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%e consider here all the high-energy scattering processes a+5 —+ a+b in quantum electrodynamics, where
a and b can be fermions or antifermions. Aside from the photon pole terms, these high-energy amplitudes are
shown to be conveniently expressed by the impact factors. The impact factors for the electron, the positron,
and the static nucleus are explicitly given.

I. INTRODUCTION

IN this series of papers, we shall present a systematic
~ - study of all of the two-body elastic scattering amph-
tudes in high-energy quantum electrodynamics. Among
these amplitudes, those of Delbruck scattering, electron
Compton scattering, and photon-photon scattering are
fairly complicated. Their treatments will be delayed to
papers III-VIII, which form the "hard core" of this
series. In this paper, we shall study the very simple
processes u+b ~ a+6, where a and b are fermions or
antifermions. The calculations in this paper are straight-
forward. Nevertheless, the conclusions which we Inay
draw from these calculations are already interesting.
As we shall see, a simple picture of high-energy scatter-
ing will emerge from our considerations.

2. ELECTRON-ELECTRON SCATTEMÃG

The lowest-order diagrams for electron-electron
scattering are of the second order. The dominant one is

u(p2)y„u{pl)-r2„m-1821 (2.1)

u(p2')y„u(pl') rl„m 182 1 . (2.2)

From (2.1) and (2.2), we easily obtain (2.2) of paper I.
Tile dlagl Rill wlucll ls ohtR111Cd fl'OII1 Flg. 1 wltll p2 Rnd
P2' interchanged gives an amplitude too small by a
factor of s at high energy and is therefore neglected.

Since the amplitude (2.2) of paper I is proportional
to s in the limit s —&~ with 3 held 6xed, it contributes a
nonvanishing finite amount to da./dh in this limit. This
amplitude is real. To obtain an imaginary amplitude
which is proportional to s in the high-energy limit w' e
must go to the fourth order. The relevant 6rst-order
diRgrams Rre lllustrRted in Fig. 2 of pRpcr I. Thc 6lst
diagram there gives an amplitude

illustrated in Fig. j. of paper I.The scattering amplitude
corresponding to this diagram is given by Eq. (2.1) in

pRpcl I. Ill tllc lllgll-cllel'gy llllllt s ~~ (3 fixed), wc
have P2 Pl r,, P2' P1' r2,. hence,

ORI ———ie4(22r)-' d'qL(r2 —q)' —m2]-II (rl+q)2 —X2] Ij'(r2+q)2 —m2]-IL(rl —q)' —X2] I

XL~(p2)V. ( q+r2+m)V. u(pI—)X~(p2')V. (q+r2+m)V. u(pl')] (2 3)

Introducing Feynman parameters in the usual way, wc obtain
1

OItl = —62e'(22r)~ de' dalda2dn2dn48(1 —Q n, )t q"+nln2s+a2a4t —(nI+n2)2m2 —(a2+a4)X'] 4u(p2)y,
0 i=1

Xp q'+(1 n,)r,—+alr2+—(n2 n, )rl+m]y„u—(pl)u(p2')&„pq'+alr2+ (1—n2)r2 —(n2 —n4)rl+m]p„u(pl'), (2.4)

whcrc

q =q nlr2+n2f2+ (n2 n4)rl.

Carrying out the integration over q', we obtain
I

Dl| I s (42r) daldn2dnsdn4~ (1 Z a ')|.aln2s+n2n4~ (n1+n2) m (a2+n4) ~q u(p2)7 L (1 a1)r2+n2ra

(2.5)

+(n2 n4)rl+m]&„u(pl)u(p2')Z, Lnlr2+(1 —n2)r2 —(n2 —n4)rl+m]&„u(pI') ,'e'(4~) 2d, d—n—,dn, dn4-

Xb(1—Q a;)I nln2s+n2nlt —(al+n2)'m' —(a2+n4)X2]-ILu(p2)y, yp „u(pl)]lu(p2')y„yp „u(pl')]. (2.6)
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Let us choose the s axis to be parallel to the spatial part of PI. Then at high energies, we have

XiI{pl)-(-',E/III) I"
0 gXy

X2
~(p~)-(k~/~)"

0'3Xg

N(p, ') (-,'E/m)'~', N(pl') {-,'E/m}'I'
—0 SX] —0 IX'

In (2.7), E is the energy of the electron, x is a two-
component normaHzed spinor, and 0-3 is the third Pauli
spin matrix. Now @re have

I(pg)+„»'y~N (PI)= 2»~g (P2)+„I(PI)
—II(P2)y„y„r2N(PI} 2r~„r2,/mal~ (2.8)

and, similarly,

numerator of its integrand has no s dependence except
through N(p) and N(p), and from {2.7}we find that the
111UIlel'Rtol ls Rt Illost of tile order of E (~$}.Slllcc tile
integral

daldaldasda48 (1—Q a;)

N(PI')y„rsvp„u(PI ) 2»~3„/mbI 2 . (2 9) XLalaIS+a~4~ —(al+aI) BII—(a2+a4)XI3 I

From (2.8), we have

tN(plh, rn, N(PI}jLN{P2'b.»»I(Pl') j
2»281181 I (»»)m

Similarly, from (2.9), we have

t N(PI)7.»T.N(PI) jLN(P2')7.»v pN(PI') j
-2»'81281 2 (»»)~—'.

These two terms, therefore, are proportional to s in the
high-energy llIIlit.

Ke are now ready to make high-energy approxima-
tions fol (2.6). Fll's't of Rll thc sccolld integral 111 tile
right side of (2.6) can be neglected. This is because the. ,

vanishes as s ~~, the second integral in (2.6) is small
compared to s. Similarly, m'e may neglect r~ and ns in
the numerator of the first integral in (2.6) and terms
jd ~ L-{p,)~, ;~. {P.}X-(p.)~, ;~:{P.}j, '=2,3.
Finally, ere remark that since e~e3 is the coeKcient of s
in the denominator of (2.6), alas is roughly of the order
of s and the teHQ

alaII:&(pl)v. rim. N(pI)X~(ps') v.rim, ~(PI')j
in the numerator can also be discarded. With all these
approximations, {2.6) becomes

ORI e'(4Ir) 's'III-'81281 I Il(s,t),
%'here

Il(I&~) dalda2da3da4jj(1 Xr a~) (1 al) (1 a3)EcRlass+ala4$ —(GI+aI) Sg —(as+a4)il, p,
0 i~1

(2.11)

To cvRlllatc (2.11)asymptotically 111 thc llllllts ~00 with t lleld finjtc, jt js convenjent to»age sMcihn transform
of II. Ke have

00 1

s rII(s, t)ds=lri'(sins|') ' dalda, dalda4lj(1 —p a;)(1—a,)(1—a,)(a,a,) I+I
0 l=l

I 4

&&La2ad —(aI+as)'~' —(al+a4)&'j I r=-Iris-' r(sjnsi') —' daldaIda~da48(1 ga;)—
0 "jemg.

X{1—al)(1—ae)(alaI)-I+'La~If&l+(al+aI)'~'+(a, +«)X2j-I-r. (2.12)

From (2.12), we see that e' III(i') is real.
Thc behavior of II(l') at i 0 is related to the behavior of II(s,t) for s~e). Specificall, a term i "in II(i),

N&0, corresponds to a term L(e—1)!jI (lns)" Is ' in II(s,I}.Therefore, obtaining the asymptotic form of II(s,t)
for high energies is equivalent to obtaining all the pole terms in (2.12}at /=0 Since the .integral diverges at al
=a,=0 when i'= 0, the leading term of II(i') must come from the region al&(1, aI(&1. Thus, (2.12) gives

II(i') c'~r d—alda4b(1 as a4}{ala4) t j+—lI.') —' dalaI I+r dalaI I+r

=-e * r+' dasda4(1 —ag —a4)(agej~ t~ 1)P) '. (2.13)
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lude th«prom (2 13) we CO

Re ,(, , ) (a~4!&, g(+Xs)) dn duIs(s~~) {2.14)

(2.»)b(1 „—a4)(a~4~'4 tl++ 'd~2644{sf)~mls

and IIQBRI in thelc terlns fo
~

h leading Rs~p

f F'g 2, of

(2 10) we obta

the seconii dlagr~+e anlplitude frol d by that of BR2,cance e

(2.14) and (2.15) intoSubstituting . Into
and I, ellIDlt s~ q

I however, isThe real parrt of 5K,

yg 2 )8 1

I. Vfe have

'—sns 'f (ri—q)2—

paper I.

—2N ' '—Xsj 'L(rs —g)2 —2N—)'—2N'1 'f(ri+g)s — '—2NO' L(rs —g —2N

4I+5t 'r pQ

OR2 =—se'(2sr) q

t the ln egI't th t gration over q, we gers RIll carrying out thnman parameters an carr t th

0.4 X2

Intl oduclng FeyllIDan

—n +us)22N2 —(ns+n4

XN 2 ~
— rs nsrs+ (as a4)rsX24(ps)y.L(1—ni)rs —airs

2
— n4) Lnsusl+usn4 —ai ns

~(pi) jLN(ps')v. v,Y.N i

sr ' duidnsdnsdn48(1 a; —i 4t —ni-', e'(4sr) ' dui 2 2

+2a' uiasl usn j (

I
BK2=8 2l' 64k'3

srs y„g(Pi)24(P2')P„—as — r as—

roximated by1 e CRn be Rpploxhi h energies OR2 roxAs before, at lg e

BR2~e 5 2 {2.18)

22222 (a +n4)zsjsnsn(4f) +( a+in)s2SS2 2 2
— ni) Lusus I I I +asa4dnsdnsdnsda48(1 —g uiI2 I 2 3

0

usus ai ns) sss +{us+usai ns tss X j.dai 2 2
— ui)Lasnss+nsus~t[+{ns as sssdaidasdnsdn45(1 —g ui alas (2.19)

are real.I and hence BR2 areNotice that Is an e
Prom (2.jt.o and

tlC fOrm Of BROTo obtain the asympto 1

1—as)1 e duidnsdusda45(1Ii 2 ~ 1 e ")srt (sin2 i') duiI (i)+I (i)- 1-— —Q n;)(1—ni

{2.21))-"E I~[+(X usus
Near i 0, wYve have

(2.20)~e4 2 b '2' Il+Is).
& Is+Is.

e (42) s nz rishi 2l=9Ri+5tt:s~e4 b 2

I held nl eyits~ an&inthehml s
0

4 J(+As) '~ssr dusdu4I 2 ssr ' 48 1 as n4) (nsn—4( S—I (i)+I (t)-' i-' (2.22)

Ol

dns 4 — asn4)EJ+Xs) '.dnsdusb(1 ns n4 asn4- —Ii+Is~sns'. (2.23)

This Ineans

0

&- —
& ls purely im gia nary.R er I. Notice that BRO

——) we obtain (2.4a) of paper . o
'o( o),Substituting (2.23 i

w~e
obtain

that e rth eal parts 5K' an
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The coeScient of is for BRo& & can be cast in a form which is physically more suggestive. By introducing
Feynman parameters, it is easy to prove that

l.

dqlE(q. +»)'+&'j 'C(q.—rl)'+&'3 '=~ d d 4&(1—n —n4)(nn4!&[+&')-'.
0

From (2.4a) of paper I and (2.24), we obtain (2.4b) of paper I.

(2.24)

and

(—02X1')
s(P1')-(2~/rw)'"I

x,'

(—1&'2&4 )
x,' 3'

(3.1)

g(pl )r 73&ry(pyv2') ~2r3yr3ylt&1 2 'r&4 ' . (3.2)

The rest of the calculation exactly parallels that in Sec. 2
and will not be repeated here. We found that (2.9) of
paper I holds. In other words, if we express the electron-
positron scattering amplitude BRO& +) in the form of
(2.16), then the impact factor of the positron introduced
is equal to that of the electron.

The amplitude from the fourth-order Bhabha diagram
illustrated in Fig. 2 can be shown to be negligible at high
energies. It is equal to

gg&s& =is4(22r)~ d4q((r2 q)' 2N2+'— —

xp(rl+q)' —X21 'L(r2+q)2 —2&221
'

XC(—rl+q)' —&'j-'Ls(pl')V (q —»+~)~.u(pl) j
Xfu(p2)V. (q+»+~)V.s(p2') j (3 3)

Introducing Feynman parameters and carrying out the
integration over q, we obtain

1 4

JR&s& —e'(4&r) ' dnldn2dn2dn45(1 —P n;)
0 i 1

Pn&n2$+nln4i —(nl+n2) X —(n2+n4) tI4 P
Xl&(P&')y, (nlr2 —nlr2) v,u(P1)

X24(p2)T &s(nlr2 n2r3)v. s(p2 ) ~ (3 4)

3. ELECTRON-POSITRON SCATTERING

The treatment of electron-positron scattering is very
similar to that of electron-electron scattering. The
dominant second-order diagram is illustrated in Fig. 3
of paper I. The corresponding amplitude is given by
(2.6) of.paper I. Since in the high energy limit we have
8(pl')yp(p2') r»2&2 '812, we easily obtain (2.7) of
paper I. The second-order Bhabha diagram illustrated
in Fig. i gives an amplitude too small by a factor of s at
high energy and can be neglected.

The lowest-order diagrams relevant to yielding an
imaginary amplitude proportional to s at high energies
are illustrated in Fig. 4 of paper I. The corresponding
amplitude is given by (2.8) of paper I.At high energies,
we have

In obtaining (3.4), we have discarded rl, q, and 2N. Now
we may discard further terms proportional to 0,&e3. Then
(3.4) becomes

—e'(4&r) ' dnldn2dnldn4ii(1 —Q n;)

s(pl )V r27yyu(pl) 2r2gcv(pl )7 u(pl)

u(p2)7&rn, l (p2')-2r»u(p2)V„v(p2'),

1&(pl')y„rip„u(pl) 2r2„1&(pl')y„u(pl),

u(p2)vyr3Y "(p2 ) 2rl u(p2)vie(p2 )

(3 6)

we easily see that 5K&~~ is negligible.

4. ELECTRON-NUCLEVS SCATTERING

The second-order diagram for electron-nucleus scat-
tering is illustrated in Fig. 5 of paper I.We shall assume
that the momentum transfer is so small that the nucleus
can be considered as static. The corresponding ampli-
tude is real and proportional to s at high energies. It
is given by (2.10) of paper I and its high-energy ap-
proximation is given by (2.11) of paper I.

The fourth-order diagram for electron-nucleus scat-
ering which gives an imaginary amplitude is illustrated
in Fig. 6 of paper I. The corresponding amplitude is
given by (2.12) of paper I. Performing the Feynman
parametrization and neglecting rj. and m, we obtain

Pn. i. The second-order Shabha diagram
for electron-positron scattering.

Xp&lnsS+nrn4~ (n2+—n4) 2N —(nl+n2)X j
X(nl'Ls(pl')v. »v,u(pl)Xu(p2)v. r2Y,s(p2 )j
+ 'L0(p '» re.u(p )jLu(p )v,r 7'(p ')j} (3.5)

By making approximations like
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from (2.12) of paper I imaginary axis we get

Mo& ' 2—Zoe'(2') ' d'q dn4dnoduo

~o' ' iZ'e'(87r) 'Esl 'bio dnodno5(1 uo no)

X dy(y' —uouot+X) t =iZ e (164r) 's444 'M 'gqo

XS(1—g u;)44(po)yoroyo44(pi) (1—ni)

where
XL

—4)o+n pEo+nonot n—zoo (n—o+no) X g (.4.1)

X dnoduo&(1 —no —no) (—tnono+P. ')—', (4.5)

s= 2lVE.

Now we have

dog(q'+A) '=-4'm'A ot'. (4.2)

Thus, (4.1) becomes

m &-~ Z'e'(84r) 'E'm Vzo

l

X dn, dn, dn, b(1—n~ —n, —no) (1—m)
"0

Xf nPE' —nonot+n—Poa'+ (no+no) X' i egot' —(4.3).

Putting x=elE and taking the limit E~~, we obtain

BRo& &~Z'e4(84r) 'E4a 'Ago dnodn48(1 —no —no)
0

X

p) ey+ r& -q p3

—r)+q ~(

I
-p) ey eye,

FIG. 2. The fourth-order Bhabha diagram
for electron-positron scattering.

Deforming the contour of integration in x to the positive

From (4.5) and (2.24), we obtain (2.13) of paper I.

5. GENERALIZATIONS AND CONCLUSIONS

In the three different processes treated in the pre-
ceding sections, a general expression is found for the
imaginary part of the scattering amplitudes at high
energy. In each of the cases, it can be expressed in the
form (2.16) of paper I, with the impact factor for elec-
trons, and static nuclei given by (2.17) of paper I. The
integration in (2.16) is over the two-dimensional space
of the transverse momentum. This means that the vir-
tual photons carry vanishing longitudinal momenta in
the high-energy limit.

We may similarly treat other scattering processes
44+5 —& u+b, where 44 and b can be fermions or anti-
fermions. For example, the amplitudes for the processes
of positron-positron scattering, positron-proton scat-
tering, electron-antiproton scattering, and positron-
antiproton scattering can all be obtained in pretty much
the same way. We shall nqt elaborate on the calcula-
tions of these amplitudes. It is significant that, as it
turns out, (2.16) of paper I is obtained in all of the cases,
with the impact factors for the particles given by
exactly the same expressions as before.

In the lowest order of perturbation considered here,
the impact factor of a fermion has the following proper-
ties: (i) It vanishes for spin-flip transitions; (ii) it is
equal to the impact factor of the antiparticle; (iii) it is
independent of q& and rl.

A physical picture presents itself here. In high-
energy scattering processes, each particle carries an
impact factor. The particles interact through inter-
changing vector mesons of transverse momenta, with
the impact factors serving as coupling constants. The
coeKcient of i(2roro) of the scattering amplitude is equal
to the product of the impact factors with the vector-
meson propagators integrated over the two-dimensional
space of transverse momentum.


