§2—£;3;5)=(1—2)2HF(§ 2—¢; 3;2). (C4)

As an orientation, we note that the leading term of H,(£) is of the order of £-2: one power comes from 8~0, and
the other power from az~@B2~0. Since G2(¢)/H1(£) is also of the order of £72 for small £, we need the terms

5—2 b s—l ) 1 b a'nd E
for Hy(£). Thus, it is necessary to expand the F of (C2) to three terms.

1. Expansion of Hypergeometric Function

Since

EA+E) - (n—1+H2—-HE—H - -(n+1-9)

F(52—3;9) =1+ 3 &

n=1 n13-4- - (n+2)
o 1+H1—nt— (1)
142e3 o +{1—n"1—(n+1) ]’ (©3)
=t n(n+2)

a straightforward calculation gives

F(§,2— 8 3; )~ 1+ *—1) n(1—2)+27+1]

+.§2[—%2-2(2——1)(2+5) In(1—2)+§71—3+ / P 4771 n(1—7) J (C6)
0
or

sTA+HHTB-HF (24 3;2)~1+E(1—2")[—-(1+2") In(1—-2)—1]
+52[z—2(z—1)2 In(1—2)4+51—1— f 351 ln(l-—é’)]. (C7)

The substitution of (C7) into (C2) shows that
Ho(&)~ Han(8)+EH o(E)+E2H(8), (C8)

where

1 1 1 1/2
Hau(f) = / dg / ag’ / d‘“[ dasd(1—B—F")5(1—as—as)88 a5 ag™
o e X [B-2+2 — (8as — o) 2(BPats+-6" %)), (C9)

1 1 1 1l2
sz(f) =/ dﬂ/ dﬁ,/ dae[ da55(1 —,3—6')5(1 —-Ols—as)gﬂﬁl(ﬁ2ae+ﬁ'2a5)—2+5
o X { — 1414 (8'as—Bas)2(B%ts+8"25)] In[as g™ (Bas+6"%0) ]}, (C10)

and
1 1 1 1/2 ;
H23($)=“/ dﬁ/ dﬁ’f dﬂis/ dasd(1—B—B")8(1 —as—as)886 s tag™!
0 0 0 0

X (B’aa—Bas)z(ﬁzas-l-ﬁ’zas)"“‘{ —as?ag?(8'as—Bag)~* In[asas ! (B2%as+B"2xs5) ]
1

Fas0(8'os—Bag) 2 — /

(B ag—Bag) (B ag+B’ 2ap) ™

We need to obtain, for Hsi(£), terms of the order of £72, £1, 1, and £; for Hzs(£), terms £~ ! and 1; and for Has(§),
only terms £71. The remainder of this Appendix is devoted 1o the extraction of these terms.

dzZ'z#In(1 —E’)} . (C11)
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2. Evaluation of H,(¥)

We write the Hyi(£) of (C9) in the form

Hoi(§) =Hsu(£)+Hos(8), (C12)
where

1 1 1 1/2
Hau(8)= f dp f a8 / d‘“/ dersd(1—8—B') (1 — s — ) 868 a5 g~ [ B~2+2 — (Bas+B'as)~+¢]  (C13)
0 0 0 0

an

Hu=4 [ as [ ap [ 0595 [ dnf— 2T
=4(1 —'f)"l/‘ d8 B(1—B)(1—28)~[B~2+2— (1 —B)~2+2¢]
0

=4(1—-§)7127% f BB [2(1—B) M2 — (1—P)% —2(1+B)~+*+(1+)*]

0
=4(1—§)727 %[ —y(1428) —y+2 In2 —gn2E+2(In2) %]
~ A =YL 28/ (1) 2]
=4(1—&) [ —n%E]
~AE 14421 —377)].
In (C14), ¥(x) =(d/dx) InT'(x) is the logarithmic derivative of the gamma function; it has the properties that
y()=—v, Y(D)=§=?, and ¢¥"(1)=-2%0), (C15)

where {(3)~1.2020569 is the value of the Riemann { function at 3.
The calculation of Hz(§) from (C13) is somewhat more involved:

(C14)

Hy(£)= / dp 83-1+%(1—p) / dasas  {1—[1—(1—(1—B)%/BYas ¥}

—8[H ' —(1+28"] / dosai 1~ (1—ag ]

+16 [ ' dB0(28)1— (1- 2681 —) (12918~ — (1—8)++7€]
8020 — (1428 T~ U +¥(—1+8)]

+23-2€{[r1—(1+2s)*1] ﬁ BT —Ry (14

HE=3(1+251] / 4B LU=y — (1]

+2 / ldBE(l—6)-”25-!-(1-1-3)‘“”‘][2“(1+f32)—(1+2£)“(1+SB2)]}
“’3[(25)"1—(14-25)"][7—E"+¢(1+E)+E"(1—25)_’(1—82)]+8EE“‘-(1+2$)'1]

X{%E‘l—E’Y+¢(1+2£‘)+E+%7725:|[1—25 In2]—3—2¢2—-2¢2 1n2—2$2]: dx x“[ln(1+x)]2}

~AEE —fr2+ 22020 In2-++H 24 6: (3)]} (C16)

In the last step of (C16), we have used the identity (G1).
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Substitution of (C14) and (C16) into (C12) gives
Ho(§)~48 g 14+ (1 —Er2) e+ £ 2n In2+1+3x24-68 (3) ]} -

3. Evaluation of Hj:(¥)
The next task is to find the two leading terms of the H32(£) of (C10):

Hoalt) =4 / a8 / dorB (1 —B)[ (8—as)*+as(1—ag) T H+¢

X{—=14[2+as(1 —as) (8 —as) 2] In[1+ (8 —as) s~ (1 —as) "]} .

It is convenient to use the variables

x=[as(1—as)]"/*(8 —as)
Z=[as (1 —as5)]2.

and

In terms of these variables, Hss(£) may be expressed as the sum

Hos(§) =Hos(§)+Hu(t),

where

00 z
Ho(£)=16 / z / dw E 2 (14-32) 1 26(32— 1)(1+-22) 2+ — 1+ (2+22) In(1+42)]
0 0

and

Hu(t)=16 / " iz f dx B(122) 26 (1 —a2) (14-a2) 2+ — 14 (2+2~2) In(1+a2)].

1891

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

Of these two, Hs6(£) is the easier one to evaluate. If the Z integration is carried out, and then the x integration,

we get

Hao(8) =4£(14+-5{— 142y 2+ -y () ]+ WQ2+H —v Q) B~ 4 {2+ -1+ =1 (3) ]},

where (C15) is again used.

(C23)

The evaluation of Hyr(£) is more complicated. First, note that the integral on the right-hand side of (C22) is

convergent for £=0. In fact, we can just take the limit £—0:

Hy(£)~16 / az / (143211 —2?) (1422~ [ — 14+ (2422 In(14-22) ]
0 ]

=16 f dx(1—2?) (14222 — 14 (24272 In(14%?)] cot—x.
Let x=cot0; then ’

%2

/2 (2
Hyu()~ 16[ f 0d6 cos20-4-2 / 0d0 cos20 In sinf—2 f
0 0

/2
0d0 sec?6 In sinf-4 f 0d6 In sinﬁ].
0 0

A very tedious calculation gives
*/2
/ 0d0 cos20 In sinf=% —%n?,
[}
x /2
f 0d0 sec?0 In sinf= —x?,
0

and

x/2
/ 608 In sind= —ba* In2-+5£(3).
0

(C24)

(C25)

(C26)

((o¥1))]

(C28)
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The substitution of (C26)-(C28) into (C25) gives
Hy(§)~8+3n2—8x2 In2+-28¢(3). (C29)

Finally, the substitution of (C23) and (C29) into (C20) gives
Ho(§)~2n2 4 14372 — 272 In24-6¢ (3) ]. (C30)

4. Evaluation of H,;(¥)

Since we need only the leading term of Hg3(£) as £— 0, it is sufficient to consider the region a;~3%~0 in the
range of integration for the right-hand side of (C11). Thus as~1, 8'~1, and §'as—Bas~ —pB:

1

1 1
H23(£)~ -—/ (lﬁ/ da5863a5”‘1(6__2+a5)‘2+5{ —-a52,8_4 lﬁ[da_-l(ﬂ2+as)]+&56_2—/ (lélg’—l 11’1(1 —2/) } . (C31)
0 0

8%/ (B*+as5)

Let x=82+a5 and T=42/(82+as); then

1 1 1
Hos(E)~ —4 / i / dzf(1—z)—1x—1+s[z~2(1—z)21n(1—a-:)+¢—1(1—az)— / dé’z’—lln(l—-“’)]
0 (1] z

= —4¢1 / l d:ﬁ[:z-l(l —%) In(1—%)+1—z(1—2x)1 / 1 dZ’z-11In(1 —z’)]

= =4[ -3 +1+20(3) ] (C32)
5. Result
It only remains to substitute (C17), (C30), and (C32) into (C8) to get
Hy(§)~4E 24814 (4—8x%/3) +4i 14+-372+105 (3) ]. (C33)
It then follows from (C1) that, near ¢=¢+1=0,
Ga(§)~ =26 [ 1420 Q)& JHa()) ~ —8E~4 —86 7 —8E2(1 —3#%) — 85 [ 1+§n2+12¢(3)]. (C34)

In obtaining (C34), (C15) is once more used. This is the desired result. The second equation of (3.35) then follows
from (3.33), (3.7), and (C34).

APPENDIX D
In this Appendix, we study the behavior of G4(¢), as given by (3.18), in the neighborhood of {= —1. Again
define £¢={-1, and let _
Gi(§)=—m cser [ T(—1+HP[T(—2-25) ] Hi(8), (D1)

where

1 1 1 1/2
Hy(t)= / d / dp’ / d”“‘/ dagd(1—B—B")5(1 —as—ag)asHiag s
0 0 0 0

X{[14-288' (1 —2£)~1][B~#2(a506) 7t — 7 cseré(1—£) (2— ) (Bs+6"%s) F(3—§,2—¢; 25 2) ]
+ cseré(1—§)2asa[ 14486 (1—28)"1JF(2—§,2—£; 2;2)} . (D2)

The new feature of the present problem is as follows: The right-hand side of (D2) fails to converge, both at
B~0 and at as~B2~0, unless Re£>%. In other words, as it stands (D2) is meaningless for small £, and analytic
continuation is called for. As seen from Appendix C, there is no such problem with G:(¢) near ¢ = —1; but if further
terms in the asymptotic expansion of Go(7) for large 7 is desired, G(¢) must be studied near { = —2, and this new
feature also appears.

We shall carry out the desired analytic continuation first, and then expand the hypergeometric functions in a
manner similar to that of Appendix C 1.
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1. Analytic Continuation

We want to isolate from the right-hand side of (D2) a simple part which needs to be continued analytically.
In the process, we use repeatedly various relations between hypergeometric functions; these relations can all be
found on pp. 103 and 105 of Ref. 7. The first step is to write

Hy(§) =Hu(£)+Hu(d), (D3)

where

1 1 1 1/2
Hu(®)= / a8 / a8’ [ das f dotsd(1 —B—B')3(1 —as—ae)ag-PHag—5+t
0 0 0 0

X [6~(as0) 8 — cscrt (1—£) (2— §) (Bas+6 ) F(3— &, 2— £ 23 2)

1 . 1 12 4 csert (1—8)2sa6F (2—£,2—£; 2;2) ]
=/ d‘B/ dﬁl/ do‘ﬁ/ das6(1—B—")3(1 —as—as)
0 0 0 0

X{B~ s lag —7 cserk (1—£) (B2 +B"2%as) P (2—HF (3—¢, £ 2; ) —(1—-HF(2—§, & 2; )]}

1 1 1 1/2
=/ dﬁ/ dﬁ'/ daef dasd(1—8—p")0(1 —as—as)
0 0 0 0

. X[B~##as~tag™ —m cseré (1—£) (B2 +B"%as)"HF (2~ ¢, £, 1;2)] - (D4)
an

1 1 1 112
H12(£)=/ dﬁf dﬁ'/ dae/ das6(1—8—B")0(1 —as—ag)2(1—2£)-138
0 0 0 0
X (B csomt (1— ) (Bas+B sy H{ 2 —OF 3—, £ 2;2) —2(1—HF 2 — £, £ 2;2) )
1 1 1 1/2
=2(1—2£)_1/ dﬂ/ dﬂ’/ das/ da56(1—-ﬂ—-ﬂ’)6(1—as—as)ﬁé”
0 0 0 0

X[B~**2agtag™! —wt csemt (1—£) (B2as+B"%as)~2HF (2—£, 1+£; 2;2)].  (DS)

It is sufficient to analytically continue H;1(£), since the right-hand side of (D5) is meaningful for Re£>0. In (D4)
and (DS5), Z is the quantity defined by (C3).
In Hy(¢), we again use the variables of (C19):

Hy(8)= 2/ Tdx(14-z2)—2 { —(1—28)"1(14+%2)
—m(1=§) csert (141 / da(1-Ha?)HF[2—, £ 1; 0%/ (14+49)] } . (D6)
0

Although by no means necessary, we split Hy1(£) again into two parts

Hn(8)=Hu(8)+Hu(®), ®7)

where

Hu©)=2 [ 2da(1429] (=212 12912+ T 00 [ aspatyovin]

0
0 z
w / & dB(1+52)-3(1 a0 [E(1 +a2)-T-o+2¢ f dx(1-4a?)-2+
0 0

X{n(1—§) cscr§ F[2— ¢, &5 1; 2/ (144 ] -4} (D8)
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and

Hyy(§) = —4r(1—£) cseré / Z dx(14-22) -3 z(14-52)~1]-3+2 / da(14-22)~2HEF[2—£, £; 1; 22/ (14-22) . (DY)

Since [see Eq. (14) on p. 110 of Ref. 7]
T(OT(2—EF[2—¢ & 1; x%/(1+2?) ]=22+0(1) (D10)

as x—oo, the two terms on the right-hand side of (D8) are separately convergent for Re£>%. When the second of
these two terms is integrated by parts, which is possible when Re£>1, we get

His(®)=2 / z dyz(l—}—gz?)*?{ — (1= 28) " (1-+&2) -+ (1 —52) (14+-82)~[F(1+-52)— -3+t / " (1)

0

+2(1—2£)“1/ Az ZHH(1E) T (1—§) csenE F[2— £, &5 1, 2%/ (14+2%) ]—a%} . (D11)

0

In the form (D9) and (D11), the only term which still requires analytic continuation is the first one on the right-
hand side of (D11). This can be done by explicit evaluation:

His(8)=2(1—-28)*—(1=28)"[Y(1+8&) —y(1)]
+2(1 —25)“‘/ do a2 (1+a?) 78w (1—§) cserg F[2—¢, £ 1; 2%/ (1+4%) ] —a} . (D12)
0
The required behavior of H1(£) for small £ is to be found from (D3), (D7), (DS), (D9), and (D12).

2. Expansion of Hypergeometric Functions

The expansion of the two hypergeometric functions in (D5), (D9), and (D12) can be carried out in the manner
of Appendix C 1. The results are

F(2—¢,81;8)~14H2(1—2)"In(1 —2)]-}—52[2(1 —2)"+In(1 —2)+/2 dz'z-1In(1 ——Z’)} (D13)
and ’

F(2—§ 145 2;2)=(1—2)""F(§1-£2;2)

~(1—z)~1{1+g[1+(z—1—1) 1n(1—z)]+g2[1+(z—1—1) In(1—2)+ / g ln(l—é’):” . (D14)

3. Evaluation of H4(¥)

Since, for small &,
il 1/z ‘
/ dz T [Z(1+39) 1 = f A&/ T—2[F (1452~ 1]2
z 0
1/z
=(1 —25)—1[96‘”'25(1 +a?)-2—4¢ / dg‘;'a‘;’%(l.{_j’z)—l—ﬁ]
0

~(1—25)“[x‘1+25(1+x2)"25-—4£ cot—lx+8¢2 / dz(14z2)1 ln(i;—{—i'—‘)], (D15)
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the substitution of the expansion (D13) into (D9) gives
Hy(§)~—4r(1—§)(1—28&)" cseré

X[/ dx x~1+25(1+x2)‘2+£/ dx(x' 26 —4 cot~1x) (14x2)2

0 0

—}—52/ dx x—l(l—}—xz)‘?{ —a? In(14%2) —3[In(14x2) 2422 —In(1+2?)
0

a2/ (14+a2) w
—{—/ do’'x’~1In(1—2a') —4x?[x+2 In(14+%2)] cot‘1x+8x/ dx’ (144’2~ In (' +x"—1) ” . (D16)
0 z

We calculate the following five integrals:

/ dx a2 (1+4a?)2=1r(1—§) cscré, (D17)
0
/ 4 (14?2 = bt csorEnh, (D18)
0
f dx(14x2)~2 cot~lx =% 42, (D19)
0

/ dx(1+x2)—2{[x2+2 In(1+4%)] cot=15—2 / dx’(1+x’2)"11n(x'+x'—1)}=%—T1§1r2—%§’(3), (D20)
0 x
and

22/ (14+22)

/wdx 21 (14-x2)—2 { —22 In(14-x2?) ——%[ln(1+x2)]2+x2—ln(1+x2)+/ dx’a'In(1—x') } =3:—¢(3). (D21)

When the values of these five integrals are substituted into (D16), the result is

Hy())~—4r(1—5)(1—287" csené {387 =3 —£G+En)+£[ —5+8G)+5r°1} . (D22)

4. Evaluation of Hy3(¥)
It follows from (D12) and (D13) with (C15) that

Hys(§)~2r(1—£)(1-28)7 CSCWE[E(1+£)[1+ZE—1%W2£]+ / da &2 (14-a%) 71
0

22/ (1+22%)
X {1+ In(-+00) +6( —ln(t-+40)+ [ n(1-)) ]
0

~2r(1—§)(1—28)7" cseré (3£ +HE(A+H5r) +E3—5m2—¢(3) ]} - (D23)
Equations (D22) and (D23) can be substituted into (D7) to give
Hu(§)~2r(1—§)(1 =28 cseré { —3£7 1+ £(2+572/12)+£[4— 3w —6¢(3) 1}
~ = (A 3r) 126 1—¢ (3)]. (D24)
5. Evaluation of H,,(¥)

The evaluation of Hyz(£) from (DS5) is rather similar to that in Appendix C. Since (1D14) can be written in the
form

. 1
(1 —E)mt csemtF(2—E, 14+8; 2; 2)~ (1—2) 1| 1— (1 —7"1) In(1—2) — & / d#7-In(1—7)},  (D25)
%
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the definition of Z as given by (C3) can be used to simplify Hys(£):
Hyo(§)~ H1s(8)+EH16(8) +EHui(8), (D26)

where
1 1 1 1/2
H15(£) =2(1—2£)—1/ dﬂ/ d]g'/ dae/ da55(1 ——B—B')B(l —a5'—0!e)
Lot XBBas s [ — (Blas+%a) ], (D27)
1 1 1 1/2
Hio(§)=2(1—25)" f a3 f & / dag / dasd(1—B—B")3(1—as—a0)
0 0 0 0
X BB’ (8cs—Bas)~2(B2s+B"%s) "¢ In[aslag™ (B2as+B8"%s5) ], (D28)

and

1 1 1 1/2
Hlv(E)=2(1—25)_1f dﬂ/ dﬁ'/ dae/ dasd(1—B—p")6(1 —as—as)
0 0 0 0

1
XBB'as a5 (B2t %as) "1 f dZ#-1In(1-%). (D29)
z

We need the terms of the order of £72, £1, 1, and £ from H;5(£); the terms ! and 1 from Hie(£); and only terms

&1 from Hyr(£).
First, a comparison of (D27) with (C13) shows that

Hi5(8) =3(1—28)" Hau(8). (D30)
This has been arranged purposely. Thus, (C16) may be used immediately:
Hys())~ 242871+ (4— ) + {8 —m? 4272 In2+67 (3) ] (D31)

Secondly, the evaluation of Hys(£) from (D28) is very similar to that of Has(£) from (C10), as given in Appendix

C. The result is
Hyg(§)~ i 1 [n2—272 In246¢ (3)]. (D32)

Finally, the right-hand side of (D29) is simpler than that of (C11) for Hss(£). The procedure given in Appendix
C can be followed step by step to yield

Hu()~—2Q)& . (D33)
Equations (D31)-(D33) can be substituted into (D26) to yield immediately
Hyp(§)~ 242671+ (4 —370) 4684105 (3) ]. (D34)
6. Result
By (D3), we add (D24) and (D34) to get, for £—0,
H,(§) =3¢4-8+H20—2¢(3)]4+0(8) . (D35)

Note the remarkable fact that the leading terms, of the order of magnitude £72, cancel each other. It finally follows
from (D1) that, near £={41=0,

G1(¥) = —12§73—-2072—[36—8¢ (3)]¢~'+0(1). (D36)
Use has been made of (C34). This is the desired result. The first equation of (3.35) is a consequence of (3.33),
(3.7), and (D36).
APPENDIX E

Attention is next turned to the behavior of G; and G. when |¢|<<m?. In this Appendix, we treat G2(¢) when { is
close to 2. In this case, let £=¢—2, and it is seen from (3.19) that, when £— 0, the only singular terms are of the
form of £-2 and £~ Thus, it is sufficient merely to take the first two terms of the hypergeometric function in (3.19):

F(—§ —1—§;3;2)=1+3&1+0(8). (E1)
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Accordingly,
1 1 1 1/2

Bue)~ [T GHH LT (6+28) T / a8 / a8’ / das / datsd(1—B—B')3(1—as—ar)388"
0 1] 0 0

X {Blos g 3571 (14£)(24£) (34£) (8'as —Bae) [ (csre)  — S s s (8'as —Baxe) ]}
~ 2 TR+ T (6428) T 1+ 245 B+E) Has(§)+(4/15) Hao,

where

Hos()) = f a8 / dosB (1 —B)ast(1 ) (6 —ac)

and

Hy= / . / " dasB (1 —B)ai (1 =[5 — (B—ap)].

The value of Hs can be found easily by first carrying out the 8 integration and then the a5 integration:
H3,=19/360.
The computation of Hss(£) from (E3) is equally straightforward:
Hy(8) = 20 [T(A+£) FLT(2+28) 1 —3[T(2+) LT (4+28) I~ (12— 29£)/540.

[T(3+£1%/T(6+2£)~(30—47¢)/900,

the substitution of (E5) and (E6) into (E2) gives finally
Ga(£)=2£2/225—17¢71/3375+0(1),

for £={—2—0. The second equation of (3.34) then follows from (3.32), (3.7), and (E8).

Since

APPENDIX F

1897

(E2)

(E3)

(E4)

(ES)

(E6)
(E7)

(E8)

It remains to study the behavior of G4(¢) when { is close to 2. Again let £=¢—2, and it follows from (3.18) that

for £¢—0,
1 1 1 1/2

G1(§) == csert [T(2+£) P[T(4+28) T / ds / ag’ / dag / dasd(1—B—B")0(1 —as—ag)astost
0 0 0 0

X{[1—268'(5+28) " J[B** (asas) "¢+ csemk (14£)(2+£) (Bas+B"2as)F(— &, —1—£;2;2)]

— cserk (2-4+8)asae[ 1—466'(5+28) 1 JF(—1—§, —1—£; 2;2)}

1 1 1 12
"’%5_1(1—55/3)/ dﬂ/ dB'/ dacf dasd(1—B—B")0(1—a5—as)
0 0 0 0

X{(1~ 388" s+ (2430 [1—266' (520 ](Bae-H5 st (1— 305") (Bto~+6'2)
X[ —ai~ i (§'as—Pae) ] —4E(1+8) (asae) +[1—488' (542 T 1 ~ s~ B'as—Pan)"])

1 1 1 1 1
= 1-5¢/3) / a8 f a8’ / das / datsd(1—B—B')5(1 —as—a)
0 0 0 0

X{(1—366")(—B*4-46%)+ £ "asfastB2[ (4-+58) — (6-+7£)266'/(5+2¢)]

—6 ll)lﬁH'EOlsl"‘E 1+ 1—4ﬁ / 5+2
A L=S5E/3)(13/75)(EH13/5) Fes e OB/ 5200

~(14+14£/15)13£2/450.
The first equation of (3.34) follows from (3.32), (3.7), and (F1).

(F1)
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APPENDIX G

In Appendices C and D, we have several occasions to use

[ e im0 =159,
To derive (G1), we begin with [see (C15)]
/ dx x[In(1—x)]2=—¢"" (1)=2¢(3).

Let x=1—%', and &’ =(1—«")/(1+x'); then

2¢(3)=4 / ' [(1—a' )1~ (1+a)~1](Ina’)?

0

=4[z / i (=) (2 / 1dx'u—x'2)—!(1nx')2]

0

=4{4;(3)— / 1 dx”x”‘l[ln(l—x")——ln(l+x”)]2} .

Thus,
1

/ iz - T[In(1 —2) —In(14-2) =3¢ (3).

0

On the other hand, it also follows from (G2) that

/1 dx x—l[ln(l—x)+ln(1+x)]2=§/ dx?xIn(1—x2) 2={(3).

0

The average of (G4) and (GS3) is

/ d o[ In(1—2)T+[In(1+2)]) =9¢(3)/4,

and (G1) follows immediately from (G6) and (G2).
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(G2)

(G3)

(G4)

(G5)

(G6)



