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Theory of the Heavy Electron
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Quantum electrodynamics with a generalized minimal conserved current of the form j„=n&p„+a2P„ is
investigated. Fixing the maximum value of n~ by the anomalous magnetic moment of the electron (muon),
we obtain an excited state of mass m'&~ (1+4m/n)nz L881 MeU for e'j, and of magnetic moment ~&3 in
units of 1/2m', that can decay to the ground state. The excited state has negative norm, but can be made
entirely consistent in the second-quantized theory. The equations are interpreted as those describing a
partly "dressed" particle; thus a new form of the perturbation series is suggested.

I. INTRODUCTION

W~N the subject of the breakdown of quantum elec-
trodynamics, Low pointed out in 1965' that the

only theoretically consistent way to describe this
problem was in terms of the coupling of the electrons to
other particles. In particular, he considered the possi-
bility of a heavy electron e' and the process e' ~ e+y.
The heavy electron has subsequently been the sub-

3ect of a number of theoretical and experimental
investigations. '

In this paper, we examine a generalization of the
minimal electromagnetic coupling which has, as a
consequence, a heavy electron of the above type. We
have arrived at this theory from an entirely different
consideration, namely, we have tried to understand the
significance of "convective" currents proportional to the
total momentum, which occur in infinite-component
field equations. '

Because there is a unique parity-conserving vector
operator y„ in the algebra of Dirac matrices Li.e., the
four-dimensional representation of the Lie algebra of
O(4,2)j, any more general vector coupling must involve
momenta. The next simple nontrivial coupling is given
by the current of Eq. (2.1) below. In order that this
coupling should still be applicable to quantum electro-
dynamics, we must interpret it as an equation describ-
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ing a partly "dressed" particle. In our case, the funda-
mental vertex coupling already has the complete
observed anomalous magnetic moment of the particle.
In other words, the new "free" particle equation de-
scribes a fermion with the correct anomalous magnetic
moment. As a consequence, we obtain an excited state
of the particle. In a erst-quantized theory, the excited
state does not satisfy the normalization condition, a
situation analogous to the negative energy states of the
6rst quantized Klein-Gordon equation. However, a
completely consistent second-quantized theory is
possible and is developed in detail in Sec. III.

II. CONSERVED CURRENT

We postulate that the conserved electromagnetic
current for a spin--, particle-antiparticle system is of
the form j.™=~iV,+o2f'„ (2 1)

where a& and a& are constants (more generally, tensors
depending on the possible internal quantum numbers of
leptons) and I'„=(p'+ p) „is the total momentum at the
vertex. With this choice we deviate from the usual
theory, but of course we shall require that the total
charge, as well as observable consequences of the theory,
agree with experiment. Eq. (2.1) represents the most
general parity-conserving current operator linear in
both the momenta and the generators of the rest-frame
algebra Lin the present case, the O(4, 2) algebra of
Dirac matrices). 4 The current in the configuration
space is

(2.2)j„'~(x)= —&i(x){aiy„—inz8, )fz(x),
where

4'&~A'&= A(~uk) (~uA)A.

We shall give a momentum-space formulation of the
theory and treat the Lagrangian formulation and the
second quantization at the end.

4 We note that terms like q„and O„„P"in the current can never
be conserved, whereas a„„q"is always conserved. For a discussion
of the most general vertex operator, we refer to a subsequent
paper, see Ref. 9.
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p„, ,(x)= lnjm; p]e
—""&*~lnjm; p)

p x=+(p'+m')'"x' —p x. (2 4)

Now we require that the current (2.1) be con-
served, ' i.e.,

(n,p Ii.c"
I
n', p'& =o. (2 5)

It immediately follows that n is a conserved quantum
number.

In contrast to the usual simple current y» we now
have more than one mass value in the theory; Eq. (2.5)
gives

(2n)mi[nl jOe™
I

n' j=m&[n
I

e'&'I jo I
n'](2n'), (2.6)

or
(mi —m2) [ui —u2(mi+m~) j=0. (2.7)

We denote the spinorial wave functions between
which j„of Kqs. (2.1) acts, by

lnjm; pj=e'&™lnjmj, (2.3)

where n= &2 is the "principal quantum number"
(eigenvalue of —',yo) (+-', for particle, —~~for antipar-
ticle), (jm) are the usual spin quantum numbers, cV,
are the generators of pure I orentz transformations
2''y', and g is the relativistic velocity parameter such
that the state (2.3) has the momentum I'„=(m cosh),
gm sinh$). ' The complete configuration-space state
vector is

we can write (2.11) in the form

Hr= (e)./m:)ip;o„,f,l'&."+H.c. (2.14)

For r=r', we see that (2.13) ascribes an anomalous
magnetic moment to the particle. Before determining
the numerical values, we have to normalize our spinors
by requiring that

(2.15)

Thus the spinors must be divided by a factor
(ui —2u, m,)'".This is fine for the lowest mass state mi,
however, for the higher mass state ei —20.2m2
= —(ui —2u~mi), so that these states are normalized to
—1~ This difficulty is the same as the mell-known
normalization problem in the Klein-Gordon equation
and can only be overcome by a second-quantized
formalism. On the basis of a first-quantized effective
theory, we should throw away this second solution. '

On the other hand, if we accept a second-quantized
formalism (see Sec. III), we have the following nu-
merical results:

V„""'"'(p',p) = [n'pV
I [u, —u, (m,+m, )jy,

—in2o„.(2np, —2n'p, .)"
I nprg (2. .13)

The first term is zero for r'Wr because of the mass
equation (2.9), so that the transition e' ~ e+y is only
magnetic and corresponds exactly to the interaction
Hamiltonian'

This equation is satisfied either for

or for
m$ 102 )

mi+m2 ui/u2 ~

Thus the theory gives two mass values:

mi and m2 ui/up mi,

so that we have two types of transitions

(2.8)

(2.9)

(2.10)

(i) Let the lower mass state be the electron and let
us determine the maximum value of e& by equating the
anomalous magnetic moment resulting from (2.13) to
the experimental value, i.e.,

u~/(ui —2u2m. ) = X,/2 „mE.=u/27r+0(u2) .

Now the ratio ui/u~ is determined: ui/u2) 2m, /It, +2m, .
The mass of the excited state is then

(a) eel or e'e'y,

(b) ee'y

and, as we shall see explicitly, the transitions of type (b)
are of purely magnetic type —as it should be by gauge
invariance. Because of this second solution, we have
efFectively doubled our Hilbert space, so we write the
states, introducing a new quantum numbers r, as

I n, p, r)
and evaluate the vertex amplitude

i'."'""'(p', p) = [n'p"
I (u».+u~I', ) I

npr j (2 11)

Using the identity

i (20p, n2n'p;)"= 2n'p—, „'+2np,„
—2n'y&(p, .)„y„—2'"(p,),y„, (2.12)

'For the introduction of the quantum number m, see A. O.
Barut, Phys. Rev. Letters 20, 893 (1968).

e Unless explicitly stated, we shall write I short for Ijm. The
square bras and kets denote the nonunitary spinorial wave func-
tions, the usual bras and kets denote the state vectors.

m, )m.(1+2/K, ) =881.76 MeV. (2.16)

(ii) The anomalous magnetic moment of the excited
state is determined from

or
u2/I ui 2u, m;

I

—=K„/2m, ,

&"= (fc.+2)=2 in units of 1/2m, . (2.17)

The total magnetic moment is p, —3 in units of ]/2m, .
(iii) The transition amplitude e —+ e+y is propor-

tional to

u2(ui —2u~m. ) '~'I (ui —2u~m. ) I

= u2(ui —2u&m, )
—'= X/m. .

' The infinite-component relativistic equations describing
H atom or the model of hadrons (Ref. 3) have a set of solutions
with an increasing mass spectrum and a positive normalization
condition that are physical, but another set of solutions with a
decreasing mass spectrum for which the normalization condition
is negative.
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Hence the parameter X in (2.14) is

(2.18)

After taking the derivatives and the x integration, the
relevant factor is

The experimental upper limit for A. for m. =881 MeV
is about 0.1 (see Boley et al.'). The values for m, . and X

given in (2.16) and (2.18) are the extreme values: If no
is smaller (i.e., if we account only for part of the
anomalous magnetic moment), m, becomes larger and
'A becomes smaller.

Aim —&2m —K= 0,2 ——0 (3.3)

which is equivalent to Eq. (2.7). We determine a from
the mass of the lower state

III. LAGRANGIAN AND SECOND-QUANTIZATION
FORMALISM

A. Equation of Motion

The Lagrangian density which gives rise to the cur-
rent (2.1) or (2.2) is

z (x)= —',lp(x) ( in'—y&ot„+z}lp(x)

nolP(x) 8&8—„&(x). (3.1)

The corresponding equation of motion becomes

(onym„8&+no8"8„x)lP(x) =0.— (3.2)

The solution of this equation of the form (2.4) leads to
the mass equation

[~p I [ni'Yo —no(2m', +2n'ru") g I
~'p')

Xb "&(2n'p' —2np), (3.7)

which by the identity (2.12) is equal to

[np~ fn, —n, (oa,+m. )}go
on2PO (2np, 2u'—p;) ~

n'p' jb &'& (2n'p' 2np—)

The first term is zero by virtue of the mass formula
(2.10), and the second term vanishes because of the b'ol

function. Thus,

lp& jo(x)leod'x =0. (3 8)

As a consequence of (3.7), we can determine the expan-
sion coeKcients in (3.6):

m
b„; '(p) = d'x

(2m-)'oo,

Xe""o 'I„, (P,)jo(x)lP(x),
(3 9)

m. 1/2

b„,„'t(p) = d'x-
(2or)'oo,

XP(x)jo(x)ol.; '(P,)e

O'1me 0'2me ~
2 (3 4) The vertex function now becomes

With (3.4), Eq. (3.2) factorizes in the form

no(oy&8„—m.)[ip&&„—(nl/no)+m. Q(x) =0, (3.5)

whose general solution can be written as the sum of the
two Dirac solutions, corresponding to masses m, and
m, , Eq. (2.10), respectively:

4(x) =-0 (x)+~t "(x),
with the quantum number ~ denoting the two states of
different mass, we write the general solution as

m,

,r'( )jx(xg, . r(x) ~ e~(2m'p' 2wo) z—
Xb„;. "t(p') [n'P'r'

~
(nl7„—n&(2nP„+ 2n'P„') }

X
~
npr]b„, „'(p), (3.10)

and we get back the same normalization condition as
in (2.15).

C. Second Quantization

Now, in order to second-quantize the theory, we
derive from the Lagrangian density (3.1) the canonically
conjugate fields

d p
(2or)'lo,

Xb ~ '(p)N '(P)e """'* (3 6)

x.(x) = BZo/dip, o(x) = —',znllpy' —nolp o

or(x) = Mo/Bl//, o(x) = —oonry lp —nolp, o,

(3.11)

B. Orthogonality

%e first check that the states with v./r' are orthog-
onal; we have

it, (x)jll(x)lP, .(x)d'x

and assume the equal-time anticommutation relations

(lP(x),or(y) },o=„o= flP(x), or(y) } o=„o=ib'(x —y) . (3.12)

In order to derive the anticommutation relations of the
creation and annihilation operators b and bt, we evaluate

e'Ns'nm

d 'p, d'p. m.m.
b- '(p.)b- "(p")

(2or)' oo~.

dopdopl

(b-,-'(p),b-'- "(p)}
(2m.)'

X d'x e"""'*L~p.
l (n v. tn ~o) l~'p" je """""—*

Xe—2ino x+oln'o o
~
~Prj

X[e'P'r'
~

(-', ingyo 2im'nool;) —. (3.13)
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We shall show that the proper anticommutation rela-
tions for b's are

tb-'(p), b- -"'(p'))

cx] —2Q25$g
b'(p —p'). (3.14)

o'y —2&2m

Because of the vanishing of the factor (3.7), we get a
factor b„on the right-hand, side. Further, we use the
relations

[nmP
~
p'~ n'm'P5 =olb Et /m, (nt 2n—sm.), 3.20

[nmp
~

nm'p5 = 2n8 „/(nt 2—nsm, )

and finally write

Indeed, using the completeness relation H=H, +H; (3.21)

qs(p, )„+2nm,
p ~njmpr5[njmpr~ = (3.15)
m 2m, (n, 2n—sm, )

and (3.14) in Eq. (3.13), we obtain

d'p 7s(p,)„+2nm,
{a(~), (~))*=, =2'

(2m.)' ol~(nt —2nsm, )

X (-,'neo 2nn—st0, )

or, explicitly writing the sum over n and changing the
dummy index p into —p in the case of n= —-'„we get

O'Y
Xe'0 &"-» -+ — (3 16)

2 .&y —2&295~

The second term does not contribute when summed over
~, and we get back the desired equal-time commutation
relations (3.12).

The different signs in the commutation relations
(3.14) for the two mass states (&1) is essential in this
derivation.

H.=Z d'p ~.(b-:-t(p)b-:-(p)+b--*.-(p)b--:-t(p)) (3 22)

and

H: = —p d'p 02„

Finally, the charge

E. Charge

X fb; t(p)b1 (p)+b 1 (p)b=; t(p)) . (3.23)

The term H. formally appears to be negative dehnite,
but, because of the commutation relations (3.14), bt

has to be reinterpreted as the operator "minus the
Hermitian conjugate of b,

" for e' states. Thus, H is
positive de6nite. The procedure amounts to an indefinite
metric in the r space and is entirely consistent. The
procedure amounts to the prescription that, for the
excited state, b always goes with 'a negative sign. This
makes the signs in (3.14) and (3.23) always +1.

D. Positive-Definite Energy
Q= O'X:lP(X)j0(X)lP(X): (3.24)

Now we show that with (3.12) and (3.14) the energy is
positive de6nite. The Hamiltonian

can be written as
e e' ~ (3.25)

H= d'"x:( (x)lP, o(x)+lP, o(x) (x) —2(x)): (3.17)
d'pd'p'm.

becomes, in our case, nmn'm' (0000') '22

EE= d X:(02nltpr $,0 n2$, 0$, 0 02n1$, 0'y tp n2$, 0$, 0

+sly( 2ntg
' l9+K)lP+ sly(2'y ' Bnt+K)tP

X:b„.„;t(p')b„(p'):b"'(2np —2n'p')

pX' npm( (nt —2nsm, ) [nmp5

or, using (3.6),

nmT, n'm'T'

ns~V~A): (3 lg—)

fÃ&f%&r 1/2

d'pd'p' — -,'b &'& (2np —2n'p')
07&07qr

dsp(b-. ',J(p)b:',-m(p) b—:',- (p)b—' t(p)) (3.26)
m

which shows that (n= ——',) states contribute with the
opposite sign to the charge with respect to n=+-,'
states.

X[nPr
~
(nty ns(2n00, +2—n'00, )) ~

n'P'r'5 ' Similar situations have been discussed by A. 0. Barut and
G. H. Mullen, Ann. Phys. (N. Y.) 20, 184 (1962); 20, 203 (1962),

X(2nt0, +2n'00, .):b„~'t(p)b„. i"(p'):. (3.19) by R. Norton, J. Math. Phys. 6, 981 (1965).
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For the operator Q. , we get a change of sign from the
operation of Hermitian conjugation and another from
the normalization condition n~ —2n2m. == —(n~ —2n~m. ),
so that n= —,', e' state has the same charge as the n= —,',
e state, and similarly for n= —-', . This completes the
second-quantized formalism for our theory.

IV. FURTHER COMMENTS AND CONCLUSIONS

Ke have studied the consequences of a more general
linear conserved current (2.1) describing two fermions
with different masses and anomalous magnetic moments.
This more general current can thus be viewed as an
effective current describing a dressed particle when
compared with the usual Dirac coupling. In the latter
formalism, all anomalous magnetic moment sects are
ascribed to higher-order terms in the perturbation
theory, whereas in the present formalism part of the
effect of the radiation is built in the lowest-order term
itself. The current (2.1) does not completely contain all
the radiation eQects because we do not get the depen-
dence of the form factors on the momentum transfer q'.
For this, one has to go to more general currents' and to
higher dimensional representations of the group 0(4.2).'
With the current (2.1) we can formulate a new pertur-
bation theory. How such a theory will account for
higher-order terms and how it will be renormalized
remains to be seen.

The new current (2.1) is minimal3 in the sense that
it is the most general parity conserving, conserved
operator, linear in the momenta and linear in the gen-

A. O. Barut, P. Cordero, and G. C. Ghirardi, International
Center for Theoretical Physics, Trieste, Report No. 68/96
(unpublished).

erators y„. There is still the anomalous term

which is conserved by itself. The addition of such a term
to the current (2.1) does not change the mass spectrum,
but of course will modify the magnetic moments of the
particles and bring a new parameter into the theory,
and one can give to nz. any desired value instead of
(2.16). Such a theory would be more phenomenological.
However, it is important to notice that if we choose
o.3= —o.2, the anomalous magnetic moments of the
particles vanish, there is no transition of the type
e' ~ e+y; in other words, the two solutions of Fq. (3.5)
become completely uncoupled. This theory is then
equivalent to two uncoupled Dirac equations, hence of
trivial character as far as a two-mass theory is concerned.

At this stage it is appropriate to comment on a paper
by Rosen" who also considers a second-order I.agran-
gian and is able to obtain the p-meson mass together
with the electron. Rosen's equation is in fact of the type
mentioned in the last paragraph, namely, two entirely
uncoupled Dirac equations. His paper is based on the
observation that m./m„—3n is the coefficient of the
d'x/dt' term in the classical equation of motion (radi-
ation reaction).
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