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Quantitative predictions for the energy and A dependence of the cross sections for nuclear photoabsorp-
tion and inelastic electron-nucleus scattering are given. In general, the nucleons do not contribute equally
to the total photon-nucleus cross section when coherent contributions of photoproduced hadrons are taken
into account. At low energies (E~ 1 BeV), the cross sections are proportional to nuclear number A, but at
high energies, they become proportional to the number of surface nucleons —provided that the photon
interactions are mediated by hadrons of suKciently low mass. The condition on the masses is that the
momentum transfers in forward photoproduction of these states should be small compared to the reciprocals
of their mean free paths in nuclear matter. In the case of p dominance, the real-photon photoabsorption
cross section has the same A dependence as hadron-nucleus total cross sections for photon energies above
=10 BeV, whereas the cross section for virtual photon absorption at that energy, obtained from inelastic
eiectron scattering is nearly proportional to A for spacelike momentum transfer )Qs~ &5 Bevs. We then
generalize to an arbitrary spectrum of intermediate particles, and discuss the sensitivity of feasible experi-
ments to various models in which the spectrum contains important structure beyond the p. Measurements
of the photon-nucleus cross sections will provide a fundamental test of "hadron dominance" in general,
and of p-c0-@ dominance in particular, as well as help to determine the basic parameters of photon-nucleon
and p-nucleon interactions. We also calculate the photon-deuteron cross section and discuss the multiple
scattering approach to photon-nucleus interactions. This discussion provides insight into the many-body
processes which underlie the eikonal, optical-model calculations; it is also relevant. to the determination
of a» at high energies.

I. INTRODUCTION
' ~)IRECT application of the p-dominance model' to

the forward elastic amplitude for photons on
nuclei, together with the optical theorem, yields the
total-cross-section prediction

~&~= (s/g)'~. ~.

This result is paradoxical, because the mean free path
of photons in nuclear matter L=ovs 'X(density of
nucleons) '= /00 Fj is large compared to nuclear sizes,
so that one might have expected all of the nucleons to
participate equally, and o-~~ ~ A. However, one certainly
expects o-,g not to be proportional to 2 because of
shadow CGects: The mean free path of p's in nuclear
matter L=o.,~ 'X (density of nucleons) '=3 Fjis com-
parable to nuclear sizes, so that nucleons deep inside
the nucleus do not see the full incident p Aux. Never-
theless, BeIP and Stodolsky' have shown that Eq. (1)
is not unthinkable and that, in particular, it follows at
suKciently high energies from assuming p dominance
of the interactions on individual nucleons.

*Work supported by the U. S. Atomic Energy Commission.' For recent reviews, see J. J. Sakurai, Lectures in Theoretical
Physics (Gordon and Breach, Science Publishers, Inc., New York,
1968), Vol. XI, and S. C. C. Ting in Proceedings of the Iiourteenth
International Conference on High-Energy Physics in Vienna, &68'
(CERN, Geneva, 1968), p. 43. A Lagrangian formulation of
vector dominance has been given by N. M. Kroll, T. D. Lee, and
B.Zumino, Phys. Rev. 157, 1376 (1967).

'If hadronic mean free paths were negligible compared to
nuclear sizes, interactions would be confined to the surface, im-
plying cr ~ A'+; nuclei are not that large, and experimentally 0 g,
cr„g, and O.„g grow like =As 8. See, e.g., M. L. Longo and B.
Moyer, Phys. Rev. 125, 701 (1962);J. Engler et a/. , Phys. Letters
28$, 64 (1968).' J. S. Bell, Phys, Rev. Letters 1S, 57 (1964); CERN Report
No. TH.877 (unpublished).

4 L. Stodolsky, Phys. Rev. Letters 18, 135 (1967).

Our purpose in this paper is to develop a quantitative
description of the energy and A dependence of the
nuclear photoabsorption cross section. "'b' At low
energies (for our purposes, E~ 1 BeV), the photon
cross section will be shown to be proportional to A. At
very high energies it is predicted to be proportional to
"3'~','" provided only that the photon interactions are
mediated by hadrons of suKciently low mass. Ke wish
to emphasize that this prediction of a hadron-like
2-dependence for 0'7~ at, h1gh cncrgy docs not lest OIl

detailed assumptions of vector dominance. The energy
of transition between A and "A'~"' is related to the
average mass of hadronic states which dominate the
electromagnetic current: The critical condition for (1)
to hold is that the momentum transfer in forward photo-
production of these states be small compared to the
reciprocal of their mean free paths in nuclear matter.
Measurements of the total photoabsorption cross section
through the transition region (1—20 BeV) would, there-

' (a) We restrict our attention to the total photoabsorption
cross section into hadronic Anal states, which is obtained via the
optical theorem from the forward Compton scattering amplitude
to order e~. (b) After our work was completed we learned that
M. Nauenberg )Phys. Rev. Letters 22, 556 (1969}j,B.Margolis (to
be published), and K. Got tfried and D. R. Yennie )Phys. Rev. 182,
1595 (1969)j have derived the p-dominance result for Q'=0 given
in Eq. (17). The latter authors also discuss incoherent photo-
production on nuclei.

SThis p-dominance calculation parallels the calculations of
particle photoproduction in nuclei given by S. D. Drell and J. S.
Tre61, Phys. Rev. Letters 16, 552 (1966); 16, 832(E) (1966);
M. Ross and L. Stodolsky, Phys. Rev, 149, 1172 (1966); K.
Gottfried and D. Yennie, Phys. Rev. 182, 1595 (1969).Analyses
in terms of a Glauber type of multiple scattering theory have been
given by K. S. Kolbig and B.Margolis, Nucl. Phys. 86, 85 (1968)
and J. S. Trefil, Phys. Rev. 180, 1366 (1969).Final-state absorp-
tion eQects in the photoproduction of particular hadron states
makes the energy dependence of the effective number of nucleons
for these processes less dramatic than in Compton scattering.
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&ore, constitute a fundamental test of the basic ideas
of "hadron dominance" in general, and of p-co-p

dominance in particular. They oGer the possibility of
confirming and understanding the breakdown of p
dominance, which seems to have been observed in p
photoproduction on complex nuclei. ' The total cross
section, i.e., the imaginary part of the forward Compton
amplitude, is an especially useful physical quantity here,
because it contains no background of energy-indepen-
dent absorption such as occurs in the photoproduction
of any given hadron through final state absorption, and
because the forward Compton amplitude is totally
coherent, involving only the ground state of the nucleus.
Ke generalize our results to photons which are oG-mass-
shell in the spacelike region, i.e., to inelastic electron or
muon scattering from nuclei. This generalization is
important because it introduces a new parameter, the
Q' of the photon, which can be varied in testing the
theory, and because inelastic electron scattering experi-
ments may be easier to perform than total photo-
absorption experiments. Our calculations are first done
within the framework of p dominance (Secs. II—IV). We
then generalize to allow for an arbitrary spectrum of
intermediate particles, and discuss the sensitivity of
feasible experiments to various models in which that
spectrum is related to the cross section for electron-
positron annihilation into hadrons (Secs. UI and VII).
Ke also calculate the photon-deuteron total cross
section, and discuss the multiple-scattering approach to
photon shadowing. This discussion provides insight
into the many-body processes which underlie the
optical-model calculations, and it clarifies our basic
assumptions; it is also relevant to the determination
of o-~„at high energy.

IL BASIC DESCMPTION

%e begin by assuming that photons couple only
through p mesons (see Fig. 1). The coupling constant
is defined as etpi p'/g. Following 3ell, ' the incident photon
wave function is e '&', and the p wave equation in
nuclear matter is

( +m '+V )fp (e/g)m 'e—'&'p. —— (2)

Vpp is an optical potential, and is related to the forward
scattering amplitude of p's on nucleons by

Vpp= 4&dfpN~pN

~ The first p-production (2-6 BeV) results were consistent with
p dominance. See L. J. Lanzeretti et ul. , Phys. Rev. 166, 1365
(1968); J. G. Asbury et uE. , Phys. Rev. Letters 19, 865 (1967);
20, 227 (1968); and H. Blechschmidt et el. , Nuovo Cimento 52A,
1348 (1967). Two recent experiments at higher energies have
indicated that the forward p photoproduction cross section is only
half of the value predicted by p dominance using the value yp'/
4+=4'(gp'/4~)=0. 52&0.07 measured on the p mass shell; see
G. McClellan et al. , Phys. Rev. Letters 22, 374 (1969); 22, 377
(1969);and F. Bulos et a/. , Phys. Rev. Letters 22, 490 (1969).We
wish to thank Dr. D. W. G. Leith, Dr. %. Busza, and Dr. R. R.
Larsen for discussion of these data. This possibility of violation of
vector dominance would have striking consequences for the energy
dependence of o~g, as we discuss in Sec. VI.

FiG. 1. Schematic representation of forward Compton scattering
on nuclei; (a) corresponds to the vector-dominance description
given in Sec. II in which photon-nucleon interactions are mediated
by p mesons; (b) corresponds to the description used in Sec. III
in which amplitudes are calculated by the "p-photon analogy. "
The two descriptions are related by a canonical transformation
and give the same results (see Ref. 8). Only single- and double-
scattering contributions to the order e' amplitude are shown;
when the entire multiple-scattering series for the forward-produced
p's is summed for large A in the Glauber approximation, the
absorptive medium-eikonal approximation is obtained (see J.
TreS, Ref. 6).

where d is the nuclear density. In the case of pure
absorption, f is imaginary and

V„= i kdo pN =—ik/—Ip,
— (4)

where 0-p~ is the total p-nucleon cross section for p
mesons of momentum k, and p, is the mean free path
=3 F. The index of refraction for p mesons in the
nuclear medium is given by

np 1+2——~d fpN pN(0')/k'.

/e ' ) pa, '
o,go& =~ — Ao, N Re~

kg kmp2+ Vp,

This term vanishes in the high-energy limit

( Vpp)))mp', i.e., E~= q))tnp21p, ,

leaving only the contribution from X, which is not
proportional to A and produces the hadronlike behavior
of the cross section. Ke give precise formulas below.
On the other hand, for suKciently low energies, X
becomes small and only the A term survives, corre-
sponding appropriately to coherent scattering on a
nearly transparent nucleus.

These results can be understood simply using an
uncertainty principle argument. The description of Fig.

Vpp is assumed not to mix spin states. Equation (2)
describes a helicity component of the p wave function.

If V» is constant within the nucleus, the solution
has the form

e sip e" +X
2

g ppip+Vpp

where X is a solution of the homogeneous equation
corresponding to absorption of the p within the nucleus.
Using the optical theorem and (4), the first term con-
tributes to the cross section
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I in terms of old-fashioned perturbation theory is that
energy is not conserved at the p-photon vertices by an
amount DE= (m, '+q')" q

—m—,'/2q T.he longitudinal
position of the y-p conversion point must then be
uncertain by a distance

H de is large compared to the hadron mean free path
in the nucleus, then the photon converts to hadrons
well before reaching the nuclear surface, and shadow
eHects are to be expected. This results in the same high-
energy condition (8) as obtained above. No details of
p-dominance theory, such as the magnitude of the
p-photon coupling constant, enter into this uncertainty
principle argument. The necessary condition for A2~'

behavior at high energy is, therefore, only that the
photon interactions be mediated by hadronic states of
finite mass.

III. ALTERNATIVE DESCRIPTION

Stodolsky4 has given a somewhat diferent descrip-
tion, in which the photons are eigenstates of the
vacuum; i.e., the direct p-photon coupling vanishes
for on-mass-shell photons, and the photons are instead
allowed to interact directly with the nucleons.

The", two descriptions are related by a canonical
transformation, and, therefore, contain the same physics
(see Fig. 1).The question of whether the photon changes
into a p before or after reaching the nucleus in a p-
dominance model is thus purely a matter of taste. In
Stodolsky's description, the A'" behavior of the
photon-nucleus total cross section at high energy
arises because a "downstream" nucleon feels, in
addition to the full-strength incident photon beam, a
beam of real p mesons of intensity f~u, x/f, x —„zr
which has been generated "upstream. " (The factor
1/f», ~ enters here because only p's generated within
approximately one mean free path survive absorption. )
The direct photon beam results in a contribution to
the forward amplitude ~ f„~ ~~, while the p "beam"
gives a contribution ~ —(f,~,~/f, N, ~)f~z,x, and
the codBcients are such that these cancel each other
leaving no term proportional to volume, provided that

the relation

pN~pN y&~pN (10)

holds, as it does in the p-dominance model. ' ~

At low energies, the cancellation is made imperfect
by several effects which reduce the p term, so that (1)
is only expected to hold at high energies. First of all,
,the p may decay before it can reconvert to a photon. '"

That will only be negligible when the distance a p can
travel before decaying is long compared to its mean
free path, i.e., when k/m, I'=p. Because of the time
dilatation factor 0/m„ that inequality becomes true
at energies of a few BeV. The most important efFect
results from the transfer of three-momentum d, to one
of the nucleons, and —4 to another, where
& m, '/2q. This effect depends, in general, on the nuclear
wave function. In the eikonal model it takes the form
of a coherence requirement: The photon wave is
~t.'&' and the p wave ~e'~', where k=q —6; in order
for shadow effects to be important, these must stay
approximately in step over at least a p mean free path,
i.e., m,2/2q —6«1/p. This is the uncertainty principle
condition (8) discussed above. A third effect is that
(10) must be expected to fail at low energies, even if
one believes in p dominance, because of minimum-
momentum-transfer considerations —e.g., the p con-
tribution to shadowing must vanish if the photon energy
is less than p production threshold of 1.1 BeV, since,
as we wish to emphasize, the shadowing is caused by
real intermediate states.

where

(12)

IV. y-DOMINANT CALCULATION

We now use the Stodolsky description to calculate
the photon-nucleus total cross section, assuming p
dominance of photon-nucleon scattering. We use the
eikonal approximation and treat the nucleus as a
homogeneous sphere of radius R=r&A'", rp= 1.3 F.
Begin by pretending that the p has zero width. The
forward photon-nucleus amplitude is

The distinction between the treatments of photon-hadron
interactions in Secs. II and III can be characterized by the inter-
action Lagrangian used to represent vector dominance. In Sec.II,
the analysis based on the usual vector-dominance Lagrangian in
which photon interactions with the hadron current J& are always
mediated by the p. In Sec. III, the analysis can be based on the
Lagrangian model of Ref. I; the p-photon coupling vanishes for
real photons (Q'=0) which, however, interact locally with the
hadron current. As shown in Appendix 8 of Kroll, Lee, and
Zumino (Ref. 1), the two Lagrangians are in fact related by a
canonical transformation; the photon Geld of Sec. II is a linear
combination of the photon and vector-meson Gelds of Sec. III.
Indeed, in the case of photon-nucleon interactions, one takes
precisely that linear combination of photon and vector mesons of
Sec. III which has no direct interaction with the nucleon. We
generalize this for arbitrary meson channels in Sec. VI A.

is the incident photon wave with energy E~= q,

(13)

is the corresponding outgoing scattered wave, and V

'The simple p-dominance prediction is f~~ p~(t=0) = (ejgp)
Qfppf p+(t 0) and f„z»(t=0) = (e/gp)'fp& pz (t =0). Conse-
quences of breaking p dominance are discussed in Secs. VI and
VII."K. Gottfried and D. Julius, Cornell Report (unpublished).
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is the 2)&2 matrix I.O ——

0.9—

where U»= 4qrd—fviq p~iq'i, etc. To order eq, gyi+i(s)
=8 aJld

b O.s—

b o.7—
( g&+ U' /g2)$ (+i ——U' P (+) (15)

—Vvp
P (+)(s)— (azqz ezkaP(z+a)Pe zqa) (—16)

2mc +VP,

where a= (Rq —fi')' for impact parameter fi, so that
the boundary condition p, (—a)=0 is met; i.e., QP

vanishes at the left-hand edge of the nucleus. We
emphasize that U» is proportional to the photopro-
duction amplitude for real p mesons with physical
momentum k = (ql' —m ')'". Employing the optical
theorem, we obtain

1»iP (1)V„/(~, + V„)j
&&@=Ag&~ 1— , (17)

lm V»
where

Ru) = 1-(5/V)L(1+i) —-1+-.Vj,
f=2iR[q %+V—

p,/2k].

At energies high enough that minimum-momentum-
transfer effects are negligible, p dominance implies
that' '

Uvp'= UppUvv

If, in addition, the energy is high enough that q
—k

times the p mean free path p is small, then

VPP/(q '+V-)=1—(20)

and the terms proportional to A in o-~~ vanish, leaving
the surface contributions.

The expression (17) can be improved in several ways.
We can take into account the instability of p approxi-
mately by adding —impl' to Upp This amounts to
changing the mean free path by

1/IJ ~ 1/pebeorpcion+ 1/pdecey. (21)

We can include the nucleon recoil energy in computing

'I A nonuniform nuclear density can readily be included. The
general eikonal solution to (15) is

Pp +) (s,b) = '" ds'd(b, s')e'~(
k

&&exp ——,'o pg ds"d(, ")
gy

which reduces to (16) if d is constant. The cross section for forward
Compton scattering on heavy nuclei should be insensitive to the
nuclear model, as in the case for forward hadron-nucleus scat-
tering (see Drell and Tre61, Ref. 6, and S. C. C. Ting, Ref. 1).
Nuclear structure corrections have thus been ignored here.

where 1z= (qq —ylpq)"' The p wave function, which
satisfies the eikonal approximation to this equation, is"

6 8
P = PHOTON ENERGY, BeV

IO l2

FH:. 2. Predictions of p dominance for the photoabsorption cross
section as a function of incident lab energy. The effective number
of nucleons 0.7g/AO~N is given for carbon, copper, and lead,
assuming 0 p+ 30 mb and uniform sphere radii R = 1.3 FA'". The
curves are lowered at 10 SeV by 0.04—0,05 (i.e., shadowing is
increased) if R is decreased to 1.2 F A'" or cTpN is increased to 35
mb. The sharp behavior at the p-photoproduction threshold is
removed when the p width and threshold factors are taken into
account. Nuclear effects become important at very low energies.

the minimum momentum transfer q
—k. Further, we can

determine V» from the measured photoproduction
amplitude for p mesons in order to incorporate the
correct threshold dependence. These modifications have
only minor effects on 0», because they are sizable only
at low energies where the p contribution is small and
O.~g=AfT~~. That fact also justifies our use of the
eikonal approximation down to low energies. Real
parts can be included in V» and U», the values, of
course, are not known, but assuming that (19) holds,
we find the effects of changing Ref/Imf from zero to
~0.2 to be only about 5%.

The energy dependence of 0 y~ given by (17) is shown
in Fig. 2. It is shown in the form of 0~~/Air~N, which
can be thought of as an effective number of nudeons;
the strength of the y-p coupling divides out in this
expression, as does some of the energy dependence of
0.7N. It is apparent that the effect we discuss is large
and occurs in an energy region amenable to experiment.
The transition energy increases with A, i.e., the
shadowing comes in at lower energies in light nuclei.
This is because the "thickness" of a light nucleus—
especially at nonzero impact parameter —is less than
a p mean free path, and the distance over which
coherence between p and photon is required, hx in
Ecl. (9), is determined by the smaller of (a) the p
mean free path, and (b) the path-length through the
nucleus. " The transition in energy from cr~A to
0 ~ 3=0' is not monotonic in energy; the exponent at
first rises above 1 because of the differing energy de-
pendence on light and heavy nuclei just discussed. For
this reason, the most effective way to study photon
shadowing experimentally is by the energy dependence
on a few nuclei rather than to measure A dependence

» The transition energy where o~g/Ae~~ is within 10% of
its asymptotic value is v~m, 'Q(Rp). See M. Nauenberg, Ref.
5(b).
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at just a few energies. This recommended program also
has the advantage of being relatively insensitive to
deviations from simple E.~A'~' nuclear models. On
the other hand, the A dependence at high energy is
sensitive to 0,~, as in the case of p photoproduction,
assuming p dominance holds.

In addition to p dominance, the following approxi-
mations were made in obtaining Fig. 2: A purely
absorptive potential was used corresponding to a
uniform nuclear density of radius 1.3A'" F and 0.,~——30
mb. The width of the p was taken as 1TO MeV. Nucleon
recoil was included in calculating the minimum mo-
mentum transfer. The p photoproduction amplitudes
were taken to be zero below threshold and constant at
the p dominance value above threshold. Cross sections
on neutrons were assumed the same as on protons. The
~ and @ channels were neglected, but these states can
contribute only very small amounts of shadowing,
because the p~ and p$ couplings are relatively small;
in addition, 0-&~ is probably substantially less than
a-„~, as one would expect by analogy with O.It-.~ versus
~ ar."

Below 1.1 BeV, Fig. 2 shows a complete absence of
shadowing. In fact, a small amount of shadowing is
possible due to the low-mass tail of the p, or due to
pions, whose contribution should be very small (see
Secs. VI and VII). For energies substantially below 1
Bev, the photon wavelength becomes comparable to
the internuclear separations, and the relation

(hadronic) +0. N or & &(hsdronic) —g& + (g g)&YA 7 7 V YP V+7

again breaks down.
Our calculation can easily be extended to oft-mass-

shell photons. If Q' is the square of the photon invariant
mass (negative for electron scattering), then in Eq.
(17) we must include the correct minimum momentum
transfer: q

—li—(m,'—Q')/2q. The bracket then be-

comes

where the potentials V» and V» are proportional to
forward amplitudes for virtual photons. Because of the
coherence requirement, A21' behavior ensues only at
relatively higher energy if Q'WO. The predictions are
shown in Fig. 3. We assume spin-Qip processes to be
unimportant, and these curves therefore apply sepa-
rately to the total absorption cross section for longi-
tudinal photons and transverse photons or, (Q', i) and
O.r(Q', i), which are obtained from inelastic electron or
muon scattering in the standard way. '4 The results are
again divided by A times the corresponding nucleon
cross section, and thus can be interpreted as the
effective fraction. of nucleons which absorb the photon.
The mean free paths for longitudinal and transverse
p's were assumed equal, corresponding to o,N=30 mb.

V. PHOTON-DEUTERON TOTAL
CROSS SECTION

The simple eikonal model which we have used up to
now is inappropriate for light nuclei and must be
replaced by a multiple-scattering approach such as the
Glauber approximation. "We shall discuss the simplest
case: the photon-deuteron cross section. (A multiple-
scattering analysis for A & 2, and its connection with the
eikonal approximation in the limit A —+ ~, has been
given by Tre61.') This discussion should serve to
clarify our basic physical assumptions and approxi-
mations and provide insight into the microscopic
processes which underlie the optical-model calculations.
Also, an understanding of this particular problem would
enable one to extract the photon-neutron cross section
from experiment.

The relevant multiple-scattering terms (see Fig. 4) are

fVd ~d(rb 0 —& q, 0) =f~„yn (q, 0 ~ ib 0)+f»»(q, 0,q,0) — dp ds if—i(s)iti(s —p)
4m-'q

&&(i%I L(q p)'+~—p'j'"+—~~ +id) 'Lfv -p (q —s~e—Ii s+p)fan-»(q —Ii, s~e, s—p)—

where p is the deuteron wave function in momentum

space.
If we neglect the recoil and. binding corrections

(represented by AE„„,) and assume that the energy
variation of the scattering amplitudes is gradual
enough to be neglected inside the integral (as is justi-
fied by experiment), the third term in f~d Vd (0)

"See also Ref. 4, J. J. Sakurai, Stanford Linear Accelerator
Center Report No. SLAC-TN-103, 2967 (unpublished) and K.
Kajantie and J. S. Trehl, Phys. Letters 24B, 106 (1967) for calcu-
lations of 0-» from p, or, p photoproduction data. A general dis-
cussion of contributions other than the p is given in Secs. VI and
VII. Preliminary measurements of 0~„are reported in the rap-
porteur's summary by S. C. C. Ting (Ref. 1).

becomes

where the arguments of the amplitudes now refer to

~4 See, e.g., L. H. Hand, in Proceed'ngs of the 1M7 International
Symposium on E/ectron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif. , 2967).

'~ R. J. Glauber, Lectures in Theoretical Physics (Interscience
Publishers, Inc. , New York, 1959), Vol. 2, and Phys. Rev. 100,
242 (2955). Corrections to the Glauber theory are discussed in
J. Pumplin, Phys. Rev. 173, 1652 (1968) and D. R. Harrington,
Rutgers Report (unpublished).
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the magnitude of the three-momentum transfer and
we have used the relation f~N „N=f,N ~N from time
reversal to combine the double-scattering terms. Here

&(p) = ds 4 (s)4 (s—p) = «(4(*))'e"' (»)

is the nonrelativistic deuteron form factor, and f(r)
is the deuteron wave function in coordinate space. We
have ignored the spins of the nucleons and of the
deuteron, as well as D-state and many-body components
of the deuteron wave function, in accord with common
pl aCtlCe. I6

The Glauber approximation" now corresponds to
dropping the principal-value part of the energy de-
nominator (propagator), and keeping only the 8-tunc-
tion part. This approximation is good at high energy;
it is also good at low energy to the extent that the
real parts of the scattering amplitudes are negligible,
because in that case the principal-value part, does not
contribute when the imaginary part of f„e,e is taken
to use the optical theorem. '7 Changing to spherical
coordinates and using the 8 function,

fee-~e(0) =fr-v. (0)+f »- »(o)

e+(&~~pm) «/~

dp »(p)f,.-,.(p)f,.-,.(p). (26)
e—(e~-~p~) ~/I

The upper limit of this integral is =2q, which can be
replaced by ~, since the deuteron form factor must cut
oG at a few hundred MeV. The lower limit is 6—=q—(q' —m ')'~'=m '/2q, which is the minimum mo-
mentum transfer as calculated with neglect of the
nucleon-recoil energy.

In order to do a simple calculation, we use a Gaussian
wave function for the deuteron, '8 which leads to
S(p) =e 'I&' with n=130 BeV ', and assume that the
scattering amplitudes have a momentum-transfer
dependence ~ e»~', y—Io BeV '. Assuming pure
imaginary amplitudes and neglecting the difference
between f~„,„and f»,„, the optical theorem gives

l.o
(

~ o.9-
C3

b o.a

0,7—

b

0.6 I-

0 2 6 8 lo lZ

P = PHOTON ENERGY, BeV

FIG. 3. PredIctIons of p doIIIInance foI' Inelastic electron scat-
tering on nuclei are given as a function of the virtual photon lab
energy and spacelike four-momentum squared, Q'. The eQ'ective
number of nucleons o~g(Q', v)/'Ao~~(Q', v) is given for copper with
R= 1,3 F A'", assuming o.p~= 30 mb for longitudinal or transverse
p mesons. The results hoM for the transverse or longitudinal
photon cross sections o'(Q', I) obtained from inelastic electron
scattering.

pendence of the p production amplitude. (The sensi-
tivity is even less for a large nucleus, so that essentially
only the photoproduction cross section at zero degrees
is important, as assumed in the eikonal model. ) To
the extent that the 4y term can be completely ignored,
the factor 2/(ky+n) represents (r ~) for the deuteron
wave function; however, for analyzing experimental
data we would advocate performing the integral in
(26), using a better wave function than the Gaussian,
rather than going in for the still more crude (r ')
approximation. The shadow correction (a ~„+0»

o~e)/—&r~e should be =4—5% at high energy, i.e., the
correction in obtaining 0-~„ from measurements of 0-~q

and 0» should be = 10%.The shadowing is reduced at
intermediate energies due to "incoherence, "i.e., due to
the intolerance of the wave function to the minimum
momentum transfer as given by the exponential factor
in (27). The shadowing due to intermediate p's falls
in principle to zero at the p production threshold,
except for smearing due to the Fermi motion and the
p width.

We wish to reemphasize that it is the photoproduction
amplitude for real p mesons which appears in the
shadow contribution. This is also true in the multjple-
scattering analyses of photoproduction on heavy

&m t:—(v+l~)~'j, (27)

where q=Ref, ~,~/Imf~~, ~ Note that k. y is small
compared to a, so that the result is rather insensitive
to the value assumed for y, i.e., to the assumed t de-

"Such corrections have been considered by D. Harrington,
Phys. Rev. Letters 21, 1496 (1968); Phys. Rev. 176, 1982 (1968).

'7 Keeping the principal-value part would result in a correction
to the shadow term in (27} which is down from the term given by

y(m ~j2q)(rm)'~~ where y is proportional to the real part of the
photoproduction amplitude.

's Simple, though unprecise, Gaussian wave functions for the
deuteron have been given by M. Verde, Helv. Phys. Acta 22,
339 (1949}.

I"IG. 4. Schematic representation of forward Compton scatter-
ing on deuterons to order a' corresponding to the four terms of Eq.
(23). The bottom two graphs represent the shadow contributions
from the emission and absorption of real p mesons (or, in general,
any coherent hadron systexn photoproduced on the nucleons). The
solid line represents the deuteron,
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nuclei, ' although that fact is somewhat obscure in the
optical-model analysis. Since only on-shell photo-
production amplitudes enter, it should be possible to
calculate the, shadow correction in terms of photo-
productlon dRtR without cvci making thc Rssumption
of vector dominance.

VI. BEYOND y DOMINANCE

A. Multichannel Effects in the Photoabsorytion
on Deuter luQ1

So far we have discussed only the shadow cGects
which correspond to propagation of real intermediate

p mesons. Other contributions are possible, however:
e.g., ~, @, and x many-particle systems. Our calcu-
lation on deuterium is easily generalized to include
these possibilities. The approximate form (27), for
example, becomes

8 1—fg(m)]'
X

4~(~)+n 1+f~(~)j'
&«xpf —(v+-:~)(~'/2V)'j

&((width factor) . (28)

This generalization preserves the idea that the con-
tribution of a state to shadowing is proportional to the
cross section for photoproducing it on a nucleon. The
exponential factor embodies the requirement that the
shadowing be small if the minimum momentum transfer
is too large for the nuclear wave function. The width
factor, which we have not written explicitly, should
reduce the cross section due to the spreading of inter-
mediate several-particle states. For a resoearlce such
as the p, the width factor is essentially 1, but for a
Donresonant state at finite energy it may be sub-
stantially less than. I. In the limit q~ ~, the width
factor approaches j. because of time dilatation. For
example, a p of momentum q in free space will travel
roughly (g/mph)=5 F at 2 BeV and 25 F at 10 BeV
before decaying. On the other hand, a completely
nonresonant x+x system of invariant mass 500 MeV
would spread by j..0—1.2 F while traveling 3 F at 2
BCV and 0.04—0.25 F at IO BCV. The two estimates
given represent "decay" perpendicular or parallel to
the direction of motion.

The CGect of the real parts of the amplitudes could
be important. If we write the phase of f~~ ~,«„„~~
as ie'&, then the factor (1—y2)/(1+g')=cos(2y). This
can in principle bc negative; i.e., if the photoproduction
amplitude for a given state is predominantly real, then,

its contribution to the shadow effect actually adds to
the cross section, tending to cancel the CGect of the p.
It could happen that the phases of the photoproduction

amplitude for various 6nal states are essentially random,
in which case the contribution to the shadow CGect
would average to zero. This is expected to reduce the
net CGect of states whose photoproduction requires
quantum number exchange. However, states which
CRD bc photoproduccd by diKraction l.c. with thc
exchange of no quantum Dumber except for orbital
angular momentum, are expected to be produced with
essentially imaginary amplitudes. For example, the
photoproduction of m-p systems with low invariant
mass might bc due to thc diffraction-dissociation
process" ln which a y-m-p vertex ls followed by m or p
elastic scattering. The phase oi f~~ „~ is then the
same as that for f ~ ~ and f,~ „~, which are known
from experiment" to be predominantly imaginary.

The question of the phases of inelastic production
amplitudes, and of the CGects of the spreading of
multiparticle intermediate states as discussed in the
preceding paragraphs, are key problems in the theory
of inelastic shadowing. "The shadowing predicted for
the y-2 total cross section can be looked on as a special
CRsc of inelastic shRdowlDg which ls made cspcclally
simple by the absence, to order n, of elastic shadowing.

The shadow effect due to states which are not pro-
duced diGractively, such as m' and m+, arc expected to
be small. In the first place, the photoproduction ampli-
tudes for these states arc relatively small compared,
for example, to the p, and are expected to continue to
fall with energy. Second, nondi8ractive processes, in
particular m' and m+ production, may involve spin Rip
in the forward direction and/or charge exchange, which
will be suppressed by the requirement of leaving the
DUclcus ln its gI'ound stRtc lIl th.c folwRrd Colllpton
amplitude.

B. Multichannel Shadow Effects for Heavy Nucleii

Returning now to the question of photon cross
sections on large nuclei, and to A versus A'~' behavior,
we find that the consideration of other intermediate
states besides the p adds a great deal of complexity,
which results from the many possibihties for inelastic
scattering of the hadrons. For example, the incident
photon might produce a p on nucleon 1; the p scatters
on nucleon 2 to produce an EX state which scatters
elastically on nucleon 3 and then produces a photon on
nucleon 4; at high energy this could interfere with the
R1Tlplitudc foI' thc photon simply to Compton scatter
on one of the nucleons. In the face of such possibilities,
a precise calculation of O.~g seems impossibl- —-if only

19 M. L. Good and W. D. Walker, Phys. Rev. 120, 1857 I'1960).
'0 See, e.g., S.J.Lindenbaum, in I'roceedirjgs of the Folrth Coruk

GuNes Coefereece ow Symmetry PrjecipIes at II~gh Energy, &67,
edited by A. Perlmutter and B.Kursunoglu (W. H. Freeman and
Co., San Irancisco, j,9N}. The phase of the p photoproduction
amplitude vedas nmasured by J. Asbury et al., Phys. Letters 258,
sea (I9@').

2~ V. N. Gribov LKnglish transl. by W. J. Zakremski, University
of Michigan, 1968 (unpublished)g; J. Pumplin and M. Ross, Phys.
Rev. Letters 21, jI.778 (1968).
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because it depends on a number of amplitudes which
are not directly measurable. Nevertheless, it is possible
to make some general statements on the A dependence,
and, in particular, to demonstrate that A'f' behavior
at high energy follows, as one would be led to expect
from the uncertainty-principle argument of Sec. II,
from any model in which the photon interactions are
mediated by hadrons of bounded mass. "

I et us consider m hadronic channels instead of just
the p. Define the matrices

'A~g

~11 ' ' ~1m

~mm.

(29)

eigenvector

where
l.+m

*'=—E (T ')'~7»,

and T is the eXe hadronic submatrix of E:
T;,=P„,+2ib gA;

The eigenvalue associated with X is

e =X» Q—l),,;(T ');,A» =detK/det T.

(33)

(34)

(35)

(36)

0
0

.0

0 ~ ~ 0 0

&,&= —(4sid/q) f,~ &)r(0') = (i/q) V,b, (30)

and 6;—(m;2+ ~Q'~)/2q is the minimum momentum
transfer for photoproducing the state i. The general-
ization of Kqs. (13) and (16) for the wave function
inside a homogeneous nucleus is

g, (+) (s) ~ —~~qzs —(a+a) (gay~a)

A-(s). .0.
(31)

The forward-scattering amplitude is

f ~- ~(0') = (1/4~)(4»V—4'+)

where the X's are the forward-scattering amplitude
normalized so that 1/X;; is the mean free path for
channel i:

P;(s) =Q e' *LT-'(e—'&'+' —1)]vX». (37)

The eigenvalue e is of order e', so X corresponds to a
diagonal state with a mean free path which is long
compared to the size of the nucleus. I can therefore
contribute a volume term and will do so unless AX=0,
in which case its contribution is killed by the A in (32)
which is not exponentiated. In the high-energy limit
6 —+ 0, so E ~A and the condition for no volume term,
i.e., A"' behavior, becomes &=0, detA. =O. The other
m eigenvectors of A must have eigenvalues of order 1,
since the product of all the eigenvalues =detA. e'.
They therefore correspond to states which are diagonal
in the medium, but which are strongly absorbed, i.e.,
their mean free paths are a few fermis, so they con-
tribute only "surface" terms. The generalization of the
Bell picture (Sec. II) can now be obtained, if desired,
by a canonical transformation in which the photon
channel is made to correspond to the eigenvector X.'

A more explicit way to arrive at the condition for
complete cancellation of the A term is simply to
calculate the exponential in (32) to leading powers in e.
This leads to

Zg 0
dr (1 0 0)Ae '*+ ) && +' '

4m.
(32)

and to

.0.

where the integral ranges over a sphere of radius
R=ROA"' representing the nucleus and s+a is the
depth penetrated from the "left-hand" edge at s= —e
—=—(R' b')'~' for im—pact parameter b.

In order to decide whether (32) contains a contri-
bution proportional to A, i.e., proportional to volume,
imagine diagonalizing the matrix K=A+2ih w—hich
occurs in the exponential: In other words, expand the
vector (1 0 .0) in eigenvectors of K. (This can
certainly be done, since K is symmetric. ) Working to
leading powers in the electron charge e, E has an

"This result was anticipated by Stodolsky, Ref. 4.

Xt T '(e ~'+') —1)),P».). (38)

%e assume on physical grounds that the eigenvalues of
T are of order 1 F ', i.e., correspond to hadronic mean
free paths; therefore T ' necessarily exists, the ex-
ponential corresponds to "surface" terms, and the
volume term is cancelled if and only if

X»—P;,; )).~;(T '),,A» ———det(A+2ih)/detT= 0.

In the high-energy limit, 6~0, leading again to the
condition detA =0.

Now let us generalize the vector dominance model
by allowing the photon to couple directly to each of the
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hadronic channels. Then
8

X~;=Q —X;;,
gg

e e

ig j gi g~'

(39)

We then compare this with virtual forward Compton
scattering on a nucleus A: The Feynman amplitude is

~""(Q')=o' o"*(~12'Lj.(*),j.(0)& I
~)--d'* (41)

where some of the coupling constants, which we write
in the familiar form e/g, may be zero since some of the
hadronic channels we consider may have quantum
numbers different from the photon (such as, for
example, the conjectured 3 Regge recurrence of the p).
Now (39) is equivalent to the condition detA=O to
order t.2, which is needed for cancellation of the volume
term at high energy. Note that this cancellation does
not depend on any particular values for the coupling
constants or for the hadronic scattering amplitudes.
The only requirements are that the energy be so large
that (mp+ lQ'l)/2I7 is negligible for all of the states
involved, and that the hadronic amplitudes A, ;; not
vary significantly when the square of the external
four-momentum varies from mP or mg2 to Q2.

In the "hadron-dominance" model discussed above,
there are two distinct qualitative features to be observed
in o ~z/Ao. ~))g.

' the energy at which this quantity
becomes substantially different from 1 (i.e., when the
shadow sects become important, which is related to
the average mass of the hadronic channels contributing
importantly to the shadowing), and the limiting value
at very high energy, which is related to the average
cross sections of the hadronic states on nucleons.
Quantitative results are discussed in Sec. VII.

I et us now use a "Furry picture" description putting
the effects of the absorptive medium into the equation
of motion for j„. Then, assuming a polarization-
independent optical potential V,

to2

ns ~(Q')=
16m'o.2

dss' ...-(s)(g„„—
s

X(1 Is
$—Q'+ V $—Q'

p v

dss' ...-(s)(g„,—
s

X 2(.,Q), (42)
$—Q' $—Q'

where T($,Q') = V+ V(Q' —$—V+ie) 'V is the virtual
forward nuclear scattering amplitude for a vector
meson of mass $, four-momentum Q. We have assumed
that the potential V does not mix the various hadron
components of the current, and we identify it with
absorptive potential Vpp of Sec III The result for the
(virtual) total photoabsorption nuclear cross section is

C. Shadow Effects of a Hadron Spectrum

We have constructed a simple model to describe the
shadow contributions of higher mass J~= 1 hadronic
systems which could mediate the photon-nucleon
interactions. The contribution of the p and the possibly
important higher-mass systems is represented by a
spectral function which is related to the electron-
positron annihilation cross section 0.,+,—.This model is
actually a special case of the many-channel model of
Sec. VI B), in which the discrete states e are replaced
by a continuum and all of the OB-diagonal matrix
elements between the hadronic channels are neglected.

First, we note that the propagator of the (I=1)
electromagnetic current of the hadrons is given by

e'o *(Ol T't j„(x),j„(0)jl0}ddt

2

= 1—Re ds
AoP (Q', v)

Og+g- s s

($ Q2) 2

x &(f)
$—Q'+ V

o'g+ d- ($)$
ds

($—Q')
(43)

where o P(Q2, v) is the total (transverse or longitudinal)
photoabsorption cross section on nucleons as measured
in inelastic electron or muon scattering (i= transverse
or longitudinal). "F(f) is given by Eq. (17) with m, '
replaced by s.

Comparing with Eq. (39), if the annihilation cross
section 0-,+,— corresponds to a sum of narrow-width
Breit-Wigner peaks for m vector rnesons, then (43)
corresponds to 'A;j ——8;,A;; and

16~'n'

$'o' + ($)LgI- QQ /$j&$-—
(40)-Q-'

(44)

t

where o,+,-($) is the total (I=1) hadron production
cross section from electron-positron annihilation at
c.m. energy Q$.

where the X;; are all taken to be equal. Various possi-
bilities for the hadron spectrum and the resulting
implications for o ~~ (Q,v) are discussed in Sec. VII.
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VII. NUMERICAL CALCULATION FOR VIOLA-
TIONS OF VECTOR DOMINANCE

Let us now consider how the predictions based on p
dominance which are shown in Figs. 2 and 3 are modi-
fied if vector dominance is broken.

As a 6rst way to break vector dominance, assume
that the effective p-photon coupling em, '/2y, on the
photon mass shell has strength given by p, '/47r=1. 1

to account for the small magnitude of nuclear p photo-
production observed by the Cornell and SLAC groups. 7

In the "pure" vector dominance models, y, '/kr has
the same value at the photon mass as it does on the p
mass shell where it is measured to be 0.52&0.07 from
colliding beam experiments e+e —+ x+m and the
leptonic decay of p's. ' If we continue to assume that
0-,~=30 mb as obtained from the analysis of p photo-
production on nuclei, then the p-dominant part of 0.»
is (e/2yv)'a, ~=50 pb. The measured value of 0» is
110—130 pb, 23 so that a contribution in addition to the

p must remain. Including the &v and P, using y„and y~
given by the Orsay experiments, and assuming 0-&~ is
small like a-~~ adds 25 pb," but this is probably
overestimated, since if the effective y-p coupling falls

by a factor of 2 in going to Q'=0, the p-&o and 7-P
couplings would be expected to fall also. We must
therefore assume some additional states mediate the
photon interactions to account for the magnitude of
0-». For simplicity, let us first assume those states are
suQiciently massive (&3 BeV) that they do not con-
tribute importantly to shadowing at energies below
20 BeV, where we can hope to have data in the near
future. The effect of such states in this energy region
is the same as for local coupling of the photon, which
contributes to 0.~~ and hence to the volume of A term
but not to the shadowing. The effect is to essentially
cut the shadowing in half compared to the pure p-

dominance result. It would be very hard to understand
an experimental result of much less shadowing than
this, since we know the minimum strength and phase of p
photoproduction at forward angles reasonably well. ' '

This reduction in shadowing is illustrated in detail
in Fig. 5. The curves are calculated from Kq. (43)
assuming that fT,+,— is dominated by the p with a
Breit-Wigner distribution plus another similar reso-
nance of higher mass Mz with equal magnitude. The
results are shown for various values of My. For v&20
BeV, the results are nearly indistinguishable for any
mass Sf'&3 BeV. We also note here that a similar
calculation to include the @meson shows that the effect
of a pole at 3Ig=m~ with —,'0 the pole strength of the p
is negligible. The use of a Breit-Wigner distribution for
the two-pion states of the p produces a small amount
of shadowing below v=1.2 BeV and thus removes the
sharp behavior at threshold shown in Figs. 2 and 3.
"Aachen-Berlin-Bonn-Hamburg-Heidelberg-Munchen Collab-

oration, Phys. Letters 27B, 474 (1968); J. Ballam et cl., Phys.
Rev. Letters 21, 1544 (1968). We shall assume that the forward
Compton amplitude is essentially diffractive.

1.0
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FIG. 5. Predictions for the photoabsorption cross section of
copper assuming violation of vector dominance. The cross section
for p photoproduction on nucleons is taken to be ~& the p-dominance
prediction (see Ref. 7). The effective number of nucleons o.„g/
Ao~& is given as a function of laboratory photon energy assuming
shadow contributions from the p plus other hadron states, which
are represented by a vector resonance at mass Mp photoproduced
with the width and magnitude of the p. o-,~ was taken as 30 mb,
and 8 as 1.2 FgA'". The result for 3/Iy&3 BeV and s (20 BeV
is to reduce the shadow contribution 1—+~~/Ao~~ to half of the
value obtained from p dominance given in Fig. 2.

mp
+e0(s bm, ') —— 8(s —4m '). (45)

s

The extra tail, with adjustable parameters ~, 5, and X,
is added to reQect a large, slowly falling cross section
beyond the p region '4"

In order to restrict the possibilities we again assume
that the p is responsible for roughly half of 0». Then,
for example, with a charge tail falling like s ' starting
at s=2m, ' with ~=1, the shadowing for real photons
on copper (A =64) is 24% at v= 10 BeV and 32% at
v=20 BeV, compared to 31% and 41% shadowing
implied by pure p dominance, respectively. Again, we
note that from the magnitude of the observed p photo-
production the minimum shadowing will not be less
than half of the pure p-dominance result.

VIII. SUMMARY

We have shown that measurements of the total
hadronic cross section for photons up to 20 BeV on
nuclei, and measurements of inelastic electron scat-

"For ~=0, this form for o;+,—is the experimental fit to the
Orsay data (m, =0.76, F=0.11 BeV, const=1.7+0.2 pb), and
corresponds to a simple Breit-Wigner pole in the pion form factor.

"The quark 6eld algebra predicts o,+,——+ s ' for large s. See
J. D. Bjorken, Phys. Rev. 148, 1467 (1966). Also, a tail with
N &2 would not contradict the gauge field algebra. See J. Dooher,
Phys. Rev. Letters 19, 600 (1967).Our form (43) is consistent with
o.z, l.(Q, v) Q in the diffractive energy region for inelastic e-p
scattering if o + ——+ g-2

As another model for the spectral function, we can
adopt the following form for the annihilation cross
section:

4m ' ''mp' mp'I'
o..+.—(s) = const 1—

s s s —m'' m'I'
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tering in the same energy region, provide a sensitive
test of the theoretical idea of vector-meson dominance,
and of the more general idea of low-mass hadron
dominance of the electromagnetic current.

In the case of the p dominance, the quantity o~z/
AO-~N, which amounts to an eGective fraction of photo-
absorbing nucleons, becomes energy-independent and
equal to the corresponding fraction appropriate for
hadron absorption when the momentum transfer for
forward p photoproduction on a nucleon 6 (m, '
+ ~Q'~)/2v is small compared to the reciprocal of the
hadronic mean free path in the nucleus. If the nuclear
photoabsorption data support this, then by making
reasonable assumptions on nuclear models, real parts
of amplitudes, and approximations of the cu and P
contributions, one will be able to extract 0.,~ for the p
on the mass shell. This result should agree with the
value for 0.,~ obtained from p photoproduction on
nuclei. If p dominance is correct, o7~(Q', v)/Ao~~(Q', v)

depends only on t;„.Thus measurements of inelastic
electron-nucleus scattering for values of Q' and v

which keep t; constant, are sensitive to any deviation
from the p dominance relation f»' f»f» f——or large
spacelike Q'.

On the other hand, the hadronlike behavior of the
nuclear photoabsorption cross section at high energies
is not a unique feature of p dominance, but also follows
from a generalization of the vector-dominance model
in which arbitrary hadron states are assumed to con-
tribute to the electromagnetic current. The complete
vanishing of the volume contribution to 0» only
requires that the momentum transfer be negligible for
all of the states involved and the determinant (29) of
the forward-scattering amplitudes vanishes to order
e'; this condition is met, for the "hadron-dominance"
model in which photons interact with nucleons via a
sum (possibly spectral) of J'= I hadron states, a,s-

suming the high-energy forward photoproduction
amplitudes do not change appreciably when extrap-
olated to the Q' of the photon. In the energy region
v&20 BeV, dominance by hadron states of mass &3
BeV cannot be distinguished from dominance by states
of very large mass, such as baryon-antibaryon pairs,
quark-antiquark pairs, etc. , or states of in6nite mass
which correspond to pointlike interactions. The energy
dependence of o ~g/A o 7~, however, is sensitive to
dominant states beyond the p in the 1—3 mass region.

In general, any state which can be produced (in-
cluding higher spins, e.g., a p Regge recurrence at

Jv=3 ) contributes to the shadowing in proportion
to the square of its yet unmeasured nuclear forward
photoproduction amplitude. In particular, if the real
forward p photoproduction cross section is half~ of
what is predicted by simple vector dominance, i.e.,

2' v'= f»f-,
then the shadow contribution I—o~~/Aov~ is half of
the p-cv-P dominance prediction for v&20 BeV; eventu-
ally, it increases with photon energy as photoproduction
for higher-mass states which contribute to f» but not

f» or f„,becomes coherent on the nucleus.
Finally, we emphasize that photoproduction of p

mesons on nucleons implies shadowing for photon-
nucleus interactions independent of any model, with
the exception of the unlikely possibility that there are
large cancellations due to photoproduction of low-mass
states with real amplitudes.

By the time of journal publication of this paper, we
expect relevant experimental data to be available. In
addition to measurements of y+A —+ hadrons and
inelastic electron and muon-nucleus scattering, we
would like to encourage measurements of total cross
sections for pions on nuclei, in order to test the re-
liability of available methods for treating the nuclear
physics and to look for the inelastic shadow effects
which have been predicted for the scattering of had-
rons, the theory of which is on the same footing as the
many-channel calculation of Sec. III.

Pote added i', proof Preliminary . results of a Santa
Barbara SLAC experiment to measure the photon-
nucleus cross section at high energy indicate a shadow
effect which lies roughly midway between zero (i.e.,
o~~ ~ A) and the vector-dominance prediction, for E7
between 12 and 18 BeV. Thus it appears that the
vector mesons "dominate" only about one half of the
electromagnetic current, as is also indicated by the two
high energy rho photoproduction experiments. ~ We
wish to thank Dr. R. Morrison and Dr. F. Murphy for
discussions of their data.
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