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Momentum-Transfer-Independent Angular Relations and. Solutions
to the Isospin-Factored Current Algebra
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The main purpose of this paper is to construct a general class of solutions to the isospin-factored algebra
of form factors at infinite momentum. Lorentz covariance imposes a very restrictive condition on these
form factors, which is known as the angular condition. In this paper, we decompose this angular condition
into a set of momentum-transfer-independent conditions. To further simplify our problem, we strengthen
the angular conditions into three more restrictive and mutually exclusive classes of conditions {called
primitive equations). These simplified angular conditions can be solved completely, and lead to three
classes of primitive solutions. We find that for each of the primitive solutions there always exists an internal
Lorentz group, and that these solutions are related to some very simple infinite-component wave equations.
Having established the connection between the solution to the angular conditions and the wave equation,
we then turn things around and construct some very general solutions from the coupled wave equations.
The fact that these coupled equations represent the most general solutions to the primitive equations
suggests that they may already represent the most general solution compatible with the original angular
condition. ¹xt,under very mild technical conditions, the solutions to the angular conditions are shown
either to be physically trivial or to contain a spacelike (M~&0) part. The possibility that the spacelike
and timelike parts are not coupled by the currents is also discussed.

I. IN'TRODUCTION
' 'N the preceding paper, ' an attempt is made to under-
' - stand the structure of the current algebra at in-
6nite momentum. In order that the current density
operator g„(x) transforms covariantly as a four-vector
under Iorentz transformations, one Ands that the
ininite-momentum form factors must satisfy a very
complicated angular condition. This angular condition
is derived explicitly in I, and is found to be the necessary
and sufhcient condition for g„ transforming covariantly.
In this paper, we erst scale down the structure of cur-
rent algebra from SU(3)QxSU(3) to SU(2)QxSU(2).
Then, as a erst natural step, we try to saturate the
algebra of isospin charge densities by a set of states all
having isospin —,.' This greatly simpli6es the mathe-
matics, and may be even directly relevant for physics
since all the strangeness S=&1 mesons and/or S=—2

baryons so far observed have isospin —',.
To make this paper self-contained, we review some

of the known solutions to these isospin-factored current
algebra. There are two very interesting physical models.
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The Grst one is the two-free-quark modep introduced
by Gell-Mann. In this model, both quarks are free
particles, but only one of them is charged. Since this
represents a composite system of two noninteracting
particles, the current algebra is satisied automatically.
These composite two-quark systems satisfy some in-
Gnite-component wave equations which are closely
related to the general solutions to the problem. These
solutions have the additional interesting feature that it
is the only known model which has the nice property
that the spacelike solutions exist, but do not couple to
the timelike solutions by the current. The second
interesting model is the one in which one assumes not
only the charge-density commutator relations, but the
charge-density-current-density commutator relations
as well. This model can be solved easily and yields one
of the primitive class of solutions obtained later.

Ke then analyze the angular condition systematically.
Multiplying the angular relation by the factor i"(k) ',
and expanding it in powers of ir, where k= (ki,k2) is
the transverse momentum transfer, we ind that if the
expansion terminates, and if we reject solutions for
which a spacelike part (M'(0) exists and is definitely
coupled to the timelike part by the current, the angular
condition is equivalent to the set of k-independent
equations given in Table I.

To solve these k-independent angular conditions, we
Grst replace the relation

BPP—x(@+1)~(=0

by the stronger relations B=O, B=xt(2+1), and
B=—x(8+1).Then, the equations of Table I can be
reduced to three primitive (mutually exclusive) sets
of equations. The primitive equations can be solved

~ M. Gell-Mann, in Strong and TVeak Interactions: Present
Problems, edited by A. Zichichi (Academic Press Inc., New York,
1966).
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TAnLE I. Momentum-transfer-independent equations for ~, gr, X and 3 The independence
bg QOQSldCllQg thC SPCC1RI CB,SC 3f=COQSt. AQ SCCOQda~ CqQRt1OQS CRQ bC ObtMQCd fI'OIH thC b381C Cqga, tlOllS b t k
Vnth reSPeCt tO X.

DC&utiOQS

XP=X1~gX2, gP=g1+ggg
3f~=fX~)3E'g
3I++——fX+,fX+,3Pjj
e= (X+1) 'tt, 8= —-', fx+,fx,M'lj
A~ = a2~Mg, +$PP,X~j+
jX+($3—8)=41'~,X~)
G=B'—q (8'+I)2
G~ ————,'i'', P~g ——,

' P~

SasiC CquatiOQS

fX;,fX;,fXg„M'gg j=o
f&+ ++j=fx-4-j=o
fB,Xj=O
fh+,Aj=4ft.rt', 8j+ ,'fÃ+—,3—1 g
fh~Ã3j=v'f 3PPf~j+
&&=&f&' *a (&+&)—rj=o
~++&+=~—6-=0
~+&—fr++i~+ Gj+4f-*(~+&)~K~~ =o

2~+G+—+f e++,'Jrt'+, Gg-g+fiPc3f~+tv'j+ ,'cv++3I2=-0
-2~ G +f3. +-,'kf, Cr' g+r'tfX, M M'g+ ,'3f ~'-=0

SOIQC SCCOQdQ, ~ CqQat1OQS

if', Xj=X, fB,Ej=o
~++'=~++6&+l(&+&)j=f&—l(&+&)j~+g =0

r'fE;Eg =E(8+1)+,', ftrJ„~,3E—

completely and the solutions are related to in'.nite-

componcnt wRvc equations. HRvlng cstRbllshcd the con-

nection between the solution to the angular condition

and the in6nitc-component wave equation, we then
tuln thHlgs Rround RDd coDstruct, some vcly general
solutions from the coupled wave equations. The fact
that these coupled equations represent the most general
sQIUtlon to thc prlIIlltlvc cqURtloDS„Rnd that they RI'c

only mildly p-dependent, suggests that they may
alreM1y I'cpl cscDt thc xnost gcncx'Rl solution to thc
equations of Table I.

Under very mild technical conditions, -the equations
of Table I can be shown directly to either be physically
trivial or admit spacelike as well as timelike solutions.

Thc cxlstcncc of thc spRccllkc solutions obvloUsly

I'cpx'cscDts R scrlous (Mlculty foI' thc program of
sRtUlRtlDg with tU11cllke ODc-pRrtlclc sta, tcs. However)

there still remains the question of coupling. It would be

possible to saturate cuxrent algebra consistently with

timclike solutions alone if the current did not couple

them to the spacelike solutions. As mentioned earlier,

this happens for the free-quark solution. However, it
does nOt for the two previously known nontrivial solu-

tions, a result which suggests that it happens only in

thc tI'lvlRl cRsc.

II. ISOTOPIC-SPIN--' MODEL

Vfe no%' introduce thC lsotOplc-spin-~ mOdel. - First»

for simplicity, we scale SU(3) down to SU(2) by letting

the index a {orb, c) in the algebra of form factors

Lp~(k'), Pt {k)j=if.&.p~{k'+k),

t P (k'), F '(k) g= if.v.p5'(k'+k), (2.1)

I Fg {k'),F5'(k)(=if.p,p'(k'+k)

run from I to 3 instead of 1 to 8. %C then make the

cluclRl RssuHlption, %'hlch 18 that Qll Ihd $I0$8$ s8c8$Mt'p

to saturate (Z.l) have ~sospre —,'. This is a strong assump-

F(k) =e'" *
F5(k) =Ze'~ x,

(2.4)

where X= (Xr,X2) is any pair of eommutilg self-adjoint
operators RDd z 18 R self-Rd]oint opcI"RtQI' which com-
mutes with X and satisfies the relation Z'= 1. (X trans-
forms as a two-vector and Z a scalar under $3.)

Equation (2.4) is not, of course, the full solution of
the saturation problem, since not every set of operators
(X,Z) is allowed by Lorentz invariance. Only those
solutions for which Z is a pseudoscalar and F{'k) satis6es
the angular condition are allowed. The problem, there-

fore, ls to 6nd those Solutions.

tion, but as pointed out in the Introduction, it may be
directly relevant to physics, Rnd in any case should yieM
an algebra which is nontrivial but at the same time
suKcicntly simple tQ bc SQIvcd Rnd hcncc to yield Some
insights into the general case.

For pRrtlclcs Qf lsospln g~ we hRvc from thc %lgner-
Eckart theorem

pr~h~, a~~ p.{ ) [~h,~)= 2rr„...yah't p(k) (rt),
where the r~i~~ (rr=1, 2) are Pauh matrices, and p(k)
Lk= (kr, k2)j is a reduced charge density. Assuming now
that all the states [Eh) have isospm 0, the oper«or»n
(2.1) can clearly be written

p.(k) =-,'r-p(k), (2.2)

in which case Eqs. (2.1) reduc«o

p(k')F (k) =F(k'+k),
p{ )p, (l)=p, (k'+k),

p, (k')F, {k)=F(k'+k) .
This is the full content of the saturated charge-density
algebra for the isosPin-er model. The algebra (2.3) is
easily solved and the general solution is
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(pi' —~i')e(pi po) =0,

(pP —i)io')y(pi, po) =0

(3.3)

for the two scalar quarks. Considering the two-quark
system as a composite particle, we can reexpress (3.1)
and (3.3) as

(3 5)(y(i) P—BR))p(P po)=0
with

(P'—2po P—s)ip(P, po) =0,
s= —(poo —bio) =mp —moo,

(3 6)

respectively. Equations (3.5) and (3.6) can be con-

sidered as infinite-component wave equations where po

plays the role of a spinor index. As wc shaB see, the
structure of Eqs. (3.5) and (3.6) is quite universal.

Let us now compute the mass operator of the free-
quark Inodel explicitly. %c choose a special reference
frame which is obtained from an infinite-momentum
frame with a standard deceleration. This special frame
is specified by

%C study some simple models which lead to various
solutions to the angular condition and the algebra of
the factored isocurrent. These models are either very

simple in structure or can be solved easily by making
usc of sonic RddltionRl assumptions.

(1) Two-free-quark modd. This simple model, in-

troduced by Gcll-MRQQ, ls of spcclRl interest SIQcc lt
gives us some insights into the structure of the general
solutions. In this model, both of the quarks are free
particles, but only the first onc carries the isospin.
Since the charged particle is a free particle, the current
algebra is satisfied automatically. The wave equations
obeyed by thc free-quark model are simply

(V(i) .pi —~i)|f (pi,po) =0, (3 1)

(r(,) po —m, )ip(pi, p, )=0 (3 2)

for the two Dirac quarks, and

(~.P—On)y=0 (3.9)

satisfies thc current RlgcbIR Rt lnflnltc momentUm
automatically. The only missing link here is the con-
nection between, on the one hand, the operators M',
X, and 2M/ appearing in the angular conditions and,
on the other hand, the generators of SL(2,C) appearing
in the wave equation. The connection between these
opelatols ls fRl from tI'1vlRl. Thc JQRIQ diTlculty ls that
the particles corresponding to diQ'ercnt solutions in
general have diferent masses, and consequently there
does Qot exist R common l,orentg transformation which
brings all these partides from their rest frames to the
frame with po -+oo. One of the purposes of this paper is
to supply this missing link.

(3) Dashen succeeded in constructing an important
class of solutions by RssumiIig that thc currents also
satisfy the usual charge-density-current-density corn
mutator relations. From the results of Sec. Ip of thc
preceding paper, we learn that these commutator rela-
tions plus current conservation lead to the following set
of relations:

Ii, (& (k)) =o(kXF~)„ (3.10)

RQd onc ncgRtlvc-fl cqucncy quark. . On .thc other hand,
the charge density operator, which in the limit p, = oo

becomes e'&'E(», where

E(o)
——(Ei+Lo,Eo—I.i) (,),

commutes with the denominator of (3.8). Thus it can
never couple a spacelike solution (3P(0) to a timelike
solution (M'&0).

These are all the nice featurcs of the free-quark model.
However, the free-quark model has its own pathologies.
The most serious pathology is that it has only a con-
tinuous spcctruIQ Rnd that this spectrum ls ln6Qltcly
degenerate. It is likely that these pathologics Rre closely
linked to the fact that in this model the timelike and
spacelike parts do not couple by the current.

(2) Gell-Mann, Horn, and Weyers' made an impor-
tant obscI'vRtlon that thc curicnt constI'Ucted from
any infinite-component wave equation of the Abers-
Grodsky-Norton (AGN) type'

Po+Po 1, P)=Po ——0—.—

haVC
I"=3P,

2po P= (po —po)(o)+(po+po)(2)iaaf',

and by the use of (3.6),

(3 &)

PP,P (k)j=g k;P;~(k),

P"(l '),F,&(k))= io...P,'(I '+k)
+k,'LP. (k'),P (k)j +S.T.

(3.11)

(po —po) (o)+~i' —i) .'
M'=

1—(po+ po) (o)

(3.8)

1t is easy to see that the nominator of (3.8) is positive
dchnite provided that nsj'&m2'. However, M' can be
both positive and negative, the negative sign corre-
sponding to R coHlblnatlon of onc posltlvc-frequency

(where S.T.= Schwinger terms). Making use of (3 11)

4 M. Gell-Mann, D. Horn, and J. meyers, in Pf weedjngs of Ihe
Heid'elbe' g IefernaAONal Conf' epIce 0N E/eweetary I'articles, edited
by H. Filtho. th (North-Holland Publishing Company, Amster-
dam, 1968).

& F. Abers, I. Grodsky, and R. Norton, Phys. Rev. j.59, I222
I'sw7).
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and the factored isocurrent

we have
Ps(k) =grsP(k),

F;(0)= i—fX;,3P7,

(3.13)

LXt, 2Mgt+-,'LAP, Xs7+712iys=0. (3.19)

Equations (3.17) and {3.19) are equivalent to the
original equations (3.9)—(3.11).Actually, they are also
the sufhcient conditions for the original angular condi-
tion (I2.13). As mentioned earlier, these sets of equa-
tions are in fact identical to one of our primitive set of
equations. The technicalities of solving these equations
are given in the Appendix B. Ke only summarize our
solutions here
The six generators X+, gs, Es, and P+ defmed by

&~=W2sM g~+X~3P, (3.20)

'&.~a,=-,Ã.,x,7 (3.21)

from an exact SL(2,C) algebra, and satisfy the pseudo-
Hermitian condition

and with the help of (3.12),

F' (k)=-'(6 )L "*LX'~'77' (3.14)

After substituting (3.14) back into (3.10) and (3.12),
we have

I (s' *)=-', Ls' *,Lk X —k X,3P77 (3.15)
and

L's"' *L&"' L»~77+7+
=2Ls't"'+&& x,Lx,m77„(3.16)

respectively. Note that Eq. (3.16) is equivalent to

LX' LXr LX» ~'777= o. (31&)

Next, we wish to expand (3.15) and reduce it to a set
of k-independent equations. For definiteness, we choose
k= (k,0). Hence

I (&"xr)=-'&Le"xr LX, ~s77

Multiplying (3.18) by e 'sx', and equating the coef-
Qcients of k, we have

and with gs and J)P given ln Eqs .(3.22)-(3.24)~ we
have a solution to the angular condition. Since the
representations to the SL(2,C) are well known, we
have all the solutions to this simple problem, in which
Eq. (3.12) is satisfied.

Next we wish to 6nd the connection between our
solutions and in6nite-component wave equations. In
order to write the wave equations, we use the analogy
between the mass operator given in {3.25) and the mass
operator (3.8) obtained in the two-free-quark model.
This parallelism suggests that we should introduce a
wave function p in the standard frame'

(p.+p)V=~, p~=p.~=0,
and express (3.25) as a wave equation

(p' 2g p—~)0=0 (3.26)

This is the required wave equation, and has exactly
the same form as that obtained in the two-scalar-
quark model.

I.et us give a 6nal remark at this point that a special
solution to the general charge-density algebra found by
I eutwyler~ is a special case of the above solutions. His
solution is represented in the basis where X is diagonal,
and corresponds to the case in which the X forms a
complete set. From the SL(2,C) point of view, this cor-
responds to a representation of the group in a unitary
E(2) basis, such that the representation of the total
SL(2,C) group is irreducible and pseudounitary. In
fact, the six generators in I.eutwyler's case are related
to the six corresponding generators of the Majorana
representation by the relation

IV. 4-INDEPENDENT ANGULAR CONMTIONS

In Sec. II, we saw that the condition imposed on the
vector current and the axial-vector current by the

6= (1—e) '"G(1—e)'»

In a unitary E(2) basis, s the six generators G are dif-
ferential operators of at most second order in X, and
it was in this differential form that I eutwyler's solu-
tion was &st found.

Ot= (1—e) 'O(1 —e), (3.22)

,=(x+1) &, &= —;LX-„PPrq7. (3.23)

p
s= go+gs (3.24)

transforms as the zeroth plus the third component of a
four-vector g„under this SL(2&C) algebra. The mass
operator is given by

3f'=(1- )-'(g -g.+ )= (~)t,
where s is a scalar. 3P and e are Hermitian. Conversely,
for a given pseudounitary representation of SL(2,C)

6 The standard frame is described by p0+p3=1, yq=0, and can
be obtained from the in6nite momentum frame yL

——0, p3 ——It —+ ~
by a standard deceleration e '"~&, A, =In(21t). Note that an arbi-
trary state pq/Q, p8=a ~ in the in6nite-momentum frame can
be brought into a state in the special frame p0+p3=1 (yq un-
changed) by the same deceleration and vice versa, As far as
practical calculations are concerned, the special frame po+p8=1
is easier to handle than the infinite-momentum frame pg=g ~~.
Since these two frames are simply related, we sometimes also refer
to the special frame po+p3=1 as the standard (decelerated)
infinite-momentum frame.

'H. I eutwy/er, Phys. Rev. Letters 20, 561 (1968}.
8 S. J. Chang, and L. O'Raifeartaigh, J. Math. Phys. IO, 21

it969). The six generators of an SL(2 C) in the Ei2) basis are
E=(E&+Ls, Es—Lr), Ls, E3, and '=(Er —Ls, Es+L,). ln
the spinor space, the generators E and E' are denoted by X and
I (or@, f).
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saturated isospin-2tcurrent algebra at pt ——oo was

F(k)=e+ x,

F,(k) =Ze'~ *,
(4.1)

(4.2)

where Z, X= (Xt,Xt) are a set of commuting Hermitian
operators. In this section, we wish to combine this condi-
tion with the conditions imposed by I.orentz invari-
ance, i.e,. the angular condition, to obtain the full set
of conditions which X must satisfy. The restrictions im-
posed on X and Z by the angular conditions are

I~(I~(I~(e'a x)))=I~(J'a(e'a'x)) (4.3)

Ia(Ia(Ig(Ze" )))=Ia(Ja(Ze' *)), (4.4)

where I and J are defined in the preceding paper
[Eqs. (2.11)-(2.12)]. This is the full restriction on X
and Z due to the angular condition.

We shall assume henceforth that, at least for re'~m,
the angular condition is analytic in k. This is physically
reasonable because F(k) is the electromagnetic form
factor and k the momentum transfer. With this
assumption we can expand the angular condition (4.3)
in powers of k and continue to complex values of k. In
the present section we shall make the expansion for
k= (k, +ik), in which case k'=0.' We shall show that
in this case the angular condition is equivalent to the
two k-independent equations

[M', ([M2,[Mt,X,a]]+'r(15g4)[M,[Mg„X,]]
—3[MA. [M8.».]])]=0, (4 9)

with

[Mg„x,"]= [Ma X "+']
2(I+1)

(4.11)

for the terms in k~ and k', respectively. We next note
that the two over-all commutations with M' in (4.8)
can be dropped, because when taken between states
with m'Wm, they yield only a nonzero over-all factor
(m"—m')', and for states with m'=m we have an
extra "threshold" co~dition. " Dropping the double
commutation with M' in (4.8) and rearranging the
terms, we obtain (4.6).

If we now substitute (4.6) into (4.9), we obtain

[M', [Mm, ([[[Ma,x,],x,],X,])]]=0, (4.10)

and dropping the double commutation with 3f2 for
the same reasons as before, this reduces to (4.5). Thus
(4.5) and (4.6) are necessary conditions for the angular
condition to be satisfied. It remains to show that they
are also sufhcient in the case II'=0.

To show this we note that from (4.5) and (4.6) we
have by induction

where r=& and

M„,=O,

[X„A,]=0,

(45)

(4.6)

Hence from (4.7) we have for k'=0

rink
I&(X,") I[M' X "]— [M',X,"+'].

e 1
(4.12)

M„,=[x„[x„[x„M]]],
Xp ——Xg+iX2,

Ag ——+2iMgg+-', [Mm, xg]+.
In (4.5) and (4.6) the r must have the same value in
each position. Thus M„, Wo if r=+, r'= —.The
summation convention is not used.

To establish (4.5) and (4.6) we first note that for
k'= 0, the operations with I and I simplify to

Ia(e)=[M2 [gae]]—2k[My e]
J,(e) = [M', [Mt,e]], (4.7)

where
Mg, =Mg~ =Mgt+iM pm.

The plus and minus signs in (4.7) depend on whether
k=(p, ~jk). Inserting this result into the angular
condition (4.3) and expanding in powers of k, we obtain
identities for the terms in 1 and k, and the equations

[Ma, [Ms, ([Ma,X,a]+4t'r[M g„X,])]]=0 (4.8)

9 In this section, we follow closely the argument of Leutwyler
(Ref. 7). Note that the derivation given by Leutwyler is simply
related to the derivation given by Dashen and Gell-Mann (Ref.
4) who consider, in each order k", only those equations which
change the hehcIty by a maximum amount [ah (

=w.

Inserting this result into the expansion of e'~'~, we
obtain at once '.

Ia(ed' x) —[Ma elk.x) (4.13)

In view of the expression (4.7) for J, this result shows
at once that the angular condition is satisfied.

'Ke conclude by obtaining conditions analogous to
(4.5) and (4.6) for the axial-vector current. Expanding
the angular condition (4.4), we obtain the infinite
sequence of equations

[2M&„[2M'„ZX,"-']]—2tr [2M '„[Ms,ZX,"-]]—[M2,[M' ZX "]]=0. (4.14)

M„[o:„z]=o, (4.15)

[~„[~„Z]]-2M,[0:„Z]+-;[Z,M„M ]=O (4.16)

Io The existence of the threshold condition is related to the
fact that, in deriving the angular condition (see Paper I), we
have multiplied the angular relation by a numerical factor

(m"—tn')'+2k'(m"+vs')+44. This extra factor, in &hc timid
of k'=0, gives us exactly the threshold condition,

Using (4.5) and (4.6), it is easy to see that these equa-
tions are satisfied if and only if the two equations
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are satisfied, where 7 =&,
S,=A,+-,'M„

M, =fX„M'],
M„=fX„fX„M']].

(4.17)

fThese equations are obtained from (4.14) by choosing
n =2 and 3.]Equations (4.15) and (4.16) are therefore
the necessary and sufhcient conditions for the axial-
vector current at k'=0.

the power at which it terminates in general as follows
From (4.5) it is clear that

where

Mg =8'(Xi)M' =0,

B(Xi)8=fXi,8].
Hence, choosing k=(k, o) for definiteness, we see that
the leading terms in the expansion of (5.1) are

k(5M4' and ki( +»fbi'(X, )23IIg,]8

V. GENERAL REDUCTION OF THE
ANGULAR CONDITION

where

M4 =84(Xi)M2.

In this section we reduce the angular condition (43)
into a set of k-independent equations for all values of k.
We shall consider only the vector current and shall rely
heavily on the conditions (4.5) and (4.6) already ob-
tained for k'=0.

For the vector current the angular condition (4.3)
may be written as

e ""I.(I (1~(e'" *)))=e '" "I 9 (e*")) (5 1)

The first question is whether the expansion of (5.1)
in powers of k stops at some finite power, that is to say,
whether the satisfaction of the conditions for a 6nite
number of powers of k is sufFicient to guarantee the
angular condition for all k. From the form of (5.1) one
sees that a sufFicient condition for the expansion to stop
is that the eth commutator of X with each of the six
basic variables M', g3, X and ~ vanishes for suKciently
large e. This is clearly true for (i3 and X, and from (4.5)
it is true for M'. Further, from (4.5) and (4.6), we have

fX+,fx+,fx+,M8+]]]=O. (5.2)

Hence, the question reduces to whether the n&h com-
mutator of X+ with M(i vanishes for suKciently
large e.

Henceforth we shall assume that the expansion in
powers of k does terminate. The assumption mill be
justiaed by the self-consistency of the equations thus
obtained, and by the fact that in the simpli6ed model in
which one saturates the charge-density)(current-
density algebra at p((= ~ the expansion can be shown
to terminate. Indeed, if one commutes the angular
condition for that case, namely, Eq. (3.15), three
times with X+, and uses (4.5) and (4.6), one obtains
at once the relation

e—i'xf fX~,fX+,fX+,Mg ]]],e'"'x]=0, (5.3)

from which one immediately obtains, for k=(k,ik),

fX+,fX+,fX+,fX+,M@ ])1]=0. (5.4)

Incidentally, in both this case and the general case,
once the expansion for the vector current terminates,
then so does the expansion for the axial-vector current.

Once we assume that the expansion of the angular
condition in powers of k terminates, we can determine

It follows that m&4.
Then, by expanding (5.1) and equating the coef-

6cients of k, we get the required set of k-independent
equations. Since the reduction is quite straightforward
(though, algebraically, it is very complicated), and
since it does not involve any new physical information,
we shall leave the reduction to Appendix A.

The main results of the reduction are the following:
If we reject the solutions for which a spacelike part
exists and is definitely coupled to the timelike part by
the current, then the equations obtained from the
expression (5.1) in k" for e&7 can be summarized as

fX;,fX,,fXi,M']]]=0,

fX,a]=o,
if%, X]=X,

where A+ are given in (4.6) and

i%a(y, —8) =-', fA+,X~].

(5.6)

(5 7)

(5.g)

(5.9)

These equations, combined with (4.6) and

fA+,h ]=4fM', 8]+—4fM+, M ], (5.10)

lead to a quasi-SJ (2,C) structure. Equation (5.10) and

fA.&M2]=kE3P,Mr]+ (5 11)

follow from the usual angular momentum commutator
relations

f2Mg+, 2M' ]=SAP'„
f2M8+&M'] =0.

fB,R]=0,
3E+,g'=0,

M„fJ3+.(~+1)]=fJ3-;(~+1)]M„=0, (5.»)

(5.12)

In nearly all the interesting cases, this quasi-SI(2, C)
structure can be made exact by a proper redefinition
of the generators. This Sl.(2,C) group structure plays
a central role in constructing the solutions to the
angular condition.

There are several important secondary relations
which can be obtained by commuting Eqs. (5.9)—(5.11)
with respect to X's, giving (Appendix A)
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I'ttE, R] R(R+1)+ «PM++, M ]+, (5.14)

R = —,'LX+,LX,M']]. (5.15)

After this digression we return to the reduction of the
Rllgulal' condition. Uslllg (5.6)-(5.14), wc 6nd that

e ~«x&P (I (eIPx,)) g (e'&xi)]

=4/(I'k)'Go+(ik)'(G +G )+(ik)'G], {5.16)

the k' term dominates for large k,

R—xi(M+++M ))0,
R+SI(M+.~+M )&0,

whence, in particular,

Now consider the functions

P(x) = (d, e'*x«e *''xd)

for d~X), —~ &x& , where

(6.3)

(6.4)

(6.5)

Gp = ipiTX, MP]+M«

G+ =—'pLR ~+]—'~+
G =8'—(R+1)',

and P~ is defined in (4.17). Note that Gp are not
Hermitian conjugates.

Substituting (5.16) into the angular condition (5.1),
we obtain the remaining equations for k", v&6:

«= R/{ R+1).
For R&O we have

(6.6)

0&y(x) &1. (6.7)

On the other hand, from (5.14) we have the relation

I',LX,«]=«+ ~(1—«) LM+~,M ]+(1—«) (6.8)

on S.Using this result in (6.5), we have

~'(x) =y(x)+ —;,((1—«)e-'*xd,LM„,M ],
X(1—«)e ' ~d) (69)

(5.18)

3f+G =M C =0,
(5.19)

L~„G]—M„G+4L~B——',(R+1)]G,=o; But since M++ and M are adjoint, PM~+,M ]+ is
positive. Hencek4

@'(x)&y(x) .

(5 20) From (6.7) and (6.10) we have, for y) I&x,

(6.1o)
4M++Gp —2MpG++ LF+,G+]—LX+,G~]M'=0,
«M Gp —2M G +fF,G ]—$X,G ]M'=0.

y(y) d(x) = —y'(N)dN

VI. EXISTENCE OF SPACEI.IKE 801.UTIONS

The equations for other orders of k are satis6ed auto-
matically. The equations obtained in this section
therefore represent the full set of k-independent equa-

vvhence
tions which are imposed by the angular condition for
the isospin--,' model. They are summarized in Table I.

In this section, we show that, subject to very mild
technical restrictions, the nontrivial solutions of Table I
have a spacelike (M'&0) part. A sufiicient technical
condition, whose plausibihty will be discussed later, is
that there exist for the operators of Table I a common
dense invariant domain S on which M' and e are
essentially self-adjoint, M++ and M are essentially
adjoint, and gp, X, and E generate a unitary group.

To show that this condition is su@.cient for the solu-
tions to have a spacelike part, let us assume the opposite,
that is to say, let us assume that

(6.1)

Then from the expansions

(d e-'"X~M'e"x~d) = (d M'd) Ik(d, r XI—,M']d)
+k'(d, R—$(M+++M )d),

(d, e 'ix'M'e'~x'd) = (d,M'd) ik(d, [XI,MS]d—)
+k'(d, R+)(M+++M )d), (6.2)

which follow directly from Table I, we see that since

e de& y —x x . 6ij.

Bllt tllis cquatloI1 18 1ncompatlblc wl'th (6.7) unless

(6.12)

In wlllch CRsc, fl'oIII (6.5) RIld (6.6),

(6.13)

Substituting this result into (6.3), we obtain finally

Bllt Ilow 'tllc k terms 111 tllc expansions {6.2) VR111811

identically and, unless they are identically zero, the k
terms dominate for large k. However, since the sign of
k is arbitrary, the k terms are not positive. Hence, if
3I is to be positive, the k terms must vanish, i.e.,

PM', X]=0

on S. In that case the current e'~'x commutes with the
mass-squared operator M'. There are then no electrp-
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VII. PMMITIVE SOLUTIONS

In Secs. IV and V, we have decomposed. the angular
condition into a set of k-independent algebraic equations.
The purpose of the next two sections is to construct
systematically all possible solutions to this set of equa-
tions. The way in which the new solutions were found,
and the Dashen solution recovered, from the equations
in Table I was by strengthening the condition

8fB2=4'(2+1)'j=0 {71)
to

B=0, B=-', (2+1), and B= —-', (8+1), (7.2)

respectively. The solutions obtained for these three
special cases will be called primitive solutions. In gen-
eral, of course, Eq. (7.1) does not imply that one of the
alternatives {7.2) holds for the whole Hilbert space IJ. It
implies only that B consists of three parts Bo and II~
which are such that BBO—0 and fB&—-,'(8+1)jr=0.
In the Ho, H~ basis, the operators in EI, 3f', for ex-
ample, can be written as 3&3 matrices. The primitive
solutions are those solutions given completely in those
subspaces. In this section we shall concentrate on these
primitive solutions only. They are classi6cd naturally
as

{i)Class B=0.The relations (5.13)and (5.9) reduce to

3f„=o, v =& (7.3)

i%+ps =4fA~,X~j. (7.4)

Equations (4.6) and (7.4) are, in fact, identical to
Eq. (3.19) in the Dashen modeL Therefore, the Dashen
solution is recovered as one of our primitive solutions.
The explicit structure of this solution and its relation
to the in6nite-component wave equations have already
been given in Sec. III. Here, we wish to verify that this
solution satis6es all the angular conditions given in
Table I. Since Eqs. (5.6)-(5.11) and (4.6) have been
used to construct the solution, they are no doubt
satis6ed by the solution. The only remaining equations
to be veri&ed are Eqs. (5.18)—(5.20). With the help of

G,=--."f~,+-;;~, 0,j—;~,=--;f~„~j,
fPg,Rj=cVp(8+1),

fF„fF„Zjj=2M, '(2+1),
fX„G,)=0,

it is straightforward to see that Eqs. (5.18)—(5.20) are
ind. eed satis6ed.

As we have shown in Sec. III, this class of solutions
may be derived. from an in6nite-component wave
equation

(p' —2g p —s)&=0. {7.5)

In the following, we shaB attempt to understand this
equation more thoroughly and, in particular, to see
from the wave equation itself why this class of solutions
satis6es the current algebra.

'IX. L Grodsky and R. Streater, Phys. Rev. I,etters 20, 695
(~ms).

magnetic transitions between states of diBerent mass,
and the solution is trivial.

Although we have thus demonstrated the existence
of a spacelike part for nontrivial solutions of Table I,
it is still possible that the spacelike and timelike parts
are not connected by the current, for what we have
demonstrated is that the operator e' ~ connects the
spacelike and timehke parts, and this does not neces-
sarily imply that e'~'x connects them, and, in fact, in
the free-quark model it does not.

If we have the situation in which the current. e'~ x

does not connect the spacelike and timelike parts, then
the saturation proposal couM be saved, because, since
only a*~ x enters in the charge-density algebra (2.1),
the saturation of the algebra with the timelike solutions
alone 'would be consistent.

In point of fact, however, it appears that, in general,
the current e'"" does connect the spacelike and time-
like parts. In orther words, the situation in the free-
quark model ls thc cxccption lather than thc ruIc. This
point wiB be discussed at length in Sec. IX.

It remains to discuss the technical assumptions lead-
ing to the existence of spacclike solutions. The only as-
sumption that is questionable is that concerning E, be-
cause this operator is a bilinear in the basic variables M,
g, and X and hence might possibly be pathological.
However, there is no reason to assume that it is patho-
logical, and good reason to believe otherwise, because
in Secs. VII and VIII when we express solutions of
Table I as wave equations, E emerges as the generator
of accelerations along the s axis in spinor space. In-
cidentally, it should be noted that the technical condi-
tion stated is not the weakest possible. One could, for
example, use one dense domain for the expansion (6.2)
and a diGerent dense domain to de6ne the functions
p(g). However, such reinements would appear to be
unnecessary.

%'e conclud. e by discussing the connection between
the results of this section and a no-go theorem proved
recently by Grodsky and Streater. " The two results
are similar, but they are by no means completely
equivalent. In our case, we assume current algebra and
isospin factorization, but make no a priori assumptions
concerning the representations of 5'1-(2,C) to which the
particles belong or concerning the p independence of the
current. (In fact, for the Dashen solution and for the
general solutions the current turns out to be linear in p.)
Grodsky and Streater, on the other hand, do not assume
current algebra, but assume that the current is p-inde-

pendent, and restrict the representations of Sl.(2,C) by
demanding a polynomial bound on positive-frequency
projection operator. Finally, our result shows that the
spacelike part does not completely decouple at p, -+~.
It is coupled by the operator e' ~, if not by the current.
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As a 6rst step, we 6nd that it is very important to
clarify the idea of the spinor space on which the group
SL(2,C) operates F.rom the matrix element at infinite-
momentum limit, we have"

lim (N'h', y, ', p, ~ g, (0)
~
Nh, y, , p~)

Next we wish to understand directly from the wave
equation why this class of solutions satisfies the current
algebra at p, = ~. Since the spinor SL(2,C) algebra is
generated by pseduo-Hermitian operators, we know
that it is

=,qv h, y, =0
I (g,+ g,) (0)~'»IEh, y =0),

=yt(W, h')e~ xy(X h)

where j Sh, y~
——0) is a standard state with po+p~ =1,

p&=0. In this expression, we represent a state in the
spinor space by p(S,h) in order to distinguish it from
the physical state (S,h, y). The distinction between the
generator E of the full Lorentz group and the cor-
responding operator X in the spinor space should be
emphasized. The operator E is an operator in the
physical Hilbert space. It has nonvanishing matrix
elements between, not only states with di8erent spinor
constant (E,h), but also states with different momen-
tum. The operator X, on the other hand, is an operator
in the spinor space alone.

One of the most frequently introduced base vectors
of the spinor space is the set of spinors in all the physical
states at rest. It is easy to see that these spinors form a
complete set of base vectors in the spinor space, and
that the helicity angular momentum operators

g~ are represented simply on these base vectors. On the
other hand, the set of base vectors P(X,h) that we in-

troduced may be considered as the set of spinors in all
the physical states with po+p3=1, y, =0.These spinors

$(X,h) also form a complete set of base vectors in the
spinor space. These two sets of base vectors are related
by a mass-dependent similarity transformation e"" ~'.
For the present problem of saturating the current
algebra at infinite momentum, we 6nd that our base
vectors p(X,h) are much more natural and more useful.
In the following analysis, we shall use this inPnite
momerstum basis Q(iV, h)

Now, we can associate with each momentum

p =I (pm)(po+p =» y =0)

a spinor f(Xh,p) =L(p,m)p(W, h), where l„„(p,m) is the
(m-dependent) Lorentz transformation which brings
the standard momentum vector (po+p~=1, ye=0) to

p„, and L(p,m) the corresponding transformation matrix
in the spinor space. One has to be careful not to mix up
the spinor $(p) with the physical state of momentum

p. The spinors p(p) with different p are, in general, not
orthogonal (as can easily be understood for a Dirac
spinor), while the physical states with different mo-
mentum are always orthogonal. We wish to emphasize
that it is on these spinors, rather than the physical
states, that the in6nite-component wave equation

(p' —2g p —s)y=o
is de6ned.

"This is Eq. (3.3) of Paper I.Note that E= (ICi+I.g, ICg —L&).

PEg,Py7 = ib;;(Pp+P—a) = —ilg,

PE,P;7 = ib;;(P p P—g) = i 8—gm'—,

(7.7)

(7.g)

where P„ is the momentum four-vector and p„ its cor-
responding eigenvalue. Hence,

LE, —E;m2, P;7=o. (7.9)

Making use of these relations, one 6nds that the
operators E~' —E~3E2, where M2 is the mass operator,
when acting on a state (po+p3=1, y, =o, m', h), will

lead to another state with the same momentum

po+ps=1, yi=o;

(Po+P&) (E~' —E~M')
~
po+p, =1, y, =0, m', h)

= (E~' EpM') ) Pp+Pg ——1, y,—=0, m', h),
P, (E~' EgM') ipo+pg ——1—, pg=0, nP, h) =0.

In other words, the operators E~' —E~M' will leave the
subspace po+p&=1, y, =o invariant, and hence they
must be operators in the helicity space alone. Since
these operators raise/lower the helicity of the state by 1,
they must be of the form

E~' —E~' =const&( g~.

rather than @~&, which transforms as a scalar. This
relation, together with the structure of (7.5), implies
that the current should be

4(p')(P g)A(—p), P=4(p'+ p).

Hence, at E3—&~, the time component of the current
reduces to

g(.V', h') exp(iy~' X)(1—e) exp( —iy, X)g(N h)

=pt(X', h') exp(i& X)$(X,h) (7.6)

as required. Note that the pseudo-unitary metric
(1—e) ' is crucial in compensating the extra factor
1—e in the current at the limit E3=~.

Finally, we would like to examine the relation be-
tween the six spinor generators of the SL(2,C) derived
from the angular relations and the helicity operators

g~, gg. That g~ are not identical to the corresponding
operators in the spinor SL(2,C) generators can be
checked easily from the explicit expression we have ob-
tained in Sec. III. However, there is a simple way, to
relate them. Let E, Je, E3, and E' be the generators' of
the full Lorentz group in the physical Hilbert space; i.e.,
these operators change not only the spinor components
of the states, but also the momentum associated with
states. In particular, on the physical states ( po+ pq=1,
y~=0; m2, h), wehave
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lhese constants can be determined either by going to
the rest frame, or from the commutator relations

Then, we are able to show from (7.18) that

LX,L F,F ]]=0,
(I.'+' E'+M—' E ' EM—']=8M'g3.

They both lead to
and consequently

iLE3,F]= —F. (7.19)
Eg' EgM——'&2iM ~. 7.10

Commuting (7.17) with respect to iEs and making use

These rels, tions, when restricted to the spinor space, of (719), we obtain

lead to B(itEs,M']+M'+ ,'M~-+) =0.
Fp =Xg3P&2iMgg

as expected. As we shall see in Sec. UIII, this kind of
relation is very useful in constructing the general solu-
tion to the angular condition.

(ii) Class B=s,(E+f). For this class of solutions, we
have

M„=/X„A,]=0,

t X~,A ]=4($3—B)—4iE=4gg —4iE3 —y'E,

(7.11)

(7.12)

PX,A ]=—4(g —B)—4iE
4$, 4iE—,+ ', E—. (7.13-)

It is easy to see that X, pa= g3 —~, and E3——E form the
generators of an E(2)QxD algebra. ' The problem now is
to identify the remaining generators F~ of the SL(2,C).
Since we can bring the extra terms, —,'E, to the left-
hand sides of Eqs. (7.12) and (7.13) and absorb them
into the A. 's, this leads to the following tentative
identification:

F =A+ ,'M =F. —
(7.14)

In terms of these F~, we have

LX+ F+]=t:X-F-]=0
PX+,F ]=4js 4iEs, —

LX,F+]= 4g, 4iE, . — —

(7 13)

(7.16)

The remaining commutator relation to be verified is

PF+,F ]=0.These relations, together with the F(2)QxD
subalgebra

LX~,X ]=[$3,E3]=0,
Lga, Xg]=&Xg, ipEg, Xg]=Xg,

are precisely the SL(2,C) commutator relations we

wish to establish.
The evaluation of the PF+,F ] commutator is

algebraically quite involved. Ke only describe here

some crucial steps in the derivation. By the use of a
slightly different form of Eq. (5.10),

$5'p, F ]=8BM'=4(R+1)M', (7.17)
we have

CF+,F-]=L~+™+~-]
=8BM'+LX+, I ~-,M']]-LLX+,~-],M']

=4(i[E3,M2]+M2+~M M+) . (7.18)

Since B = 2 (R+1) is in general not zero, we have

zf„E3,M']+M'+~~M M+ =0, (7.20)

and consequently PF+,F ]=0.
Since all six generators X, gq, Ea, and F are

Hermitian, they generate a unitary representation of
an SL(2,C). By a rather straightforward calculation
similar to that in the primitive case 8=0, we are able
to show that e transforms as the zeroth plus the third
component of a Hermitian vector g„, and that

M+= —2i(1 —e) 'g+,

M = —2ig (1—e) '.

These equations, after commuting once again with
F's, lead to

(7.21)M'=go —ga+g-(1 —~) 'g+

which gives a simple structure for the mass operator.
One can also verify that all the additional angular condi-
tions are satisfied. To see this we simply note that

3II++=M =0,
G+ = ,'i [E3,M+] ,'M—+= ','BM+-, ———
G =G=o.

The verification is then very elementary.
In analogy with the primitive case 8=0, it is also

true tha, t for any given unitary representation of an
SL(2,C) and a Hermitian vector operator g„, we can
construct through these relations a solution to the
original angular condition, and vice versa. The analogy
between the primitive solutions does not end here. It is
interesting to see that this class of solutions can also
be derived from an infinite-component wave equation

(& P vg)0=0, — (7.22)

(7.23)

where the spinor f transforms as a DiracQxunitary
representation of the Lorentz group. As one would ex-
pect, the spinor space spanned by the unitary part of
the spinor f is the representation space of our unitary
SL(2,C) generators. To see how everything works out,
we 6rst go to the standard frame

(Po+P~)0=0, pA =o,
(Po—P3)4 =MV,
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and then decompose the Dirac part of the spinor ex-

plicitly. Due to the additional restriction &5/=/, the
original four-component Dirac spinor degenerates into
a two-component spinor

type solution is
0(p')vA (p) .

Then at pa~~, the time component of the current
reduces to

where fi and P2 are vectors (spinors) in the unitary
representation of the SL(2,C) and are chosen to be the
eigenstates of nz=+1, —1. Then the wave equation

where k=(p' —p)„p(X,h) is a spinor at po+p~=1,
p, =o, X are the unitary Z(2) generators, and

X (2 (001+F81)i g (002+P32))

reduces to
( p — a)p=o, are the Dirac E(2) generators. Using the fact that

-2i(1+na)e'~'*=2(1+nz), we finally reduce the current
operator to

Pt(1V', h')-', (1+na) e'~ 'Q(N, h) .

This solution can be recovered from the infinite-
component wave equation

(v p vg)4=0, —
(7.2'7)

Next, we can show quite easily from the wave
equation that these solutions indeed satisfy the current
algebra at pa

——~. Note that the wave equations (7.22)
and (7.27) are both special cases of a general type of
wave equation

(y p —5K)&=0

due to Abers, Grodsky, and Norton, ' where f trans-
forms as a DiracQxunitary representation of an SL(2,C),
and OR is a p-independent scalar. It was first suggested
by Gell-Mann, Horn, and Weyers4 that the solutions
to this type of equation may be used to saturate the
isospin-factored current algebra at p8 = ~ . In the
following, we shall apply the AGN equation to current
algebra.

Since ~ is a scalar, and since the AGN equation is
linear in p, the obvious choice of current in the AGN-

Since fi is the large component at p~ ——~, it suggests
that we should eliminate $2 completely through

A= —(1 &) '1+4'i
and obtain

L~' —(go
—g3) —g-(1 —~) 'g+]A =o (7»)

This completes the verification that our mass operator
can be derived from an infinite-component wave equa-
tion at pg= ~.

The other class of primitive solution 8= ——,'(R+1)
is very similar to the class 8=-', (R+1).We can readily
see that the six generators X~, gq = $3+—,', Xz ——X, and
F+=A~~2iV~ generate a unitary representation of
an SL(2,C), and that the mass operator is

(7.26)
with

Since —,(1+n~) is a projection operator, this current
indeed satisfies the factored current algebra.

Finally, we conclude this section by the following
remark. As it is well known that a current is determined

by the kinematical terms (p-dependent terms) alone

(at least in a Lagrange foundation), we, therefore, expect
that the general solution to the isospin-factored current
algebra can be obtained from a coupled equation among
these three primitive classes of solutions. In terms of
Hilbert space language, the primitive classes of solu-
tions are confined to the respective Hilbert spaces Hp,

H~ defined by the condition 8=0, 8=&2~(R+1).The
general solution should then be a solution which couples
all three Hilbert spaces Hp, H~ together into H=Hp
+H++H and 8t 8'—~i(R+1)')H=o. In the next
section, we will demonstrate how the general solution
is constructed from this consideration.

VIII. GENERAL SOLUTIOHS

We first construct the nonprimitive solutions which

couple the Hilbert space B+ and H . These solutions
are very useful in the sense that they share all the
properties of the general solution, but at the same time
are much simpler algebraically. From the result of the
primitive solutions, we learn that this kind of solution
can be derived from a general AGN equation

(~ p —m)y=o

The fact that the term yPR in general does not com-
mute with ys implies that states with opposite y5 are
coupled together or, equivalently, II=H++H . The-
central problem of this section is to construct the mass
operator and the generators of the spinor SL(2,C) group.
We have learned from the primitive solutions that
(1) the SL(2,C) we wish to construct is associated with
the unitary part of the wave function; (2) all the genera-
tors as well as the mass operator are introduced in the
subspace of the "large component" of f (corresponding
to ag ——1); and (3) the generators F's are related to the
helicity operators Mg~ in a simple way. Keeping all

this information in mind, we can proceed to construct
the solutions.
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We first multiply Eq. (8.1) by vo'

( P—&,OR)P=O, (8.2)

and decompose yoOR and iP into block form according
to the eigenvalues of ats.

where mii and i/i are the corresponding components in
the subspace o.3=1, etc. The self-adjointness of gpss
implies that mjg, m22 are self-adjoint and that mjg,
m2l are adjoint of each other. In the standard frame

(po+p)P=y, p.=o, (p, P,)P=—MQ,

Therefore, we have the operator relation

F~=&y+$M'y —2og(1 —m»)-'rrs2z, (8.9)

LL„„OR)= —j'(a„„,OR), (8 10)

where 1.» and ~0-~, are the unitary and Dirac generators,
respectively. The last equation can be translated easily
into thc transformation laws on m's:

which, together with El =ski(LX+,F )+LX,F+)), com-
pletes the identification of all the generators.

One remaining problem is to work out the transforma-
tion properties for these m; s. This information can be
obtained from the fact that 5K is a Lorentz scalar under
the combined SL(2,C) group. Consequently, OR com-
mutes with g„„=L„.+iso„„, giving

the wave equation can be written as

M —m» tw» —(fi

SSQQ j. 5$QQ 2

which implies

(8.11)
LX+prSii) 2(0+frrsi riiii0+) r fX+prr$22) —0 ~

(8.4) LXk ir$12) =20yst22'LXy rsii) =—2rN220'y

L$E3&rwii) = —twii L$Eg rw») =ftEg 5$2i) =0
piEI, mg2) =rw22, (8.12)

fg=(1—mng) 'msntri

L~ —m» —rw»(1 —~»)-'m»+, =o.

(8.5)

(8.6)

where o = (~&,o2) are Pauli matrices. The fact that x has
no entry in the upper half indicates that X is already the
correct unitary Z(2) generators. It is also easy to see
that the rotation along the s axis is $3=$3—203, which
agrees with those in the primitive solutions. The con-
struction of the generators I" is a little tricky. %e first
make use of Eq. (7.10)

E~' =E~M'W2r3Ey~, (7.10)

and then reduce it to the direct-product spinor space

6
(F~+fg) =P(X~+xp)3P&2i3IIJ~) '. (8.8)

$2

Next, we project it out on the subspace of fi, giving

F~P, =(+2icV/~+X~')fi —2(rpgg
=jhp+s3E~ —2~g(1 —rN22) 'rrr„)|t, .

In the space of fi, the mass operator is found to be

M —Sl»+m»(1 rN2r) r121 ~ (8.7)

Note that this expression is not very useful until we
know what the SL(2,C) generators are and how M2

transforms under them.
To construct the unitary generators of the SL(2,C),

we should remind ourselves that we have to separate
out the Dirac part 20.„,from the total generators and
then project onto the subspace of i/ii. For simplicity, we
choose the following Dirac generators in the E(2) basis:

LFg,m, )—0, PFp, m )=2rrr ~0,

LF+pÃl2i) 20 +'rnid i ~

{813).
LF~,rN2s) =2(—0~re»+iN2io~) .

Incidentally, these relations lead to a more symmetric
form of Fg,

0+(1 rrr22) iN21 rriI2(1 rN22) 0+ r (8.14)

which makes I' manifestly Hermitian.
Let us summarize our results here. From every

AGN wave equation, we can construct a set of Her-
mitian SL(2,C) generators (in particular, the operatorsI and Q) in the spinor space and a mass operator
through Eq. (8.7) which obeys the transformation
laws Eqs. (8.11), (8.12), and (8.13). The operators, or
more precisely these Hermitian matrices in the spinor
space, lead to a solution to the current algebra of the
factored isospin at pq= ~. Since our solution is derived
from a covariant wave equation, and since the angular
conditions are nothing but restrictions on the Lorentz-
transformation properties of the current-density four-
vector, we should expect that the angular conditions will
bc satisfied identically. That this is indeed true can be
verified by explicit computation.

In the following, we would hke to analyze some of the
interesting points in this nonprimitivc solution. First,
we wish to emphasize the similarity between this solu-
tion and the pIimitivc solutions. The m@ transforms
under the group generators quite analogously to the
four-vector g„.Next, we shall use this nonprimitive solu-
tion to understand the mechanism of how various rela-
tions of the angulal condltlons are satlsficd. By com-
muting the mass operator with X twice, we have

3I+~= 80+(1 m22) —'&r+, 3—E = —80 (1—ns22)
—'o

2=0~(rli2/1 —rrrg2)0 +0 (m22/1 —rs22)rr+,
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while by commuting F with X, we have

8=-2,[o+(1—m22) 'o —. o (1—m22)-'o+].

It is now transparent why we can have relations like

&++/0 but JI++'=0—a fact which seems to be quite
strange at the beginning. Note that this can happen only
if there is a tensor term O„„Z&" in 5K. It also becomes
clear that

[X,[X,[X,Msj]j =0,
[8—-', (8+1)j3E++=31++[8+12(2+1)j=0,

and
82—1s (2+1)2 =0.

The Dirac matrices a~ play an important role in verify-

ing these relations.
There remains the important question of whether all

the solutions which couple the Hilbert spaces H+ and
H can be generated this way. At the present time we

do not have a proof of this, but we conjecture that it is
true. We are able to show that the mass operator can
indeed be put into the standard form (8.7) with m;t.

transforming correctly under the subgroup E(2). Using
the angular conditions, one should be able to verify
that m;; transforms correctly under the rest of the

Lorentz group. Ke have not yet veri6ed this, but have
good reason to believe it true and, hence, to make the
above conjecture.

It is now quite easy for us to figure out a general
solution which couples all three primitive solutions
together. The solution is simply the coupled wave
equation"

(v f ~)f=n4
(P' —2g P—2)4 =W, 8=(1—g.—gs)9'vo, (8.15)

where f transforms as a DiracQxunitary representation,

p transforms as a pseudounitary representation as in
the primitive case B=O, 5R and g„ transform as a
scalar and a four-vector in their corresponding repre-
sentations, and q transforms as a spinor which couples
these two representations. As mentioned earlier, all
these operators can be represented conveniently by
3X3 matrices (of course, with all their entries as
operators). The construction and verification of the
general solution to the angular condition are similar to
those for the AGN case; we shall not repeat these cal-
culations here. But for completeness, we write down the
mass operator and the SI.(2,C) generators X, gs, Xs,
and F of this solution:

(mll+m12(1 m22) m21

lttst+ttst(1 —mss) 'm21

lt) 1+mss (1—mso)

(1—go gs) (go go+2) —'gs (1—m22) 'gs~

lo oi' '

(12~(1—m22)
—'tl21+m12(i —m22) 'o~ a~(1—mss) 'tts)

l got(i —mss)-'op '(1—
go

—gs) 'g+&

Es=tsts([X+, F j+(X,Ii+)j,
where

(m11 mrs'l (vs)
7oPR=~ i, Yon=

lmsl m22~ l'92~

Of course, there still remains the question of whether

all the solutions to the angular conditions can be

generated this way. We have some good reasons to
believe that this is indeed so.

IX. DECOUPLING PROBLEM

In Sec. VI, we have shown that any nontrivial solu-

tion to the Dashen-Gell-Mann angular conditions

always possess a spacelike part. A more interesting

question is whether the spacelike part is coupled to the

timelike part by the current. If they are not coupled,

one can still saturate the current algebra of the factored

isocurrent by the timelike solution alone. "It is known
that in the free-quark model, the timelike and spacelike
solutions indeed do not couple. We shall examine in
detail how and why it happens in this particular model,
since this will sharpen our understanding of the general
problem. In the following, we first derive (in a mathe-
matically very nonrigorous manner) a necessary and
suKcient condition for the spacelike and timelike solu-
tions not to be coupled by the current.

Let A be the projection operator onto the timelike
states and A(0(o(1) be the projection operator onto
states with 0(e(1.A necessary and sufBcient condi-
tion for the spacelike and timelike solutions not to be

» More generally, the coupled equation can be expressed as

(7-p-~)a=~~,
(+P'—2g P—&)4 =vP.

See the Gnal remark given in Appendix B.
'4This possibility was first raised by Gell-Mann, Horn, and

Meyers. See Ref. 4.
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coupled by the current e'~'x is

A =A(0( p(1) . (9.1)

To see how the result just obtained works out in
practice, we consider the free-quark model in which
the mass operator can be written as

(glARAlg)&0,

(gl(1 —A)R(1 —A.) lg)&0, for all g.

We first choose

(9.3)

(9.4)

such that

Then we have

Ig)=l &o)

Rlr&o)=rlr&O), r&O (9 5)

Loosely speaking, this condition is that, the Hilbert
space de6ned by M') 0 coincides with that defined by0«(1.

Proof. Since, on a suitable domain, LX,R]=L'X,p]=0,
and if A. =A(0( p(1), then

LXA]=LXA(0( p(1)]=0.
This means that there is no transition by the current
between a timelike and a spacelike solution. Thus the
condition is sufhcient. To prove its necessity, we note
that if the timelike and spacelike solutions do not
couple through the current, then

L'e'"'KAf'e '"'K A] =0 for all lr.

Under suitable mathematical restrictions, this implies
that all three terms in the expansion

e" 3Pe ''*=M''+iktPXitM'] pktk;[—Xit[X;,M']]
commute with A, i.e.,

L~PtA] =LilI+tA] =LRtA] =0 (9 2)

On the other hand, since E now commutes with A, and
since e'~'x3f'e '~' is dominated at large k by the
leading term —-,'k~k;M;;, the condition of decoupling
also implies that

M'=(1 —p) '(pp —pp+s), p=pp+pp)0, s)0
where p„ is a timelike numerical four-vector and s a
numerical scalar. Since the nominator pp —pp+s is a
positive c number, it is easy to see that the condition
for M'&0 coincides with the condition 0(e(1. By
the above result, we conclude that the current cannot
couple the timelike and spacelike solutions. Indeed,
one can verify easily that Lwith lr = (k,o)]
eik&ltltI2e —ip&1 (1 p)

—
1Lpp pp+2kp~+k2(p +p )]

=M'X(a positive factor),

(9.1)A=A(0& p&1).

The condition of decoupling implies that A. must com-
mute with both X and 3E', and consequently with
their commutators M'+, R (or c). The fact that

which con6rms that M' will not change sign when
transformed by the current. The veri6cation for the
decoupling in the free-quark model depends critically
on the fact that p„and s are c-number operators and
that they satisfy some positiveness requirements. As
we shall see, these are the very properties which make
the free-quark model exceptional.

Next, we would like to prove that for all three primi-
tive classes of solutions, the only solution which has
the nice property of decoupling is the free-quark model.
We do not pretend to make our proof very rigorous
mathematically. However, one can still see from the
following intuitive arguments what is going on physi-
cally. For any of the primitive solutions —8=-', (R+1),
say—Iet A be the projection on the timelike states and
let the curaent commute with A. By our previous
theorem, we have

and

This implies

&glRAlg) = IIAlg)ll'&o

(glRAlg) =(glARAlg)&0.

Alr&O) =0
Equations (9.7) and (9.8) then imply

A=A(R&o) =A(o«. 1)
as required.

&g IR(1 A) l g) =—rll(1 A) I g)l—l'& o,
while by (9.3)

&g IR(1—A) Is) =&g l(1—A)R(1—A) lg)&o.

This is possible only if

Alr&O) = lr&O).

Similarly, if we choose
I g) =

I r& 0) with

Rlr&O) =.Ir&O), r&O
we have both

~'=go —gp+g-(1 —p) 'g+,

Mg= —2i(i —p) 'g+,

gp+g3 t

M = —2ig (1—p)
'

shows that, unless there are some hidden pathologies,
A. commutes with each component of g„, i,e.,

(9.6) Ls'A]=o. (99)

Let us assume this. Now from (9.1) and iLX,p]=p, A

projects on 0(p&1 and IC dilates p (&++=0 for
(9 7) primitive solutions). Hence

A(t) —eitKAe itK—
is a spectral family for e which projects on 0(e(e'.
But e"~ maps g into itself,

(9.8) e"K(gp+gp, gi, gp
—gtt)e "K=(e t(gp+gp), g&, e'(gp —gp)).

Hence

Lg„,A(t)] =0, for all t.
The fact that t can vary continuously from — to
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+~ implies that

Cg„,A(4, 4+de) j=0, for all 4)0 (9.10)

where A(4, 4+dc) is the projection operator onto
(4, 4+de). For simplicity, we now restrict ourselves to
a%0. One can check that there is no inconsistency and
practically no loss in generality in making this assump-
tion. Under this restriction, Eq. (9.10) states that g„
commutes with all the projection operators of e. How-
ever, if an operator commutes with the spectral family
of another operator, it commutes with the operator
itself. Consequently, we have

[gute] =cg~i g&+g3j=0

After a proper Lorentz transformation, we have

Cg„,g,/=0, for all p, v.

The last relation, together with the assumption that
go&0, is just the content of the free-quark model,
Q.E.D.

In the general, nonprimitive case, one has the some-
what looser argument: M', g+, g4 commute with A,
and E does not. Hence if X commutes with A., the six
basic variables of Table I commute with A, but K,
which is bilinear in these variables, does not. This
appears to be a rather exceptional situation and we
believe that it can occur only in the case of a con-
tinuous mass spectrum. Indeed, in the free-quark model,
one 6nds that both X and M' commute with A, while

[X,M'j+ does not, and that this peculiarity is due
precisely to the continuum nature of the mass spectrum.
The free-quark model is, of course, very pathological in
the sense that it has only continuous mass spectrum and
that its mass spectrum is infinitely degenerate.

If, in general, the spacelike solutions do indeed couple,
the program of saturating with states of a single isospin
fails—the restriction to the I=-,'states is apparently
too strong. Note that me have made no explicit use of
the discreteness of M', and hence can allow any
amount of continuum so long as it has I=—,'. Thus, a
partly continuous mass spectrum alone will not provide
a cure. A continuum with increasing isospin (which is
of course provided by the physical many-particle
states) seems to be necessary. Physically, this is easy
to understand. The inclusion of only isospin- —,

' reso-
~sances in the intermediate states might be reasonable
because all observed 5=1 mesons, for example, have
I=~. However, the inclusion of only I=~~ coltilulm
is definitely objectionable. Experimentally, there is no
such pure I=

~~continuum. Any physical process which
creates an I=@ continuum also leads, in general, to a
continuum with I& ~.

APPENDIX A: EXPLICIT REDUCTION OF THE
ANGULAR CONDITION

In this Appendix, we reduce the angular relation

e *~' I~(I~(I~ e'~'x)) =e *'"'xI~(J~(e~'*)) (A1)

into a set of k-independent equations. Ke assume that
the expansion of (A1) in powers of k terminates. Once
we know that the expansion terminates, we can deter-
mine the power at which it terminates in general. As
pointed out in the text, each of the operators M', DER
vanishes after 6ve commutators with respect to X.

For simplicity, we choose k=(k,0). Using the above
result together with (4.5) and (4.6), we can make the
explicit expansion

—',e—"x'I&(e*'») =-'k Cx& M'j+ (—ik)'g

(—ik)' ( ik)'—
+ 8(X4)A+ 5'(Xg)A

3f

(—ik)'
+ P(xg)A, (A2)

4l
where

8(xg)8=[x',81,
A =8+iC,

(A3)

(A4)

M4=84(xg)M'=x3[X4. ,[X+,CX,CX,3P)]]] {A9)

and

82(=~ 2) =~'{X~)8=~3.([{x+,cx+,cx+.,A-jjj—[X,[X,CX,A+)j]) . (A10)

In deriving (A10), we have used Eqs. (4.5) and (4.6).
From (A9) and (A10) it follows that

C~.,~.j=0, C~.,C~.,B.jj=48'
Using

I„([~4eiibxgj) —Pf 2 I (e4kxz)g

we also have

(A12)

[8&,M4] =0. (A13)

With the help of relations (A11) and (A13), Eq. (A8)
can be decomposed into the two separate equations

{6482'+3%4')82=0, (A14)

cV4(8,[g4,8sgy[g„B,'j) =0. (A15)

8= 4i4+ (1/2i) Cxg, 2N gg+-,' CcV',X,)+1, (A5)

c=,'cx„[x,prnjj. (A6)

Note that 8 and C are Hermitian. As we shall see later,
the operator 8 plays an important role in clarifying the
solutions to the angular condition. Substituting (A2)
into the angular condition (A1), we 6nd that the leading
term is of order k" and yields

6'(Xg)A =0. (A7)

Thus the last term in (A2) actually vanishes. The
leading term in the expansion of (A1) is then of order
k'~ and yields

6482'+882%4[ 414,82]
+&4[g4, 88''+%4[$4,82]j=82M4', (A8)
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From (A13) and (A14) and the Hermiticity of M4 and Indeed, this result follows immediately from the
82, it follows that expansion

and consequently

(A16) k2 ~k'
e '2x'M2s'2x'=M2 2kM—I—M2—M2 (A25)

2f

A2 ——82(XI)A =0.

LNote that, conversely, for B2=0, the k" equation
(A8), from which (A16) is derived, is automatically
satis6ed. ] Thus the second last term in (A2) also
vanIshes.

We now substitute (A2) into (A1) once more. The
k" terms vanish identically, but for k'0 we get

which shows that, unless %3=0, the expectation value
of M' on the states e'2x'f is negative for sufficiently
large k.

The highest remaining order in the expansion of the
angular condition is k'. If we use (A24), we see at once
that in this order we obtain simply

M4L$2, M2L$2, /XI, A]77+M2M4L$2, L$2,(XI,A]]]
+12M42$$2, L$2,A]]+6M4$$2, f XI,A]2]
+6LXI,A]M4$$2, /XI, A]]

=-2M42g+(M4M2+M2M4)(X„A], (A18)

But by commuting (A24) with $2 we obtain

/XI, C]=0.

Lx„a]=)X„B], (A27)

L82,()(-))=«(-) ~ (A19)

From (A4) we see that in this notation A and LXI,A]
have the decomposition

respectively. Clearly M2 =M2(I)+M2( I) .and M4
=M4(2). Substituting (A20) into (A19), we obtain for
the eigenvalue 2 of g2

3M42A (2)+ 24M4LX„A](I)2+12LX„a](,)M4t X„W](l)
+2M4M2(I)LXI, A](1)=0. (A21)

Commuting the equation twice with X, we obtain

Age=0,

whence, since M4 is Hermitian,

3f4=0.

(A22)

(A23)

The km-order equation (A18), from which (A23) is
derived, is then satis6ed identically.

Kqllatloll (A23) ls a crllclal equatloI1, fol' 1't sllows that
8"(XI)M2 vanishes for 22&4, and not 22) 5 as implied
by the 42=0 conditions (4.5). Further, if we agree to
reject as unphysical those solutions of the angular
condition for which there is a spacelike (M2&0) part
which is deinitely coupled to the timelike part by the
current e'~'*, then (A23) can be used to show that even

(A24)

M2 =32(XI)M2=$(M+P +M+ ),
M++ =s2(X+)3(X )M'.

We wish now to follow the procedure used for Eq. (A8)
and decompose Eq. (A18) according to eigenvalues of
$2. For this purpose we introduce the notation

and since 2C XI,B] is Hermitian, it then follows from
(A26) that

LX„A]=LXI,B]=0.
Thus Eq. (A2) finally reduces to

e '2x'I2(e'2x') =kLX2,M2]
+ik2(LXI, 2Mgl+M2X2']+24/2) . (A29)

Note that this equation has just one more term on the
right-hand side than the angular condition (3.18) which
is obtained for the simple model in which the charge-
density)&current-density algebra is saturated. Note
also that with (A29) the highest nontrivial power in
the expansion of the angular condition (Al) will be k'.

Before proceeding to obtain the equations for k",
m&6, it is convenient to introduce a new Hermitian
operator E by the relation

LX+,+]=+4(y2—.3)-44Z, (A30)

which is consistent with the de6nition of 8 given in
(AS), and resembles the commutation relations for the
gellel's, tol's (Kl+L2) (E2&LI) and X2 $2 of tile con-
ventional SL(2,C) group. One sees at once from (A30}
that

L 4i2,B]=0, t g2,E]=0. (A31)

Combining the first equation in (A31) with (A28), we
obtain

LX,B]=0, (A32)

and commuting Kqs. (A30) with X+ and X, respec-
tlvelyq we obtaj.n

2LE, X]=X. (A33)

This B is an E(2) scalar and X is the dilation operator
for E(2). It is also convenient to obtain some relations
from the identities

$31gp, M2] =0,
/2M+, 2M/ ]=8M2J2,
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which, in terms of A~, may be written as

and
[A+,Mm] =-,'[M', M+]+, M+ ——[X+,M'], (A34)

[A„A ]=4[M,B]+—', [M+-,M ].

m++2 ——m ~=0,

[B,M++]'=M~~+ ,'[R-,M+~]+,
i[K,M++]=M+++[R,M++]+,

(A36)

(A37)

Operating on (A34) with p(X+), P(X+)g(X ), and
&(X+)P(X ), we obtain

r, =A~+x2M, . (87)

to'gether with Eqs. (5.18)-(5.20), where the last three
equations are found to be satisied automatically in this
special case. The particular case 1+R=O will be dis-
cussed later. It can be shown easily from (82)—(34)
that X~, g~, and K form the generators of an E(2)QxD.
These four generators together with A.~ generate an
algebra which is very similar to an SL(2,C) group
structure. Nevertheless, the SL(2,C) structure cannot
be exact because of [A+,A ]00.The clue of resolving
this dif5culty is to introduce two new generators in

(85) as

[B,R]=0,
i[K,R]=R(R+ 1)+;,[M++—,M ]+,

(A38)

Then Eq. (35) simplifies to

[s+,~ ]=0. (38)

respective1y, where

M++ =[X+,[X+)M']],
R =—KX+ [X-M']]

Similarly, operating on (A35) with 8'(X+) and 8(X+)
)&b(X ), we obtain

(A39)

[M,B] =$[R,M ] (A40)

i[K,B]=x2[R,B]++(1/128)[M++,M ] (A4.1)

[B--',(R+1)]M++=0, M++[B+$(R+1)]=0. (A42)

Equations (A24) and (A30)-(A42) are the equations
which are needed in order to make the further reduction.
Since the remaining reduction has already been given
explicitly in the text, ;-'we shall not reproduce it here.

ln particular, by suitably combining these equations,
we obtain

Gt=(1—e) 'G(1 —e), (89)

where e=(R+1) 'R. In other words, our representa-
tion is not unitary, but it is pseudounitary. Since we
can always relate our representation to a unitary repre-
sentation by a similarity transformation

As we have already pointed out, these operators P~
come in naturally in the angular conditions. Once we
introduce 8+, it is very simple to verify that X~, ga,
Es =K ~~iR, and F+ generate an exact SL(2,C)
algebra.

Having constructed the SL(2,C) algebra, we only
have the problem partially solved. The remaining prob-
lems are (1) to find out the Hermiticity properties of
these generators and (2) to determine the transfor-
mation properties of the mass operator 3P under the
SL(2,C). As we shall see, not all six generators are Her-
mitian. They satisfy the following pseudo-Hermitian
condition:

APPENDIX 8: DETAILED CONSTRUCTION OF
THE PRIMITIVE SOLUTIONS

G=(1—e) "'G(1—e)'" (310)

In this Appendix, eve wish to construct the primitive
solutions explicitly. Since the procedure for construct-
ing all three classes of primitive solutions is very
similar, we only carry out the construction of solutions
for the class 8=0. Interested readers are invited to
reproduce the other two classes of solutions.

For the class of solution 8=0, and under the as-
sumption that 1+R has an inverse, the angular condi-
tions reduce to

Evidently,

R = ——,'[X+,[X-,M']].

[X,R]=[ys,R]=0.

(811)

(312)

and since all the unitary representations of an SL(2,C)
are we11 known, we can construct all the possible repre-
sentations to our SL(2,C) algebra.

To determine the transformation properties of M',
we start from the operator

3f++=35 =0,
[X+,A ]=[X,A ]=0,
[X+,h ]=-4iK—4/3,

[X,A+]= -4iK+4/1,

[A~,M'] =-,'[M', M~]+,

(31)

(32)

(33)

(34)

(35)

(36)

Furthermore, from (86) we have

[&g,M'] =M~',

and, after commuting with respect to X,

[P+,M+] M+', [F,M ]=M ',
[5'+,M ]—[F,M+,]=[M+,M ]. '

(813)

(314)
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i'~,PI~j =mf ~, (316)

Commuting (314) and (815) with respect to X and
forming proper combinations, we have

We now form a new operator

s =(1—o)M'+-,'-L5:+,Ps, ojj
=(1-o)~'-(go-go).

(823)

LP~,Rj =cV~(1+R),

i(E,,Rj =R(R+1) . (81g)
LX~,sj= (1 o)3E—~ ( 2—i)g—~=0,
t e~,sj= —

t S~,.ju'+(1 —.)LS,PPj=o,

(817) It is straightforward to verify that

Equations (814)—(818) imply that o=(R+1) 'R has
a much simpler transformation property, namely,

(819)

(820)

(821)

(322)

Equations (819)—(322) reveal that o transforms under
the SL(2,C) algebra defined earlier as the zeroth plus
the third component of a four-vector g„,

& =go+go ~

The other components of the vector g„can be obtained
from e by commuting it with respect to 5's, giving

gg giaig——o 2ii Pg——,o$—= ,''i(1 o)-3E~-,

g
—go= —'L~+,P-, jj.

Incidentally, knowing the transformation properties
of o under the SL(2,C) algebra and the fact that

Xt= X, g,t =y„E,t =E, iR,
F~t=F~ —M+,

and then by Jacobi identities

LAo, sj =CEo,sj=0,
i.e., s commutes with all six generators of the group,
and consequently it is a scalar operator. Operators s
and g„, by construction, are also pseudo-Hermitian.
By inverting (823), we finally have

M =(1—o) '(g —go+s) =(~')I' (824)

This is the most general form for M' in the case 8=0.
It has also been shown in the text that Eq. (324) can
be derived from the infinite-component wave equation

(p' —2g p —s)y=0. (325)

Ke shall conclude this Appendix by noting that the
special case 1+R=O corresponds to the limiting case

3E'= —o
—

'(go —g, js). (826)

This special solution can be recovered from the wave

equation
(2g p+~)4=o (327)

Equations (825) and (827) can be combined into a
single equation as

(~P' 2g p~)4=o, — .
one can verify easily that all six generators of the
SL(2,C) defined earlier are indeed pseudo-Hermitian. where u is an SL(2,C) scalar.


