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The sum rules of current algebra at in6nite momentum can be considered as a system of coupled matrix
equations, which we call the algebra of form factors. In addition to the equations following from sum rules,
the form factors must also satisfy a complicated kinematic relation known as the angular condition. Pre-
sumably, the set of all hadron states (including the continuum) provides the basis for a representation of the
algebra of form factors in which the angular condition is satis6ed. It was conjectured by Dashen and Gell-
Mann that a much smaller set of states containing only stable and resonant hadrons might also provide a
representation. H this is true, the algebra of form factors could be used to predict many properties of hadrons.
In the following paper, we attack the problem of 6nding a representation in which the angular condition is
satisfied and in which all states have the same isospin. We obtain a large class of solutions which we suspect,
but have not been able to prove, actually includes all solutions. None of our solutions has a physically
acceptable mass spectrum. One purpose of the present paper is to discuss, in the proper physical context,
the implications of the above-mentioned result. We discuss the algebra of form factors and the angular
condition in detail, stressing those features which are general and not restricted to particular solutions. It is
shown, for example, how one can incorporate additional equations following from the commutators of time
components of currents with space components. We then consider the special problem of 6nding represents;
tions where all states have the same isospin. The relevance of this problem in the program of Dashen and
Gell-Mann is discussed in detail.

I. INTRODUCTION

IREE years ago Dashen and Gell-Mann' sug-
gested a program of saturating the local current

algebra at infinite momentum with an infinite string of
single-particle and resonant states. Roughly speaking,
their idea went as follows. Assume that the Fubini-
Dashen-Gell-Mann sum rule' 2 obtained by sandwiching
the local commutator of two current densities between,
say, nucleons, is approximately satisfied when one keeps
only resonant intermediate states. Make the further
sharp-resonance approximation in which widths of the
unstable states are set equal to zero. The sum rule has,
of course, now become a discrete sum over a (presum-
ably) infinite set of single-particle intermediate states.
Continuing to treat the resonant states as stable, the
next step is to consider the sum rules obtained by
sandwiching the local commutators between resonance
and nucleon and between two resonances. In this way
one obtains an infinite set of equations which, in the
above approximation, must be satisfied by the form
factors for the transitions current+nucleon —+ nu-
cleon, current+resonance —+ nucleon, and current+res-
onance —+ resonance. The proposal of Dashen and Gell-
Mann was simply to use these equations to predict
certain features of the particle spectrum and the form
factors.

*Supported, in part by the National Science Foundation.
Address after 1 September 1969:Physics Department, University
of Illinois, Urbana, Ill. 61801.

t' Alfred P. Sloan Foundation Fellow. On leave of absence from
California Institute of Technology.

f Present address: Dublin Institute for Advanced Studies,
Dublin, Ireland.' R. F. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966); in Proceedings of the Third Coral Gables Conference on
Symmetry Principles at High Energy, edited by Kursunoglu, A.
Perlmutter, and I. Sakmar {W. H. Freeman and Co., San
Francisco, 1966).' S. Fubini and G. Furlan, Physics 1, 229 (1964).

182

At first sight, it may seem surprising that the program
outlined above is capable of producing any predictions.
That is, it might appear that the sum rules are so
unrestrictive that there would be an infinity of solutions
with no way to choose between them, except by com-
plete recourse to experiment. It is known now, however,
that this is not the case, at least if one restricts the
isospins of the assumed set of resonance. In fact, it now
appears that the sum rules are so restrictive that in the
restricted isospin case there are no physically interesting
single-particle solutions to the problem. This situation
will be discussed in more detail in the next paragraphs;
and some later paragraphs are devoted to analyzing its
physical significance.

In the following paper we consider the truncated
problem of finding a solution to the equations of Dashen
and Gell-Mann under the simplifying conditions that
(i) only the subalgebra generated by the isospin currents
is taken into account and (ii) all states are assumed to
have the same isospin, which, in order to match experi-
ment, we take to be —',. We make no a priori restrictions
on the mass spectrum; that is, the assumption of dis-
crete states is not fed in from the start. With a few
further technical assumptions, none of which seems to
be serious, it is found that there are no solutions to the
problem unless the mass spectrum has one or more of
the following pathologies: (i) All masses are the same
or, more precisely, the currents do not connect states of
different mass. (ii) The mass spectrum is continuous
and infinitely degenerate. (iii) The mass spectrum is not
positive, i.e., there are states with M &0, which cannot
be ignored. From this it would follow that it is not
possible to find a solution to the isospin- —,

' problem
which bears the slightest resemblance to the real world.
It should be realized, however, that we have not
absolutely proved (i)-(iii) and hence that there are no
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physically acceptable solutions. As mentioned above,
our conclusions are subject to a few technical assump-
tions. Since the nature of these assumptions is impos-
sible to state out of context, the reader who is interested
in the possibility that there may still be a physically
satisfactory solution to the truncated problem is re-
ferred to the next paper for a detailed account of the
mathematics.

Since in the real world we do have states with isospin
not equal to —,', the reader may wonder why he should,
after all, be interested in the above result. The answer
is simply this: Suppose we wish to find a solution based
on a set of mesons which look something like the experi-
mentally observed states. Now all known mesons seem
to fall into SU(3) singlets and octets. In fact, if we take
the quark model as a guide, we are led to the supposition
that every prominent meson will belong either to a
singlet or an octet. This means that all prominent
strange mesons should have isospin —,'. Therefore, if one
looks at the subproblem of satisfying, in the resonance
approximation, the sum rules for isospin current com-
mutators sandwiched between strange-meson states,
then the situation is probably just that described above,
i.e., all relevant states have I= ~. Similarly, there can
be no solution for baryons which contains only states
belong to 1, 8, and 10 under SU(3), since in this case
all doubly strange states have I=~~. What is really
shown, therefore, is that there is no' solution to the
equations of Dashen and Gell-Mann which are like the
quark model in that they contain only I's and 8's of
mesons and I's, 8's, and 10's of baryons. Since the
quark model agrees very well with experiment, this
strongly suggests that the observed states will not fit
into any simple, single-particle solution of current
algebra at P3= ~.

We should also mention the relation of our results to
previous work on the problem. A number of special
solutions, usually based on infinite-component wave
equations, have already appeared in the literature. ' '
All of these are included in our general catalog of solu-
tions given in the following paper and have one or more
of the pathologies listed above. Also, there is the no-go
theorem of Grodsky and Streater' which is obviously
related to our results. It is, however, not the same.
Grodsky and Streater choose a special way of satisfying
the current-algebra equations and actually required
that the resulting solution produce local currents at all
momenta, not just P'3= ~. Under these conditions,
plus a technical assumption about polynomial bounded-
ness of spin projection operators, Grodsky and Streater
arrived at essentially the same conclusions as we do.

3 H. Leutwyler, Phys. Rev. Letters 20, 561 (1968).
4 E. Abers, I. Y. Grodsky, and R. K. Norton, Phys. Rev. 159,

1222 (1967).' M. Gell-Mann, D. Horn, and J. Weyers, in Proceedings of the
Heidelberg International Conference on Elenzentary Particles,
edited by H. Filthuth (Wiley-Interscienee, Inc. , New York, 1968).'I. Y. Grodsky and R. Streater, Phys. Rev. Letters 20, 695
(1968).

Our results, in contrast, are based on a straightforward
algebraic reduction of Dashen and Gell-Mann's equa-
tions and do not depend on any extraneous assumptions
such as the hypothesis that the solution can be derived
from an infinite-component wave equation.

It seems then that the assumption that the Fubini-
Dashen —Gell-Mann solutions are saturated by reso-
nances cannot be maintained. That this is not too sur-

prising may be seen as follows. The sum rules have the
general form J'A(q', q", t,s)ds=F(t), where F(t) is a
form factor and A is the absorbtive part of an amplitude
for (current with "mass"

~
q~+hadrons) ~ (current

with "mass" ~q'~+hadrons) with a momentum transfer
t."Because of rapidly decreasing form factors, we expect
a given resonant contribution to the sum rule to vanish

rapidly as g or q' tends to infinity. On the other hand,
the right-hand side of the sum rule is independent of g'.
Presumably, the true continuum is needed to account
for this behavior. Recent experiments at SLAC ' have,
in fact, strongly suggested that this is the case. In our
truncated problem, we did not exclude a continuous
mass spectrum. However, the true continuum which
has all isospins was clearly not allowed in the truncated
problem. If, then, the assumption of saturation by
resonant states is not valid, is there any value remaining
in the program? This question will be discussed below.

Although, as mentioned above, we obtained our
catalog of solutions by starting with the Dashen —Gell-
Mann equations and not with infinite-component wave
equations, we can show that most, and we believe all,
our solutions could have been derived from infinite-
component wave equations which contain at most two
space-time derivatives. Now equations involving no
derivatives higher than the second are distinguished by
the fact that these are the only equations for which a
canonical Lagrangian-Hamiltonian formalism can be
developed in a straightforward way. This suggests an
interesting speculation, which we now proceed to out-
line. Any Lagrangian field theory with fields trans-
forming according to definite representations of
SU(3)QxSU(3) will, insofar as it exists, provide a solu-

tion to the current algebra at infinite momentum. One
can ask the converse question: Does every solution
come, at least formally, from a Lagrangian field theory?
It is clearly an enormous extrapolation to go from our
truncated problem to the general one, but we would
not be surprised to find out that the set of all solutions
to current algebra at P3= ~ (we mean now complete
solutions involving multiparticle intermediate states,
not solutions in the resonance approximation) is identi-
cal to or not much larger than the set of all formal
Lagrangian Geld theories built on SU(3)QxS U(3)
multiplets of fields. Now if one looks at Lagrangian

~ S. L. Adler and R. F. Dashen, Current A/gebras (W. A.
Benjamin, Inc. , New York, 1968).

8H. Kendall (private communication); in Proceedings of the
Fourteenth International Conference on High-Energy Physics,
Vienna 1968 (CERN, Geneva 1968).
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field theory in the abstract, it is not u theory but rather
a framework in which to build a theory. That is, if all
one knows is that the theory should be built on a
Lagrangian containing fields which transform according
to some representation of SU(3)OxSU(3), then the
theory is far from complete. However, there is not too
much freedom. For example, if one wants the theory to
be reasonably well behaved at high energies, then, at
least as far as one can believe perturbation theory, the
6elds must be restricted to spins 0, ~, and 1 and only a
few interactions with dimensionless coupling constants
can be employed. The point of all this is that current
algebra at infinite momentum may very well provide an
equally restrictive framework in which to build a theory
of hadrons. If this is true, the advantages would be
enormous. For one thing, the quantities entering into
the theory are form factors obtained by sandwiching
the currents between physical hadron scattering states,
and are therefore both 6nite and directly measurable.
Furthermore, the basic equations are simply the Fubini-
Dashen —Gell-Mann sum rules which, according to pres-
ent ideas about Regge poles and high-energy scattering,
should be perfectly Gnite and convergent. The only
other equations are kinematic constraints on form
factors. The problem is, of course, to 6nd a way to
introduce the additional input that could change the
equations of Dashen and Gell-Mann from a framework
into a theory. We do not have any real idea how this
should be done, except for a few small points which will
be mentioned below. Nevertheless, current algebra at
in6nite momentum might just possibly end up following
the example of dispersion relations which started as a
bare framework but have been developed to the point
where they could become a complete theory.

We would like to suggest, then, that the results of
the following paper are both negative and positive.
They' are negative because the possibility of using the
sum rules to create a simple model of the hadron spec-
trum appears to be ruled out. On the other hand, they
are positive because they at least hint at the possibility
that Dashen and Gell-Mann's equations might be a
rather restrictive framework in which one could imagine
building a complete theory.

The purpose of the present paper (Paper I) is twofold.
First we want to put the results of the following paper
(Paper II) into the proper physical context: hence the
long introduction. Secondly, we wish to make the com-
bination of the two papers fairly self-contained. For this
reason we rederive in the present paper most of the
basic equations, including the so-called angular condi-
tion due to Dashen and Gell-Mann. "In contrast to
most papers on the subject, our emphasis here is on the
general properties of the equations and not their restric-
tion to a particular model solution.

Some new' results are also given here. For example, we
show how one can enforce the additional constraint that
the I'3 —+ ~ sum rules following from the commutator

of the time component of a current with a space com-
ponent be satisfied. In the real world the latter sum
rules may or may not be satis6ed. The additional equa-
tions one obtains in this way do, however, indicate a
way in which one could put some additional input into
the general framework. It turns out that in the class of
model solutions given in following paper, the process of
forcing the time-component —space-component sum rules
to be satis6ed picks out a particularly simple subclass
of solutions.

One way of attacking the general problem of ending
relativistic representations of current algebra at infinite
momentum is to split the problem into two parts. First
one looks for a promising representation of the current
algebra alone, ignoring the conditions imposed by
relativity, i.e., the angular condition. Then one tries to
force the chosen representation to satisfy the angular
condition. With this sort of procedure in mind we have
given a catalog of representations of the algebra itself.
We do not claim to have rigorously obtained all repre-
sentations of the local current algebra, but we probably
list most representations which are of physical interest.

Paper I is organized as follows. In Sec. II, we list all
the basic equations and discuss their general content.
The derivations, being rather long, are relegated to Secs.
III and IV and may be omitted by readers who are
familiar with the subject. Finally, Sec. V contains our
catalog of representations of the algebra itself, before
imposing the angular condition.

In the following paper (II) we concentrate entirely
on the simplified problem of representing the isospin
current algebra on a set of states all with I= ~. With a
few not-too-serious technical assumptions we show there
how to construct the general solution to the problem.
The pathologies in the mass spectrum are discussed and
the connection with infinite-component wave equations
is established. All these speci6c results have been sum-
marized in a recent paper. '

II. BASIC EQUATIONS

We define a form factor" (X'h'~F'(kr) ~cVh) ac-
cording to

= lim (X'h', -'skr, Ps~ Pe (0) [Eh, —', kt, Ps), (2.1)
P'I~oo

where P,'(0) is a current density and ~Nh, sk&,Ps) is
a hadron state with third component of momentum
equal to I'3, perpendicular momentum equal to ~k&
=—', (h&,hs), helicity h, and internal qunatum numbers cV.
The meaning of E deserves further comment. For a

9 S. J. Chang, R. F. Dashen, and L. O'Raifeartaigh, Phys. Rev.
Letters 21, 1026 (1968).

'0 We use the following notations: A three-vector is denoted by
a boldface letter, such as k, while its transverse components
(h&hs, 0) are denoted by kr. The form factor (E'h' j t(kr)

~
Nh) is a

reduced matrix element and can be written as FN I;,~q(Q).



CHANG, DASH EN, AN D 0 'RA IF EARTAI GH

(c)

(e)

FIG. 1. Categories of intermediate states with different connected-
ness structure which contribute to the current commutator.

single-particle state, E includes the spin, mass, and
quantum numbers such as I3 and strangeness. For a
two-particle continuum state, g is understood to specify
the quantum numbers of the individual particles plus
the total mass, total angular momentum (in the c.m.
system), and total isospin of the combined state. For
three or more particles, the submasses of various pairs
are also included in E'. In general, E is understood to
stand for a Lorentz-invariant set of parameters which
completely specify a state, apart from its total four-
momentum and hellclty.

The Fubini —Dashen —Gell-Mann sum rules are equiva-
lent to the relations

=if.„(X'II'jF'(II+kI) ( Xh) . (22)

Ill otllel wordsq If we tlllnk of F (kI) as a IIlatl'Ix Ill Eh
space, then we have the commutation rules

QF'(k, ), F'(I,)7=if.g,F,(k,+1,), (2.3)

with similar relations for the matrices F~ (k,) of axial-
vector form factors obtained by replacing the vector
current in Eq. (2.3) by an axial-vector current, i.e.,

LF (k,), F,'(1,)7=if. ,IF's( k, +I,), 2.4
LF~~(kI), Fg'(1,)7=if. FI'( k+1,).

It is crucial to understand at this point that Eqs.
(2.3) and (2.4) are IIot operator equations of the same
kllld as

operators in Eq. (2.5) are the physical local currents.
These are de6ned on a much larger space which is
spanned by the vacuum state plus states labeled not
only by E and h but also by a four-momentum. %'e note
that there is no analog of the vacuum in Eh space; the
reason for this will become apparent later.

The interpretation of a matrix element (1Ph'
~
F,(k,) i

X I
Arh) is that of a form factor for cVh ~ iV'h'+current

where the mass squared associated with the current is
—k,'. It is perhaps best to think of Eqs. (2.3) and (2.4)
as defining an "algebra of form factors" as opposed to
the operator "algebra, of currents" of Eq. (2.5). We will

not, however, always keep this distinction in the re-
mainder of these papers.

In deriving Eqs. (2.3) and (2.4) one assumes not only
the local current algebra of Gell-Mann but also that a
I'3 —+ ~ limit can be taken inside a sum over states.
This is equivalent to assuming that certain dispersion
relations need no subtractions. The validity of this
interchange of sum and limit is discussed in Ref. 7;
there are several reasons to believe that the procedure
is correct and, at present, no reason to doubt the
validity of Eqs. (2.3) and (2.4). We will not discuss
these questions here, except to point out below some
special features of the I'3~ ~ limit which show why
there is no analog of the vacuum state in Eh space.

If we sandwich the operator equation (2.5) between
single-particle states with the same I'g and suitable
perpendicular momenta, then the diagrams contributing
to the commutator can be decomposed into sets having
the connectedness structure shown in Fig. 1, where the
break in the lines indicates the intermediate state and
the blobs are connected amplitudes. The vacuum
bubbles shown in Fig. 1(a) never contribute to the
commutator. However, the semidisconnected terms in
Figs. 1(b)—1(d) do contribute as long as P, is fInite. But
in the limit that I'3 becomes in6nite these semidis-
connected pieces no longer contribute, leaving only
terms with the connectedness structure shown in Fig.
1(c).Another way of saying this is that the connected-
ness structure of the F (k)'s is that shown by either half
of Fig. 1(e); i.e., the F(k)'s contain no part where the
current makes hadrons out of the vacuum in a dis-
connected way. To avoid a possible source of confusion,
we show in Fig. 2 the connectedness structure of

7,'(x,O) exp(ik, x)d'xS, I,'(y, O) exp(i1, y)d'y.
=if.I„G,O (x,O) expi (k +II)xId'x, (2.5)

which follow trivially from the local current algebra. "
The point is that the F(kI)'s in Eqs. (2.3) and (2.4) are
simply matrices defined on Ãh space, whereas the

"See Chap 6 of Ref 7

FIG. 2. Connectedness struc-
ture of the vertices whose initial
and Anal states have four and
two particles, respectively.
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FIG. 3. A vertex which does not contribute at the
infinite-momentum limit.

(N'k'~F(kh) ~Nh& for the case that N is a two-particle
state and N' is a four-particle state; again the blobs
represent connected amplitudes. All three of the dia-
grams in Figs. 2(a)—2(c) do contribute to F (kh) but the
diagram in Fig. 3 where the current makes hadrons out
of the vacuum does Not contribute. A detailed discussion
of why this latter type of diagram does not contribute
to the sum rules at I'3= ~ is given in Ref. 7; the
argument need not be repeated here. We pause only to
point out that the absence of diagrams like that in
Fig. 3 makes the "algebra of form factors" in Eqs. (2.3)
and (2.4) much simpler than the operator "algebra of
currents" in Eq. (2.5). Also, it is evident that the lack
of a "vacuum" state in the Eh space on which the
F(kh)'s are defined is a consequence of the absence of
diagrams where the currents make disconnected
hadrons out of the vacuum.

We are not interested in arbitrary solutions of the
"algebra of form factors. " The additional constraints
imposed by Lorentz invariance must also be satisfied.
It is easy to see that such constraints must exist. For
fixed 1V' and N the matrix elements (N'h'~F(kh) (Nh)
form an (2Sn +1)X (2Sn+1) matrix in helicity space,
where SN and S~ are the spins of S' and E.This gives
(2Shr +1)(2SN+1) form factors for the transition
N ~N'+current, which cannot all be independent
since there are far fewer form factors consistent with
Lorentz invariance. Thus we expect Lorentz invariance
to impose a number of constraints on (N'k'

~
F(ki)

~
Nk)

for each fixed E' and Ã. The solution to this problem
was given in Ref. i and will be written out below. First,
however, the following point should be understood.

There is no a priori way of defining a Lorentz or
Poincare group on Ãh space. The reason for this is that
by going from the "operator algebra of currents" to our
"algebra of form factors, " we have lost the four-
momentum labels which were associated with hadron
states. It should be clear, then, that the physical
Lorentz group does not act on Eh space. In the par-
ticular truncated problem solved in the following paper,
we do show how to construct an "internal" Lorentz
group acting on Sh space, but this is probably a very
special case. In any case, even if there is always some
kind of useful "internal" Lorentz group in Eh space,
there is no obvious way to construct it without first
solving the whole problem of the constraints on
(1Ph'i F(k) ( 1Vk&.

Since we have no a pri ori Lorentz group in Nh space,
we n1ust look for other operators which are defined
a priori and express the constraints of relativistic in-
variance in terms of them. The only operators available
are the F'(k) and the operators 3 and M defined by

»=mal»&, (2.6)

where mN is the mass of the state with internal quantum

numbers Ã and

1) 2) 3 )

g, (Nh)=kiNk),

a+I»&= (u ~'a.) I»&
= LShr(Sn+1) —k(k~1)]'t'~Nb&1&, (2.8)

(2.7)

where S~ is again the spin of the state with internal
quantum numbers N. By construction, the operators 3
and 3P satisfy

Lg;,g;]=i.;;,g„
LQ,M]=0,

aild
Q'iNh&=Sir(SN+1) iNk&.

(2 9)

(2.10)

8
pgh, F(k,)]=iehok, F(k,).

Bk,
(2.13b)

Except for some relatively trivial "threshold condi-
tions" which will be discussed in Sec. III, Eq. (2.13) is

a necessary and sufhcient condition that the form factors
constructed from (N'k'~F(kh) ~1Vk& have the correct
kinematic properties. More specifically, it is shown in
Sec. III that, subject to the threshold condhtions, Fq. (I3)
is a necessary and sufhcient condition that F(kh) canbe,
interpreted as the Fh +~ limit of m—atrix elements of a
hector oPerator P"(0) in the sense of Fq. (I). One cannot,
however, generally construct a complete current from
F(kh). The reason is that two currents 5'i' and F'4'

which diGer only by the gradient of a scalar operator p,
i.e., P'"= Pi'+Bi'y, yield the same F(k,). Thus, unless

additional information like current conservation is
available, the longitudinal part of the current is not
determined. This result is derived in Sec. III.

One can work out the restrictions placed on the
F(kh)'s by parity and time-reversal invariance. These
restrictions, which again have not been of great practical
importance, are given in Ref. 5. Finally, the F(kh)'s
satisfy the obvious Hermiticity relation

LF (k,)]t=F(—k,) . (2.14)

Equations (2.3), (2.4), (2.13), and (2.14), along with
the threshold conditions and restrictions due to parity

It turns out (see Sec. III) that the constraints on
(1Pk'

~
F(k,) ~

Nk) can be written as an operator equation
involving M' and 3 as follows. For any operator O~ in

Nk space, we define new operators'Ii, (O') and Jq(O)
according to

Ig(O) = LMh, (gh, O]7—2Lk, M34, 07
—khLg, O~] (2.11)

and

A(O') = PM', $Mh 0~77+2k'LM' 0~7 +k40~, (2.12)

where P, ]+denotes the anticommutator. The condition
of covariance is then the so-called angular conditions

Ig(Ig(Ig(F(k, ))))=J„(I„(F(k,))) (2.13a)
alld
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and time reversal, are the basic equations of current
algebra at inhnite momentum. The original suggestion
of Dashen and Gell-Mann can now be phrased as
follows. One should look for a model solution where the
labels Eh run, not over all hadron states including the
continuum, but over a discrete set of single-particle
states. Physically, this is the same as assuming that all
the Fubini —Dashen-Gell-Mann sum rules are saturated
by single-particle and resonant states. As pointed out
in the Introduction, however, we now believe that no
physically interesting solution of this type exists.

At this point it is perhaps worth indicating what we
do in Paper II. First we restrict ourselves to the isospin
currents so that we employ only Eq. (2.3) with a and b

running from 1 to 3. Then we look for a solution to
Eq. (2.3) and the angular condition LEq. (2.13)j in a
space where all states

~
1Vh) have isospin q. Apart from

this restriction on isospins we make no further a Priori
assumptions about Eh space. When all states have the
same isospin, the Wigner-Eckart theorem, together with
Eqs. (3) and (14), implies that F,(k&) can be written as
&r, exp(ik& X), where r; are generators of SU(2), and
X~= (Xq,Xb) is a pair of Hermitian operators which
commute among themselves and with the r;. Current
conservation also implies that M' and 3 commute with
the ~i so that the angular condition becomes a constraint
on exp(ik& X) itself. Then with certain specified tech-
nical assumptions, we can reduce the angular condition
to a set of algebraic equations involving X, Q, and M'.
In certain cases, it turns out that these algebraic rela-
tions allow one to introduce an "internal" I.orentz
group on this particular Eh space. This internal I.orentz
group greatly facilitates the solution of the equations.
Eventually, one Ands that the spectrum of 3P must
have at least one of the pathologies listed in the
Introduction.

It was also pointed out in the Introduction that the
equations of current algebra at in6nite momentum, i.e.,
Eqs. (2.3), (2.4), (2.13), and (2.14), might actually
provide a rather restrictive framework in which one
could imagine building a real theory of hadrons. We
note here that these equations are, in fact, a concrete
set of equations relating observable quantities. Of
course, one would have to add more information to
obtain a speciic theory. To this end, and because it
will be useful in the following paper, we turn now to the
commutators of time components with space com-
ponents of currents.

First some definitions and kinematic re1ations. We
define F (k~) for i=1,2 according to

Pr h (F;.(k,) (Xh) = hm t.2F,(ar1, F„
PHOO

+gkg~ 8; (0)(Fb —gkg, , Ib'h)g, i=1, 2 (2.15)

with an analogous definition of the axial-vector objectsF"(kL). In Sec. III, it is shown that a certain com-
ponent of the F;(kj) can be obtained from the corre-

sponding F(k~) through the kinematic relation

Ib(F (k,))= iebgk, F;(k~), (2.16)

where the operation I&(O) is defined by Eq. (2.11).
When the current P & is conserved, the remaining com-
ponent of F;(k&) can be obtained from the identity

LM', F (k~)j=g k;F;(k~) (conserved current) . (2.17)

We now write the equal-time commutation relation
between a time component 5,' and a space component
%~i of the local current operators as

t
8' '(x,0), Pb;(y, 0)1=i'(x —y)f,b,S' (x,0)

8
+ I:~(x—y)g.b"(x,0)3, (2»)

&i

where S,q'i is the Schwinger term. " The assumption
implicit in Eq. (2.18) that there are no terms pro-
portional to 8"(x—y) or 8"'(x—y), etc. , is really not
necessary, but for clarity we shall restrict ourselves to
the single derivative term in Kq. (2.18). Sandwiching
Zq. (2.18) between states with the same Fb and suitable
perpendicular momenta, we can take a formal I'3 —+ ~
limit to obtain

LF (k,), F (k',)j=if,b,F (k,+k', )
+k;(F~(k,), F'(k', )j++ik;S.b"(k,+k',), (2.19)

where

(1Ph'(S, b'&(kb) i Nh)

= lim (2Fb(1Ph', Fb, ~sky ( S,b'&(0) ( I|Ih, Fb,
—-,'kg)].

Pg~oo

(2.20)

Notice that the right-hand side of Eq. (2.19) contains
a term proportional to the anticommutator of two F's.
The origin of this term is explained in Sec. III.

It should be understood that Eq. (2.19) is on a
completely different footing than Zqs. (2.3) and (2.4).
Unlike the case of the commutator of two time com-
ponents of currents, it is questionable whether one can
interchange the E3 —+ ~ limit with the sum over states
in the commutator of a time component and a space
component of a current. 0 this interchange of sum and
limit is not valid, then Eq. (2.19) is not valid even
though Eq. (2.18) may be correct. The specific reasons
why Eq. (2.19) is on a different footing than Kqs. (2.3)
and (2.4) are discussed in detail in Ref. 7.

If we do assume that Kq. (2.19) is valid, either as a
general principle or as an extra constraint in a particular
model, then we have still not accomplished much until

'~ J. Schwinger, Phys. Rev. Letters 3, 296 (1959); the reasons
why the Schwinger term is likely to be symmetric in the unitary
indices can be found in S. L. Adler and C. G. Callan, CERN
Report No. Th.587, 1965 (unpublished).
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we know something about S,q'&. There are several
possibilities here of which we @rill discuss only the
simplest. In most model 6cld theories, S,q' is symmetric
in u and b. '~ Thus we might suppose that in the part of
Eq. (2.19) which is antisymmetric in a and b, the
Schwinger term is not present and, in this way, obtain
a new relation involving only F'8 and F s. Then, using
Eqs. (2.16) and (2.17), one can eliminate the F 8 to
obtain a relation involving F'8 alone. In the truncated
problem discussed in the next paper, this procedure
leads to a particularly simple class of solutions.

ID. DERDtATIOÃ OP ANGULAR CONDITION

Let g„(x) be any vector or axial-vector current
density and consider the limits of the form

lim y'h', p, ' p, ', p,'+.
~ g, (0) (Xk, p,p„p,+8), (3.1)

where (Eh, pipsps) is a hadron state of three momen-
tum pi, ps, ps, helicity h, and internal quantum number
(which include mass tri and spin s) N, and is normalized
according to

&&'h' Pl'Ps'Ps'I &» PIPsPs&
= (2~)'b(y —y')b~ ~b" (3.2)

Note that the states in (3.2) are not normalized co-
variantly; hence states with diferent momentum
(velocity) are related by

I
" P'= I-(P) &= (Po/Po')"I I." P)

~here ps ——(Ills+ye) "s. I is the Lorentz transformation
related to these states. The existence of the limits (3.1)
18 pI'ovcd 1D Rcf. 13 and 1D Rcf. 1 lt ls pointed out, that
the limits depend only on Ã', N, k', h, and lt„where
ki=(PI' —Pi, Ps' —Ps) is the transverse part of the
three-momentum tI'RDsfcI'. Onc 6nds that lt ls
convenient to intloducc thc "stRQdRrd dcclcration"
srls cxp( i sinh —'sE'I), where Xs is the generator of
Lorene transforDlation ln the 8 direction Rnd to wl'lte

(3.1) in the form

ilm (Wk', p, , p, , p, +.[ g, (0) (Xk, p„p„p,+.)
=I(N'h', PI' ps') g{0)(Nh, pips}i, (3.3)

where the states

I&h, PiPsh

=hm tt / cxp( sslllh K—Es) [Xk~ PI& ps~ ps+K}

= (+IN) exp( —iyi E) exp( —s inreEs) ) E, I.s' k,

Xy=o}=exp(—syI. E)~Nh, yi ——0)i, (3.4)

with L, K being the generators of the physical Lorentz

group El=XI+Is, Es =Es—J.I, and the operator

g(0) =lim z ' exp( —s sinh tabs) res(0)

Xexp(i sinh IxZs) =ps(0)+,gs(0) (3.5)

Rrc separately 6nitc ln the llIDlt x= 00. Note thRt the
states ~Ehptps}I, which are not to be confused with the

~

Jt'/k) states in the Eh space of Sec. II, are states in the
physical Hilbert space and span the subspace de6ned by
Ps+Ps=1, and hence the subscript. Also, one Should
lreep in mind that, unlike the states ~Ekptpsps), the

~ EhPIPs)i states do not have definite hclicity.
From Eq. (3.3) it is clear that to every rIs(0) in the

complete Hilbert space there corresponds a rl(0) in the
(Ekpips)I space. The purpose of this section is to derive
the necessary and sufficient conditions on g(0) in order
that gs(0) may transform as the fourth component of a
vcctoI'. Thl8 problem 18 not tllvlRl because thc spRCC

of vectors ( III'hPIPs)I does not carry a representation of
the I.orentz group Z.

Some of the Lorentz conditions on ri(0) can bc
obtained directly because the space

~ Ãhplps}I curie~ R

representation of a slbgroup of Z, namely, the three
parameter subgroup E(2) generated by Et=El+I-s,
Es=Es—I I, Ls, wllci'6 L Rlid K Rl'c thc colivclltlollal
gcQcl'RtoI'8 of rotations Rnd Rccclel'RtloDs, 1'cspcctlvcly.
The subgroup E(2), which is isomorphic to the
Euclidean group ln two dimensions, ls the maximal
subgroup of 8 to respect the condition ps+ ps-—1, which
characterizes the states )EhPIPs}I. It is easily verified
that with respect to E(2), g(0) is a scalar.

The condition that g(0) be an E(2) scalar is clearly
not suKcicnt to guarantee that it has the correct prop-
erties under the rest of the Lorcntz group. On the
0'tllcl' llalld lf wc call impose oil g(0) R coIldltloll 111 thc
space ~Ehpips)I that corresponds to rotations (other
'thall tllosc Riolllld 'thc 8 Rxls) 111 thc ol'lglliRl spRcc

j Xhplpsps), then this condition together with the E(2)
colldltloll will bc sufficient. This 18 becRusc fl'0111 E(2)
and the rotations about one other axis in (Ehplpsps)
we can generate the complete Lorcntz group in
(SkPIPIPs&. The COnditiOn in the SpaCe (EhPIPs&I Waa

erst formulated by Dashen and Gell-Mann, and because
of its connection with rotations in the original space
j Ekplpsps) ls called tile Rllglllal' ConditIon. It 18

derived as follows.
%e consider the matrix element

P 'h', sko.
~
It, (0) ~zv, —;ko.} (3.fi)

before taking the limit z= ee, and transform it to the
Brcit frame, i.e., the frame in which the particles E'
and X have four-momenta ((Its"+41qs)I/s00 -'sq) and
{(Itss+xsqs)'Isoo —xstt), resPectively. Because of the in-
variancc of I

q
where I = (e +e~ 00 2K),

e'= {IN"+as+st,k')I/s, e= (rRs+tts+84ks)I/s

"H. Behie end H. Leutwyler, Phys. Rev. Letters 19,618 (1W/), 18 tllC to'tRl foul-InoIIICII't11111 111 thc or1glnal fI'RIIle; tt has
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necessarily the value

(2222+ tq2)1/2+ (rtt)2+ lq2)1/2

—[(e+e') 2—4)42]1t 2 =&+0 (1/)42)
where

E2= 2(rrts+nt")+k2 (3.7)

The reason for transforming to the Breit frame will be
given below. For the moment we concentrate on the
technical aspects of the transformation. It is, of course,
a different transformation for each pair of particles. It
is easy to see that the transformation can be expressed
as the product R '(8)K '(v), where K '(v) is the de-
celeration with velocity

v=2'/(e'+e) =1—82/8)42+0(1/)44) ) (3 g)

which brings the total momentum I' to its rest frame,
and 2)'. '(8) is the negative rotation through the angle

where y (L) is the transformed three-momentum,

which aligns the resultant momentum transfer [(e'—e)/
(1—v')'", k, 0)—v(e' —«)/(1 —vs)tts] along the s axis.

After the transformation to the Breit frame, the
three-momenta of the particles X' and E become
(00 2q) and (00 —sq), respectively. However, the states
do not become

l
N'h'00-'2q) and lNk00 ——',q) because

the transformation R '(8)K '(v) changes the helicities,
and the change has still to be calculated. The general
formula for calculating the helicity change unaer a
I orentz transformation I has been derived in Ref. 14
and is

I-IN») =»» (e) INk'12(1.) ) (3 1o)
h'

&„„,(@) is the rotation matrix in helicity space as-
sociated with the angle @, and P is the angle defined by

&(4)=[&(p(L))K(v(L))] 'I-[&(p)K(v)] (3 11)

where K(v), for v=p/e, is the Lorentz transformation
that accelerates the particle N to a momentum p in the
3 direction, and R(p) rotates this momentum into the
direction y, and similarly for K(v(l)) and E(p(1)).

Using (3.10), we see that in our case we may write

E(8)1(v(u)) lNk ——,'k0~)
= exp[—i82co ()4)] l

Nk00 ——,'q) (rtt'+'4q')'"/u )
(3.12)2 (8)1.(v ()1)) l

N'It'-2'0)4)

= exp[ —i82co'()4)]
l
N'k'00 ,'q) ( —ttt+-'q')')'/ )K

where d~, 82, and 0& are the generators of rotations in
helicity space, and co()4) and co'()4) are the angles defined

by

&(~(a))= [~(—2q)K(q/(q'+4~')'")] '
XR—1(8)K—1(v)Ã( LtskOx)K((ks+4)42))t2/

(k2+ 4)42+ 42)22) 1/2)] (3.13)
P(co)()4)) [P(0)K(q/(q2+42)2)2)l/2)] —1

XE—'(8)K—'(v) [R(-', kOu) K((k'+4)42) '"/
(k'+4)4'+4rl")'")]

In (3.12), we have generalized the definitions of 82 and

8+ defined in (2.7) and (2.8); they are now the corre-
sponding helicity operators on a state

l
Nk, y) with the

arbitrary momentum y:

8.lNk, l )=klNk, p),
8~ lNk, P) = (8,ai82) l Nk, ft)

= [5)v(5)v+1)—h(k&1)]'tel Nk, p).

Note that the 8's are not the I.orentz generators, since
they leave the momentum p unchanged. It is also clear
that they reduce to our previously defined 0's as p~ —+ ~
(i.e. , )4 —+ co). Substituting (3.12) into (3.6), we obtain

(N'k', 22ko.
l 8,(0) lNk, ——',ko. )

= [(rrts+-4'q2) (m"+-'eqs)]) "/)4(N'k', 00 -',
q l

exp[+idsco'()4)]
xE(8)1(v()4))82(0)1. '(v()4))R '(8) exp[—824o()4)]l vk, 00 ',.q)——

=)t(N'k', 002ql e p[x+i 82(c&o)])[ (80)2+ ( v(802) cos8+81(0) sin8)] exp[ —i82co()4)]lNk, 00 ——',q),

with

whence, finally,
n = (2/&)[(~2+ lq2) (~"+lq')]'" (3.14)

(cV'k')2k0)4
l exp[—i82co'()4)]82(0) exp[+issco()4)]l Vk, —2k0)4).

=)7(NIt', 00 sql A(0)+v(82(0) cos8+81(0) sin8)lNk, 00 ——,'q). (3.15)

We come now to the reason for transforming to the Ah&2, etc., respectively. Hence the vector character of
Breit frame. The reason is that, in the Breit frame, 82(0) is expressed by the fact that in Eq. (3.15) the
scalars, vectors, two-tensors, etc., are characterized by change in helicity Ah=h' —h is 0, ~1.'5 From the left-
the fact that they change the helicity by Ah= 0, dh& 1, hand side of the equation we see that this is equivalent

"E.signer, Ann. Math. 40, 39 (1939).This paper was included '~ Strictly speaking, a four-vector is specified in the Sreit frame
in Symmetry GrouPs irt 1)'tuclear arid Particle Physics, edited by by [tt8) t

(1 rather than (tth( &1.However, it is the 82, which is
F. J. Dyson (W. A. Benjamin, Inc. , New York, j.966). related simply to the helicity at P3 —+ ~.
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to the operator condition

[di, [d3,[d3, exp( i—d~&o'(~)) d o(0) exp (idio (~))555
[d3 exp( —id2a&'(~) )do (0) exp(i de) (K))5 (3.16)

in the space of states
~
Nk, +-,'k0~).

Equation (3.16) is valid for all ~. We now take the
limit I(:~ ~ and obtain

[ds, [d&,[dz, exp( i—d&a&') d(0) exp(+id2(o)555
= [da, exp( —id2cv') d(0) exp(+id2~)5, (3.17a)

on the states
~
Nh, pip~), where cu' and co are the limits of

co'(~) and cu (~) as ~ —& ~. These limits are evaluated in
the Appendix and for k')

~

m"—m'
t )0 turn out to be

2m'k
~'= —tan-'~

(3.17b)

The expressions for other values of m' and ns can be
evaluated in a similar way. Equation (3.17a) is the
required angular condition on d(0). It is clearly a con-
dition on the space ~Nk, pip2)i. Further it is derived
directly from the condition that do(0) be the fourth
component of a vector, and involves a nontrivial rota-
tion E(8) around the 2 axis. Hence, as explained earlier,
together with E(2) invariance, it is sufEcient to guar-
antee the vector character of do(0) under the complete
I orentz group. Note that the condition is valid for both
the vector and axial-vector charge densities.

Our next task is to show that Eq. (3.17a) is equivalent
to the angular condition in Eq. (1.13). From the
de6nition (1.1) of F(k) and Eq. (3.3) it is clear that
one can write

where this equation and the following equations
[(3.20)—(3.22)5 are understood to hold only when
sandwiched between states of ~N'k') and ~Nk) with
definite masses m', m. Writing out Eq. (3.19) fully and
multiplying to the left and right by exp(id2~') and
exp( —iAco), respectively, we obtain

O'F (k) =D(k), (3.20)
where

D8= u'0 —Oa,

d'= exp(+m'dg) d3 exp( —nu'd2) = d3 come' —di since',

d= exp(i(od2) d3 exp( —md') = dg cos(o —di sin(o,

which, from (3.17b), can be written as

O'F (k) =NDF (k),

DO=X'e —eX,
K'= —d, (k'+ '— ")—2 'kd„
K= di(k2 —m2+m") —2mkdi

N= k4+2k'(m2+m")+ (m' —m")'.

(3.21)

K'8= d:[M',85 k'd, 8 —2kM d,—8,

8K = [M',85d3+k'8da 2k83Edi, —(3.22)

and similary for N, and since k was arbitrarily chosen
to be (k,0), Eq. (3.31) can be written as

(Note that cosco' is negative, since a&')-,'vr. ) The point
now is that since these equations hold between states
of mass m' and es, the c numbers m' and m can be
replaced by the mass operator M. Since

&N k [F(k) ~Nk)=, &N k,—;k,2k, ~[go(0)

+Kg(0)5~ Nk, —2ki —~ikq) . (3.18a)

In fact, there is the more general relation

(N'k'i F(k) i
Nk) =,(N'k', p, '( [8'(0)

+Pa (0)5 i Nk, p, )i, k—=p, '—p, (3.18b)

which follows from the fact that the right-hand side is
independent of pi'+pi. i6 Also, it should be clear that
since 3 is defined to act only on helicity indices, it is
exactly the 3 defined in Nk space by Eqs. (2.7) and
(2.8). Therefore, we can write Eq. (3.17a) as

[d„[da,[dg, exp( —id&s&')F(k) exp(id2~)555
= [ga, exp( —id2s)')F (k) exp(id2(o) 5, (3.19)

"This can be proved easily as

z (E'h', p'i i 5'(0) +S'3 (0) i Eh,yi) y

—f (E'h', 0 (
e'&'i '@jF (0)+P (0)je @'I

( Eh, 0)&
= ((X'h', 0

~

e*'~&'sf'(0)+P(0) ah, 0)g,

which is independent of p q+ pq. ln the above derivation, we have
gsed the fact that I coInmqtes with the current f'(Q)+P(0).

I~ (I~ (I~ (F(k))))=I~ (j~ (F(k))), (3.23)

Ip(8) =K'8 8K= [3P,[d3,855—
—k'[d, 85+—2[k 31d,85, (3.24)

Ji (8)= $3P [M' 855+ 2k'PP 85 /k48 (3.25)

Equation (3.23) is the required reduced form of the
angular condition. Note that since 0; commutes with
M', the operations I and J commute.

Another question which one naturally asks is to what
extent the physical properties of the original current
operator d„(0) can be recovered from the form factors
F(k). We only expect a partial recovery since F(k) is a
function of the transverse momentum transfer and
since F(k) has matrix elements between connected
states only. If we do not impose additional information
like crossing relation, we may never obtain matrix
elements between vacuum and the pair states. To give
a partial answer to this question, we return to the
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Breit frame

(N'h'
i F(k) i Nh& =g &N'h', 00 -,'q

i

Xexp(i@2~')Z(0) exp( i@—&a) i Nh, 00 ——,'q&, (3.14')

where
k= (h,o),

Z(o) = s (o)—(qo/q)s (o)—(h/q)s (o).

It is now easy to see that only those matrix elements
corresponding to some transverse parts of the current
operator Z(0) can be recovered. By varying the two-
component vector k, however, we 6nd that the matrix
elements of the entire transverse part of the current
density d„(0) taken between connected states can be
reconstructed. This indicates that the current density
operator can be recovered up to a gradient term in this
connected subspace. To understand how it happens, we
note that the matrix element of the longitudinal part of
a current is proportional to qo, the zeroth component
of the momentum transfer. As ps —+ ~, the contribution
to the form factor from the longitudinal part of the
current damps out as qo/pl, and vanishes at pl= ~.An
equivalent way of seeing this is that the in6nite-
momentum frame can be decelerated into the standard
frame po+p3=1. Then, the contribution from the
longitudinal part of the current reduces to

&N'h' po'+p~'=1i (qo+qa) IN» po+p3=1&=0

as before.
For conserved vector currents, there is no ambiguity

in reconstructing the current operator in the connected
subspace, since the longitudinal part of the current
vanishes identically. For axial-vector currents, however,
we have lost all the information about the divergence
st pa= Qo .

duced in (2.15) of Sec. II in the form

(N'h'i F;(k) i
Nh&

= i(1Ph', —,'ki 2P;(0) iNh, —-', k&i
= i&1Ph', y, '=0

i expi (i/2)k E]2P;(0)
Xexpi (i/2)k E]iNh, yi—-0)i. (4.1)

BrieQy speaking, the factor 2F3 in (2.15) is included to
compensate the change of normalization. More gen-
erally, we have

hm&1Ph', p, ', p, ', p3'+~
i 2~5;(0) i Nh, p„p„pg+~&

= &N'h'i F;(k) iNh&+(p'+p);(N'h'iF(k) i Nh), (4.2)

which depends not only on the transverse momentum
transfer k= (pi' —pi, p2' —p2), but also on the sum of
the transverse momentum (y'+y)i. (It is still indepen-
dent of p'~ and p3.) To see how it works, we start from

I.h.s. of (4.2)
=,&N'h', y', =O[expLiy', E]2S;(0)

Xexpi —iy, E]iNh, y, =O&,
= i&1Ph', y'i ——0

i exp L(i/2) k E]2
X (expi(i/2) (y'+y)'E]~'(0)
X expL —(i/2) (y'+y)'E]}

Xexp[(i/2)k E]iNh, yl 0)1
= i(N'h', y'i=01 expi (i/2)k E]2

X (F (0)+—(p'+p) 9'0(0)+&s(0)]}
Xexpi (i/2)k E]iNh, y =0),

= (1Ph'iF;(k) iNh)+(p'+p);(N'h'iF(k) iNh),

which is the right-hand side of (4.2). In deriving the last
equation, we have used the relations

IV. TIME-COMPONENT-SPACE-COMPONENT
COMMUTATION RELATION

In this section we derive Eqs. (2.16), (2.17), and
(2.19) in Sec. II. As a first step we write F;(k) intro-

Next, sandwiching the commutator relation (2.18)
between states of inhnite momentum, and inserting a
complete set of intermediate states, we have

g (&N h, p is. (0) iN-h-, IF'p-&&N-h-, p-i~, (0)iNh, p&
g, ll P8-+oo N

—&Nh P is, '(O)iN"h" p"&&N"h" p"js o(O)iNh p&}

= lim if.~.&N'h', P'I~.'(0)i», P&+ih~&N'h', P'i8.~"(0)I», P& (4»
all P~

By the use of Eqs. (3.2), (3.18b), and (4.2) and under
the assumption that the pa~ ~ limit is valid here,
Eq. (4.3) leads to the following algebra of form factors:

LF (k'),F (k)]=if,gP' (k'+k)
+h'LF (k'),F'(k)]++S.T. , (4.4)

which is just Eq. (2.19), and where the extra term in
this expression originates from the last term appearing
in Eq. (4.3). (S.T. is the Schwinger term. )

Now, we wish to express the angular condition in
terms of these generalized form factors. From the
results of Sec. II, we learn that the in6nite-momentum
form factor F(k) is related to the Breit frame matrix
element through

&N'h'i exp( —idm&v')F(k) exp(i'm&») i Nh&

= g(N'h'00 —,'q i Fo

+r($3 cos8+Pi sintt) iNhoo ——,'q), (3.15')
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k= (h,0), s sine=h/q,
g= 2L(m'+xaq') (m"+xq')g'i4L(m"+'q')'"

+ (gga+ xqn)1/apl

By the use of a similar but somewhat simpler manipula-
tion, it is veriaed that

{X'h'[exp(—iS'ace')Fa(k) exp(~dgca) (Eh)
=g'(E'h'00-,'q[ 5'a(0) (F00 —aaq), (4.5)

with
g'=2/(m"+xq')(Naa+-'q') 1"4 (4 6)

We then obtain the following simpler angular condition:

Pa, exp( —id(o' )F(k) exp(idge)]
=i(gh/il'q) exp( —idai0')Fa(k) exp(ilare),

which can be expressed as the operator equations

Ia(F(k)) =iLkXF(h) ja. (4.7)

This is, of course, Eq. (2.16). The derivation of Eq.
(2.17) is simple and straightforward and need not be
given here.

V. BA.SIC REPRESENTATIONS OF
CURRENT ALGEBRA

A rather natural way to attack the problem of current
algebra at in6nite momentum would be to choose an
appropriate solution to Eqs. (2) and (3) and then try
to enforce the angular condition. The problem then
splits into two parts. First, one needs a catalog of
solutions to Eqs. (2) and (3); this is the topic of the
present section. The second and more difBcult step of
enforcing the angular condition will not be discussed
here.

For simplicity, wc will restrict ourselves to isospin
vector currents 5' ~, u=i, 2, 3, which lead to the
F (ki) for a=1, 2, 3. The generalization to the full
algebra of F's is perfectly straightforward.

Defining f'(x&) through

j.
f (xi) = — — exp( ika xa)—F~(k.i)d'ka, (5.1)

(2w)'

Eq. (2.2) is equivalent to

U'(x ),f'(y )j=@(x-y.)~.a.f'(x.), (5.2)

where we have used the fact that f,a,= e,a„where u, h,
and c run from 1 to 3. For the most part, we will work
with the "coordinate space" form of the algebra in Eq.
(5.2). One can immediately see that a rigorous mathe-
matical analysis of the algebra specified by Eq. (5.2) is
difGcult because of the singular nature of the "structure
constants" b(x~ )yeL, aEviden—tly, the f's in Eq. (5.2)
are operator-valued distributions and in a proper mathe-
matical treatment of the problem one would have to
take this into account and start with some statement

f'(i )=2"8 a, (5.5)

where V is thc isospin operator in V times a unit
matrix in S. Suppose now that we want to construct the
representation {I,I',0,0){all permutations of I and
I')8 (I8I',0,0,0)8 (permutations). This representation
is defined on a space V'Ls V' S S', where V and V' are
analogous to W above and S and S' are the analogs of S
above. In this representation the generators are

f {i)= &'& a+&"& a', (5.6)

where T~ and T'~ act in T'and V', and h and k' aet in
S and S'. Sy construction, we have the commutation

about the particular kind of distributions which are
allowed. We shall not attack the problem on this level.
It turns out that it is very easy to carry out a rather
complete analysis of Eq. (5.2) on a heuristic level. This
leads to a catalog of representations of the algebra. All

the representations in the catalog are mathematically
respectable but, since we do not proceed on rigorously,
we may not have all interesting representations.

To proceed, let us imagine that the continuum of
points xa in Eqs. (5.1) and. (5.2) have been replaced by
a finite set of, say, four points i~, ig, i3 and i4. We then
have f (i„) (e= 1, 2, 3, 4) and the commutation rules

D'~(i„)ja(i„')j=ib„„.e,a,f'(i„), e, I'=1, 2, 3,4. (5.3)

One immediately recognizes in Eq. (5.3) the Lie algebra
of the group SU(2)8SU(2)8SU(2)8SU(2). That is,
there is a separate SU(2) for each point i, Ã = 1, 2, 3, 4.
It is, of course, trivial to 6nd all the irreducible repre-
sentations of SU(2) SU(2) 8SU(2) 8SU(2).They are
simply products of representations of SU(2) and can be
written as (Ii,I2,IS,I4), where, for example, Ia is the
isospin associated with the group at i~. These irre-
ducible representations are dc6ned on a product space
V 18Va8 Va8 q 4 where 9 & is the (2Ii+ 1)-dimensional
space for a representation of SU(2) with isospin

I~, etc., and the generators are sums of commuting
operators, i.e.,

f (~e) —2 1 ~+1+2 a 42+2 $48+2 4 ~a4& (5.4)

where, for example, I'~ is understood to be the direct
product of the ath isospin generator in V'~ with unit
matrices in V~, 13, and V4. Actually, wearenotpartic-
ularly interested in irreducible representations. What

. is needed for current algebra at infinite momentum is a
simple catalog of reducible representations. To this end,
we consider the special class of reducible representations
of the form (I,O,O,O)Q (O,I,O,O) Q (O,O,I,O) Q (0,0,0,I).
The space on which this representation is de6ned is the
direct product of a (2I+1)-dimensional isospin space
V with a four-dimensional space S. Now define an
operator h which is the product of the unit matrix in V

times an operator in S with cigenvalues of 1, 2, 3, and 4.
The f's for the representation (I,O,O,O) fP (O,I,O,O)

8 (O,O,I,O) 8 (O,O,O,I) can then be written as
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[T~,T~]=iamb, T',
[T' T"]=is.g,T"
[T',T"]=0, [h,k']=0,

Lh, T ]=[&',T.]=[&,T"]=[&',T"]=0

(5.7)

It is easy to verify that the commutation relations in
Eq. (5.7) guarantee that the f's of Eq. (5.7) satisfy
Eq. (5.3). As a final example, suppose that we wish to
construct the representation (I,I',0,0)g (all permuta-
tions of I and I') which divers from the above repre
sentation by the absence of terms like (II', 0,0,0). It
is not hard to see that this representation can be ob-
tained from Eq. (5.6) by imposing the constraint
8I,~ =0, which is consistent since h and h' commute. The
space on which h and h' act is, of course, no longer a
direct product.

From the above examples, the reader should not find
it hard to convince himself that the most general
(reducible) representation of the algebra in Eq. (5.3)
can be written as

f (i„)=g T &"&b„g(r) (5.8)

in a space cI&"I3K(2~ . .V'('v'8, where T~&"& is an
isospin matrix acting in V &"' and the h&"& are a set of
commuting operators in another space S. The com-
mutation relations are

[Ta«& T&(')]=+„,&,' T'(")

,T.& &]=0, [b& &,bt &]=0. (5.9)

The fact that we have been letting e run only over
1, 2, 3, and 4 is no longer of any consequence; Eq. (5.8)
gives the most general representation for any number
of points. In fact, it is simple to pass to the continuum
limit to obtain representations of the local algebra in
Eq. (5.2); one obtains

f~(x,) =Q T &"&b(x,—h, &"&), (5.10a)

In this form, one easily sees that these representations
of the local algebra are mathematically respectable.
That is, if the spaces V("& are finite-dimensional and
the expik& h& form Abelian groups of unitary operators
in 8, then the representation is rigorously de fined. These
representations are, however, not all the representations

' See also K. H. Rodman, J. Math. Phys. S, 1954 (1967).

where the h~(") are now commuting vector operators in
two dimensions. By virtue of the commutation relations
in Eq. (5.9), the above expression satisfies the local
algebra. The h's are, of course, now assumed to have a
continuous spectrum. It is interesting to examine the
F(k)'s obtained from Eq. (5.10a); they are"

F'(ki)=g T'&"& exp(iki hi). (5.10b)

[T T']=is.p T'

[T~,b ]=ie,p,b,
[b' »~']= o.

(5.14)

Thus, foreachfixedi, b; and T' (a, b=1, 2, 3) generate
E(3), the Euclidian group in three dimensions. From
this fact, one can readily prove that all nontrivial
representations of Eq. (5.14) contain arbitrarily high
isospins. This is in contrast to the representations in
Eq. (5.10) which, as long as the number of terms in the
sum over r is finite, contain only a finite number of
different isospins.

"See Refs. 3 and 5; S. Fubini, in Proceedings of the Fourth
Coral GaMes Conference on Symmetry Principles at High Energies
1967, edited by A. Perlmutter and B.Kursunoglu (%'. H. Freeman
and Co., San Francisco, 1967).

"M. Gell-Mann, in Proceedings of the International School of
Physics "Ettore Majorana" Erice, Italy, 1966, edited by Z. Zichichi
(Academic Press Inc. , New York, 1966).

20 It is known that every generalized function concentrated at a
single point x0 can be represented as a (Gnite) linear combination
of b(x —xo) and its derivatives. This theorem is mentioned by
I. M. Gel'fand and G. E. Shilov, in Generalized Functions
(Academic Press Inc., New York, 1964),Vol. 1, Chap. I, Sec. A1.4.

of the local algebra. Further representations will be
discussed below,

Before looking for additional representations of the
local algebra, we should mention some special cases of
Eq. (5.10a). First, let us find the representation,
mentioned previously, where all states have isospin -', .
Since F'(Oi) =P,T~&'& is the ath component of isospin,
it is clear that the sum over r must be trivial, containing
only one term proportional to the Pauli matrix ~

V'

Thus we have
F'(ki) =-', v' exp(iki hi) (5.11)

for the isospin--,' case."Other special cases are Gell-
Mann's "two- and three-quark" representations" for
which the sum in Eq. (5.10a) contains two or three
terms each proportional to a Pauli matrix.

To obtain further representations of the local algebra,
we proceed as follows. The process which we used to
find the general representation of the algebra of Eq.
(5.3), which is a "local algebra" on a four-point grid,
was to find the representations localized at one point,
which are simply SV(2) representations, and then by
means of the operators h, take direct sums and products
of these point representations to obtain the general
representation. We can try the same trick with the local
algebra. For the f (x)'s, a representation located at a

point XD is clearly one where

f'(x~) = T~b(x~ —xo)+b, 'V(b~x—xo)

+cg V~V,b(x, xo)+ —(5.12)

contains at most a finite number of derivatives of 8

functions. '0 Consider, for example, a representation of
the form

f (x~) =T b(x~ —xo)+b; V'b(x, —xo). (5.13)

In order to satisfy Eq. (5.2), we must. have
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where h'"), T ("), and b; (") satisfy

iT ('),T'(') j=ih,.e.„T~«),

iT ("),b (')1=i'„e.„b;~(~),

ih(~) h(~) j=D&,.~(~) $.&(~)j=P,.~(~) h(~)j (5.18)

= ih(~) To(8)j—0

Note that some of the b; &") could be zero; if they all
vanish, we recover the representation in Kq. (5.10).

There is, of course, no reason why terms like c;,' and
coeScients of higher derivatives of 5 functions in Eq.
(5.12) cannot be present. The most general representa-
tion at a point is, in an obvious notation,

f (XJ,)=T I&(XJ,—XQ)+

+(iv" ne L~'~)" "~P'e&(»—xo)j (5 19)

where the 6nal term multiplies an Eth-order derivative
of a 8 function, with E arbitrarily large but 6nite. The
general reducible representation constructed from these
representations at a point is dearly

F;(ki) =P expiik, h('&jiT ('&+

+ (d;; „, (')ik;ik;... ik,ik, )j, (5.20)

where the h&") commute with everything, including
each other. All quantities of a given index (r) commute
with quantities for other indices (s), and for a given r
one has

iT~(~) T&(~)j ie &
To(~—)

i %'e(~) A. . &(~) I—e~ 8.. e(~)V"'PC ""~~~ V"'Pg
( ) (f~), ( )]—0

(5.21)

plus a number of' commutation relations for the cocS.—
cicnts of lower powers of Skag which arc suppressed in
Eq. (5.19). We note that Eq. (5.21) implies that the
representation contains arbitrarily high isospins.

As long as the various sums in Eq. (5.20) are 6nite,
this representation can be given a well-de6ned mathe-

The representation in Kq. (5.13) is localized at the
point xo. To obtain a morc general representation we
may replace xo by an operator h which commutes with
T and 5; which gives

y.(x,)=T.S(x,—h)yf 'V'S(x, -h) (5.15)

F'(k,)=T exp(iki h)+ik;b;~ exp(iki h). (5.16)

Still more general representations can be obtained by
taking a sum in analogy with Eq. (5.10), which yields

P~(k,)=P expiik, h(")j(2"(")+ik;b;~(")), (5.17)

matical meaning. Furthermore, this representation is
the most general one which can be constructed from
representations at a point. For an algebra, like that in
Eq. (5.3), built on a finite, discrete grid of points rather
than a continuum, all representations can be con-
structed by taking sums and products of representations
at a point. We do not know under what conditions, if
any, this is true for a local algebra. To the extent that
this is true, Eq. (5.20) represents the most general
representation of the local algebra.

Finally, we should ask ourselves which representa-
tions are relevant for physics. We cannot, of course,
really answer this question but there are a couple of
points which should be made, Suppose we look at a
free-held. theory of nucleons. For each sector with a
Axed baryon number of say, 1, the states ~Xh) can
contain one nucleon, one nudeon and one nudeon
antinucleon pair, one nucleon and two pairs, etc. Let M
be the number of pairs in. a state. Then from the con-
nectedness structure of the Ii's discussed in Sec. II, we
know that the E's do not connect states of different M,
il the free retd theo-ry. Furthermore, for each 6xed M,
the representation can be shown to be that in Eq. (5.10)
where the T (' are all Pauli matrices and the sum runs
over 2M+1 terms corresponding to one nucleon and M
pairs. Thus, for the free-fieM theory the representation
can be explicitly constructed; it is simply a stack of
representations like that in Eq. (5.10) with the sums
running over 1, 3, 5, 7, ~ ~ ., terms. Now it may or may
not be true that when an interaction is turned on, the
representation remains the same up to a unitary trans-
formation. For the sake of argument, however, lct us
suppose that it docs. What, then, is the diGerence
between the interacting and noninteracting theories'
The answer lies in the angular condition. In the free
theory, each term —', 9" exp(iki hi) in the sums satisfies
the angular condition by itself. When the interaction is
turned on the individual terms no longer satisfy the
angular condition. In fact, the angular condition now
couples together subspaces containing sums of 1, 3, 5,
7, ~ ~, terms in the F(k) 's. This is simply a consequence
of the fact that the old "bare particles" are no longer
eigenstates of the mass operator 3f. In the interacting
theory, then, the angular condition is satis6ed only
when wc sum over an infinite number of terms like
K'(") expiik h(")$.

While the above discussion about the behavior of
Lagrangian field theories is, at best, heuristic, it does
suggest that in the real world one needs an infinite sum
of terms or representations like that of Eq. (5.10) in
order to satisfy the angular condition. One may or may
not have further terms like the b; in Eq. (5.17).

In order to calculate the limits of (o(k) and (o'(k) it is convenient to express the Lorentz transformations (3.13)
by which they are defined in the vector representation of the Lorentz group. However, since the y axis remains inert
during all of the transformations in (2.13), it is sufhcient to consider only the (i,s,x) subspace of the vector space,
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on which space the rotations around the y axis with angle @ and the accelerations along the 3' axis with velocity v

are represented by the matrices

1 (q'+2m')'"—
g

2m 0

q cos8 —
q sin8—(0'+4co')'o coo0 (0'44o0)'n oin0)—2m sin8 —2m cos8

~

~
0 0 1 v 0

R((t0) = 0 cos(f) sing, E'(2)) = 2) 1 0
0 —oin4 coo4 (i —c')'n 0 0 (i —c')'t')

respectively.
In the representation we obtain at once for the first three matrices in (3.13)

((q2+4m2)1/2 q (j 1 (j (j 1 (j 0
E(—~2q)E E '(8) =

~

—
q (q'+4m')'" 0 0 —1 0 0 cos8 —sin8

(m2+ ~1q2)1/2 2m( 0 0 2m 0 0 —1 0 sin8 cos8

(A1)

(A2)

To evaluate the last three matrices, we 6rst make the expansions

(»2+ 1k2)1/2(»2+m2+ 1k2)—1/2 1 4m2/8»2+(j(1/»4)

cos4i » (»2+ 1k)-1/2 1—k2/8»2+Q (1/»4)

sin4) = —k/2»+0 (1/»'),
v = 1—E'/8»'+0 (1/»4) .

We then have, to order 1/»',

g—1(~)E( Lk 0»)An((»2+xk2)l/2(»2+m2+lk2) —1/2)

2» 1 —(1—E'/8»2) 0 1 0 0 )» ( 1 1—4m2/8»' 0=——(1—E'/8»') 1 0 0 1—k'/8»' —k/2»
i

—
i

1—4m'/8 ' 1 0
8 0 0 E/2» 0 k/2» 1—k'/8» / m ( 0 0 m/»

1 3m'+m"+k' m" —m'+k' 2km qm"—m' 3m2+m" —2km ~.2' kE kE 2mE /

(A3)

(A4)

The matrix
'1 0 0"

E((0)= 0 cosa& sin&0

.0 —since co R0.
(A5)

is then, from (3.13) equal to the product of the matrices (A2) and (A4). However, to evaluate 00 we do not have to
multiply the matrices explicitly. We avoid the multiplication, and also the explicit calculation of q, by noting
that from (A5)

tan(0 =—(222/a2„ (A6)

where u;; are the matrix elements of the product matrix, and that these two particular matrix elements involve
only the last row of (A2). Calculating them by insepection from (A2) and (A4), we obtain

(—2m sin8) (3m2+m")+ (—2m cos8) (kE) I3m'+m"+kE cot8
tanor =—

(—2m sin8) (—2km)+ (—2m cos8) (2mE) ( 2km)+—2mE cot8

On the other hand, in the limit »-4 04), we obtain from (3.9)

(A7)

Inserting this result into (A7), we obtain
cot8= ( m"+m2)/kE. — (A8)

tanco =—3m2+m" (m'2 —m') k —4m' 2mk

2km+2m—(m" m')/k 2—m k2 —m2+m" k2 m2+m'2—


