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We consider here all the high-energy scattering processes a-b — a5 in quantum electrodynamics, where
@ and b can be fermions or antifermions. Aside from the photon pole terms, these high-energy amplitudes are
shown to be conveniently expressed by the impact factors. The impact factors for the electron, the positron,

and the static nucleus are explicitly given.

1. INTRODUCTION

N this series of papers, we shall present a systematic
study of all of the two-body elastic scattering ampli-
tudes in high-energy quantum electrodynamics. Among
these amplitudes, those of Delbriick scattering, electron
Compton scattering, and photon-photon scattering are
fairly complicated. Their treatments will be delayed to
papers ITI-VIII, which form the “hard core” of this
series. In this paper, we shall study the very simple
processes a-+b~> a-+b, where @ and b are fermions or
antifermions. The calculations in this paper are straight-
forward. Nevertheless, the conclusions which we may
draw from these calculations are already interesting.
As we shall see, a simple picture of high-energy scatter-
ing will emerge from our considerations.

2. ELECTRON-ELECTRON SCATTERING

The lowest-order diagrams for electron-electron
scattering are of the second order. The dominant one is

o= =i 2r) [ gL =0 =L N L e =T L i g) VT

illustrated in Fig. 1 of paper 1. The scattering amplitude
corresponding to this diagram is given by Eq. (2.1) in
paper 1. In the high-energy limit s —o (¢ fixed), we
have pay~ pi~rs, ps'~ pi’~r;; hence,

A(po)y uth (p1) ~7oum 160 (2.1)

and
(2.2)

ﬂ(?z')wu([)1’)~raﬂm“‘62'1'.
From (2.1) and (2.2), we easily obtain (2.2) of paper I.
The diagram which is obtained from Fig. 1 with p, and
po’ interchanged gives an amplitude too small by a
factor of s at high energy and is therefore neglected.
Since the amplitude (2.2) of paper I is proportional
to s in the limit s — o with ¢ held fixed, it contributes a
nonvanishing finite amount to do/d? in this limit. This
amplitude is real. To obtain an imaginary amplitude
which is proportional to s in the high-energy limit we
must go to the fourth order. The relevant first-order
diagrams are illustrated in Fig. 2 of paper I. The first
diagram there gives an amplitude

Introducing Feynman parameters in the usual way, we obtain

1
Ny = —6iet(2r)™ / diq’ / daydendasdasd(1— 3 a)[q?+arass+asad — (artas)m? — (ae+ad) N4 (pa) vy
0

X[=q'+ 1 —a)rstasrst (ea—adrit+m Iy (pr)a(pe )y, [ g +ontet (1 —as)rs— (@a—a)ti+mly u(pr),

where

Carrying out the integration over ¢/, we obtain

4

1
Ny =et(4mr)—2 / daidaydosdad (1— Y a)[aass+asast — (@rtas)?m? — (aeFad) N 120 () v, [ (1 —a)rstasrs
0

t=1

1
+ (a2 “014)7'1""’”']7#“(Pl)ﬂ(le)Yv[6¥172+ (1 —as)rs— (e —a)ri+m Iy, m(pr/) — e (4m) 2 / daidasdasdas
0

XL (po)v (= g+ rstmyy,a(p) A (bs v (g retm)van(ps) ], (2.3)
(2.4)
¢’ =q—arstasrst (ae—as)r:. (2.5)
(2.6)

Xo(1— i‘, a;)[enasstasadt — (artas)*m? — (s +a) NI L@ (pa) vy oy (p1) 1L (b2 ) vov oy s (pr')].
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Let us choose the z axis to be parallel to the spatial part of p;. Then at high energies, we have

oo~ azm( ),
wipor~azm ),

In (2.7), E is the energy of the electron, X is a two-

component normalized spinor, and o3 is the third Pauli

spin matrix. Now we have

7% (PZ)'YI/T27#u (Pl) = 27’2,,’12 (P2>'Yv” (Pl)
_'72(?2)71'7#7'2”(Pl)"’21’2p1'2../m512 (2.8)

and, similarly,

'ﬁ([)z')‘yyrg’y“’l«t(P1’)~27’3,,7’3,,/m51’2'. (29)

From (2.8), we have
Ca(po)yorey wu(pr) JLa(pe)yvirey i (p1) ]
~~2r2261261'2'(72r3)m"2 .
Similarly, from (2.9), we have
Ca(po)virsyun(pr) La(pe )yorsyam(py)]
~2r3251261'2'(r2r3)m“2 .

These two terms, therefore, are proportional to s in the
high-energy limit.

We are now ready to make high-energy approxima-
tions for (2.6). First of all, the second integral in the

right side of (2.6) can be neglected. This is because the:

wto~a/my{ ),
s @7
woir~am )

numerator of its integrand has no s dependence except
through #(p) and %(p), and from (2.7) we find that the
numerator is at most of the order of £2(~s). Since the
integral

4

2 )

7=1

1
/ desdasdesdass (1 —
0

X [0110133 +a2a4t - (al-f—ag)"’m"’ - (0[2+0£4) }\2]—1

vanishes as s —o0 the second integral in (2.6) is small
compared to s. Similarly, we may neglect r; and » in
the numerator of the first integral in (2.6) and terms
like [@(pa)voreyuu(pr) JLa(p yyrivin(py)], i=2,3.
Finally, we remark that since aia; is the coefficient of s
in the denominator of (2.6), aias is roughly of the order
of 57! and the term

aras[ 8 (pa)y, sy b (p1) (o2 )yoray i (p1')]
in the numerator can also be discarded. With all these
approximations, (2.6) becomes

m1~64(%)_2321%’251251’2'11(.S',t) y (2.10)

where

1 4 ‘
I, (S,t) =/ da1da2da3da45(1 - Zl a,') (1 —a1) (1 *aa)[a1aa.$+a2a4t— (a1+a3)2m2-—- (d2+a4))\2]"2. (2.11)
0

f=

To evaluate (2.11) asymptotically in the limit s — o with ¢ held finite, it is convenient to make a Mellin transform

of I;. We have

0 1 ) 4
L= / s (s, t)ds=m¢ (sinw§) ™2 / dadaydasdad(1— 3 @) (1—ar) (1 —as) (@)t
0 . =1

0

1
X[asst — (e1F-as)?’m? — (e Fa) 28 = —xr e3¢ (sinwr )2 / daidapdasdad(1— 3 ;)
d R .

X (1—a1) (1 —as) (aaes) ¥ asas| 1] 4 (a1tas)*m?+ (@) 2] 5.

From (2.12), we see that eI (¢) is real.

4

wg=1

(2.12)

The behavior of I1(§) at {~0 is related to the behavior of I1(s,t) for s — . Specifically, a term ¢ in I1(¢),
n>0, corresponds to a term [(n—1) ! (Ins)*"%s~ in I)(s,f). Therefore, obtaining the asymptotic form of I, (s,0)
for high energies is equivalent to obtaining all the pole terms in (2.12) at ¢{=0. Since the integral diverges at a;
=a3=0 when {=0, the leading term of I;({) must come from the region a:<K1, a;<<1. Thus, (2.12) gives

1 1 1
L)~ —eims / dasdad (1 —as—as) (ages|t] +22)1 / daor™ | dasas
0 0

0

1
I f dorsds(L—ay—aus) (asea] ] N1 (2.13)
0
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From (2.13), we conclude that .
Rely(5,)~ — (s Ins) / dotsded (1 — s —ats) (esea £] 30 2.14)
0

and )
Tl (5, i) ~rs~t / detsdersd (1 — a3 —ats) (ases] ] 421 2.15)
0

Substituting (2.14) and (2.15) into (2.10), we obtain the leading asymptotic terms for Redlt; and Im9N; in the

limit s — o, and ¢ held finite.
The real part of 91, however, is canceled by that of 917, the amplitude from the second diagram of Fig. 2. of

paper I. We have

o= —ie (o) [ ML= = L1 NI L= = T L =g —N T
XLa(pa)yy(ra—gq+m)y,u(p) La(pe )y u(rs—g+m)vau(py)].  (2.16)

Introducing Feynman parameters and carrying out the integration over ¢, we get

ge=]

1 4
Me=e!(4mr)2 / dondasdosdesd(1— 3 a)[caasutosed— (ea+as)m?— (aata) N ]2
0
Xa(pa)v,[ (1 —ap)ra—asrs+ (ee—ad)ri+mly u(p1)a(ps)y [ (1 —as)rs—arrst (ee—as)ri+mIy,u(py’)

+iet(4m)2 / 1 dondasdosdod(1— Z‘: a)[orasmu+asad — (e14-as)?m? — (aeta) N2
' - XLa(pa)vsy sy (o) (o Yy uy syow(pr) 1. (2.17)
As before, at high energies 917, can be approximated by
Mo~ et (dar)2s2m 28120 2'1 5, (2.18)
where

@

1 4
I= / ddedasdad (1 3 an)Casa] | +asoal ]+ e (errkadN T
) 2

=1

1 4
N/ daldagdaada45 (1 - Z al)[alaas—!-aza,;l tl + (a1+a3)2m2+ (a3+a4))\2]2. (2.19)
0

Notice that I, and hence 91, are real.
From (2.10) and (2.18), we obtain

Mo~ =) =9+ My~ e (d)~252m 281081 " (T1-+ 1) (2.20)

To obtain the asymptotic form of 97, ) in the limit s — and ¢ held finite, we make a Mellin transform of I;+ 1.

i=1

L)+ L(HO~01- —i”)ﬂ'i'(Sin‘ﬂ'f)_l/ doydasdasdesd (1— ZA o) (1—a1) (1 —as)

X (0'1(13)—1'*';[&2(24[ t' + (a1+a3)2m2+ (a2+a4)7\2]‘1‘f. (221)
Near {~0, we have

I—l(f)'i‘l_:z({)"’iﬂ'—l/ dasdad (1 —az—as) (apas|t| 221 (2.22)

or
1
I Iy~ims f dorsdesd (1 — iy —ats) (asces ] 43D (2.23)
0

Substituting (2.23) into (2.20), we obtain (2.4a) of paper I. Notice that 9" ~ is purely imaginary. This means
that the real parts 917; and 917, cancel each other.
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The coefficient of s for 9 ~) can be cast in a form which is physically more suggestive. By introducing

Feynman parameters, it is easy to prove that

/ dq.[(qu+r)* +NT[(qu—n)*+N ] =n / dotpdoad (1 —ag—au) (o] ] +22) 1.
0

(2.24)

From (2.4a) of paper I and (2.24), we obtain (2.4b) of paper I.

3. ELECTRON-POSITRON SCATTERING

The treatment of electron-positron scattering is very
similar to that of electron-electron scattering. The
dominant second-order diagram is illustrated in Fig. 3
of paper I. The corresponding amplitude is given by
(2.6) of paper I. Since in the high energy limit we have
(1 Yy o (ps’)~r3um18179’, we easily obtain (2.7) of
paper 1. The second-order Bhabha diagram illustrated
in Fig. 1 gives an amplitude too small by a factor of s at
high energy and can be neglected.

The lowest-order diagrams relevant to yielding an
imaginary amplitude proportional to s at high energies
are illustrated in Fig. 4 of paper I. The corresponding
amplitude is given by (2.8) of paper I. At high energies,
we have

—o3Xy
s~ aEmy ),
Xy
3.1)
—o3Xy'
st~ aem( ),
X!
and
T(p1 )y urs v (pe')~2rsursduiam™. (3.2)
The rest of the calculation exactly parallels that in Sec. 2
and will not be repeated here. We found that (2.9) of
paper 1 holds. In other words, if we express the electron-
positron scattering amplitude 90+ in the form of
(2.16), then the impact factor of the positron introduced
is equal to that of the electron.
The amplitude from the fourth-order Bhabha diagram

illustrated in Fig. 2 can be shown to be negligible at high
energies. It is equal to

N S

X[ (g2 —NT [ (rs+g)* —m* ]
X[ (—r1+g)2—=NT[5(pr )y, (@—11+m)yuu(p1)]
X[ﬂ(P2)7u(q+rl+m)7v'”(?2,)]- (3-3)

Introducing Feynman parameters and carrying out the
integration over ¢, we obtain
4

1
MBI~ —64(4‘"')_2/ daldazdasda,;é(l— Z a;)
0

v==]
[oqaas -I-azoul - (a1+(¥3))\2 - (az+ae4)2m2]’1
XF(pr')ys(aars—asrs)y e (p1)

Xa(po)yulaare—asrs)y,w(pe’).  (3.4)

In obtaining (3.4), we have discarded r;, ¢, and m. Now
we may discard further terms proportional to a;es. Then
(3.4) becomes

4
MBI~ —e‘(4r)"2/da1dagdaada46 (1 - Z Dt,')

=1
X [erauss Fasost — (oo +aa)*m? — (o1 +as) N2 ]2
X{e?[F(p1 Yvoreyu(pr) LA (o) urayiv(p2')]

+ag’ 5P )vorsy i (1) JLa(po)yursv o (pa) ]} . (3.5)
By making approximations like
(1" )vorey wth (pr) ~ 212, 5 (p1 Yy (1)
A(P2)y w2y, 0 (o)~ 2r2,8 (p2)y,0 (p2) (3.6)

7 (pll)7v737nu (Pl) ~ 2731:5 (P 11)7;4“ (P 1) )
A(P2)y w370 (p2') ~ 215, (pa)y w0 (p2')

we easily see that 9U®) is negligible.

4. ELECTRON-NUCLEUS SCATTERING

The second-order diagram for electron-nucleus scat-
tering is illustrated in Fig. 5 of paper I. We shall assume
that the momentum transfer is so small that the nucleus
can be considered as static. The corresponding ampli-
tude is real and proportional to s at high energies. It
is given by (2.10) of paper I and its high-energy ap-
proximation is given by (2.11) of paper 1.

The fourth-order diagram for electron-nucleus scat-
ering which gives an imaginary amplitude is illustrated
in Fig. 6 of paper I. The corresponding amplitude is
given by (2.12) of paper I. Performing the Feynman
parametrization and neglecting r; and m, we obtain

1
-P —P2

Fic. 1. The second-order Bhabha diagram
for electron-positron scattering.
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from (2.12) of paper 1

1
Ny~ —2224(2m) ™3 / d*q / daydasdas
“Jo

3

X8(1— X a)a(pa)yorayou(pr)(1—az)

=1

X[fq2+a12E2+a2a3t—a1m2— (Olz‘l‘l)l;;))\z]_s. (41)
Now we have

/ Bg(P+A)P=1r24732, (4.2)

Thus, (4.1) becomes
No )~ 224 (87!‘)—1 F2m 16 12
1
X/ dondogdasd(1 —ar—as—asz) (1 —az)
0

X[ —a2Ft—agast+alm?~+ (aatas)\2—ie ] 52, (4.3)

Putting x=a:E and taking the limit £ —, we obtain

1
N )~ 224 (81r)’1Em‘15 12/ dazda38 (1 —Q —(13)
0

0

X/ dax(—a—asazt+N—ie) 2. (4.4)
0

Deforming the contour of integration in » to the positive

-n+tqy rntq

*W—e—l
—p; e r,t+q P

F16. 2. The fourth-order Bhabha diagram
for electron-positron scattering.
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imaginary axis, we get

1
My ~i2%4 (8m)LEm 1512 / dasdasd (1 —as—ay)
0
X/ dy (y*— sl +N) 2 =i 22 (167) s M 1815
0

1 .
X/ dOldelsB(l —'ag—a:;) (—ta2a3+)\2)~1 , (45)
0

where
s=2ME.

From (4.5) and (2.24), we obtain (2.13) of paper 1.

5. GENERALIZATIONS AND CONCLUSIONS

In the three different processes treated in the pre-
ceding sections, a general expression is found for the
imaginary part of the scattering amplitudes at high
energy. In each of the cases, it can be expressed in the
form (2.16) of paper I, with the impact factor for elec-
trons, and static nuclei given by (2.17) of paper I. The
integration in (2.16) is over the two-dimensional space
of the transverse momentum. This means that the vir-
tual photons carry vanishing longitudinal momenta in
the high-energy limit.

We may similarly treat other scattering processes
a+b— a+b, where a and b can be fermions or anti-
fermions. For example, the amplitudes for the processes
of positron-positron scattering, positron-proton scat-
tering, electron-antiproton "scattering, and positron-
antiproton scattering can all be obtained in pretty much
the same way. We shall nqt elaborate on the calcula-
tions of these amplitudes. It is significant that, as it
turns out, (2.16) of paper I is obtained in all of the cases,
with the impact factors for the particles given by
exactly the same expressions as before.

In the lowest order of perturbation considered here,
the impact factor of a fermion has the following proper-
ties: (i) It vanishes for spin-flip transitions; (ii) it is
equal to the impact factor of the antiparticle; (iii) it is
independent of ¢, and 7;.

A physical picture presents itself here. In high-
energy scattering processes, each particle carries an
impact factor. The particles interact through inter-
changing vector mesons of transverse momenta, with
the impact factors serving as coupling constants. The
coefficient of 4(2ry73) of the scattering amplitude is equal
to the product of the impact factors with the vector-
meson propagators integrated over the two-dimensional
space of transverse momentum.



