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The formalism for making a partial-wave analysis of the reactions =+N — A(1236)+= and E+N —
2 (1385) -+ is outlined. From such an analysis, the coupling of baryon resonances to these inelastic channels
can be determined. The differential cross section, decay distribution for A — N+, and nucleon polariza-
tion are expressed as functions of the S-matrix elements Si4,137 (£), which connect the initial =V state with
orbital angular momentum /, spin J, and c.m. momentum £ to the Ax state with orbital angular momentum /’.

I. INTRODUCTION

E give the formulas for making a partial-wave
analysis of the reaction sequence

T+N — A(1236)+7 (1.1a)
N+ (1.1b)
and
R+N— =(1385)+= (1.2a)
A+ (1.2b)

The decay sequence (1.1) is described by five indepen-
dent variables, which may be chosen as k, O, 6, ¢, P,
where £ is the momentum in the 7N c.m. system,
cos@ =1~y #ous in the c.m. system, § and ¢ are the
polar and azimuthal angles of the decay nucleon in the
A rest frame, and P is the nucleon polarization. By
“partial-wave” analysis we mean that the experimental
distributions are used to infer the quantities Sv3,137 (k)
which are the S-matrix elements connecting the initial
7N state with orbital angular momentum / and spin J
to the Ar state with orbital angular momentum /’ and
spin J. The Sy3,37 are complex scalar quantities which
are functions only of %.

Partial-wave analyses of reactions (1.1) and (1.2) can
be used to determine the decay rates of N* and V*
resonances into ‘A(1236)+m and Z(1385)-, respec-
tively, and to check the (/J®) values inferred from
analyses of elastic-scattering data. Considerable data
on these reactions are being amassed in current bubble-
chamber experiments at incident momentum below
3 GeV/c. Partial-wave analyses of the reactions
K+N — 2(1385)+r, and R+N — A(1520)4r have
already been made for the special case that the cross
section is dominated by a single amplitude.!® These
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analyses led to a determination of the (ZJ?) quantum
numbers for Z(1770) and A (1815), and their decay rate
into A (1520)+7 and 2(1385)+, respectively.

In this paper we relate the distributions in the
variables k, ©, 6, ¢, and P, which can be measured
experimentally to the Spj;7 amplitudes. Previous
authors have studied certain aspects of this problem
(mainly the relation between the cos® distribution and
the Sy3,7 amplitudes), but have not enumerated a
complete set of equations which utilizes all the experi-
mental information on the production and decay of
A(2) to determine the Spyg,37.56

In general, the reaction N — nwN is a coherent
sum of such amplitudes as 4 (N — wN*), 4 (xN — pN),
A (N — 7rN), etc. The formalism outlined below is
applicable only to a subset of events corresponding to
the reaction 7N — wA. In most experiments it is
possible to isolate a sample of these events which are
relatively free from interference of other amplitudes (in
some cases the complete range of variables ©, 6, ¢ will
not be accessible due to experimental cuts).

Models which take into account all possible two-
particle interactions in the wwV final state have been
worked out.®” However, the application of these models
poses practical difficulties because of their mathemat-
ical complexity and the large number of variables
involved. We believe that the formalism outlined here
is a useful tool for the preliminary analysis of the
three-body final states (1.1) and (1.2).

II. PRODUCTION ANGULAR DISTRIBUTION

In this section the differential cross section for the
reaction

03— §+0- (2.1)
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TasLE I. Notation for two-body scattering reaction.

Entrance Exit
channel channel
¢ ¢
Momentum in c.m. system® k ky
Total spin S@) S'(3)
z component of spin s v
Orbital angular momentum ! I
z component of orbital
angular momentum m m’
Total angular momentum J J’
z component of total
M M

angular momentum

> We use a system of units in which =1, k=1 A,

is expressed as a function of the matrix elements
Svy,u’ [Eq. (2.8)]. We follow the treatment of two-
body scattering reactions by Goldberger and Watson,?
with their notation, as given in Table I.

The differential cross section in the c.m. system for
the reaction (2.1) with initial state | £,S,v) and final state

[ksS') is
do  /27\? . .
"=(—> [{c; k,S"' | S(R) [¢; k,S,0)[ 2 (2.22)
aQ \k

= I<S,7V,] f(éf)c,7é7c) !S7V>[ 2 7

where (¢’; £;,8",'|S (k)| ¢c; ,S,v) is the unitary S-matrix
element in the barycentric subspace on the energy and
momentum shell; Eq. (2.2b) defines the scattering
amplitude f for the reaction. For an unpolarized target
the average cross section for any final spin orientation
is obtained by averaging over the initial spin orienta-
tions » and summing over the final spin orientations »':

(2.2b)

dg 1 do .
=3 —(¢'; k1, S" ' ¢ BuS,)
dQ 2541+ dQ

=(2S+1)1 Tr(ff7).

The S-matrix elements are used throughout rather
than the 7-matrix elements, because there is no
unique convention for the normalization of the T
matrix. If the T-matrix elements are defined by

<GI; Ef:S,V, lS(k) l ¢; ]%:Sﬂ’): 60',65,3',56,,",,6@/,2
+i<6,; kf)S,ﬂ"l T(k) , (2 ie’S:V; );
S may be replaced everywhere by 7, since we are

dealing with an inelastic reaction. We will omit the

channel suffix ¢ from now on.
The S-matrix element in (2.2) is transformed to the
ISTM representation, using the transformation matrix

&,S,v|imSy)=Y ;" (k) (2.4)

which resolves plane-wave states into partial waves,

(2.3)

8 M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964).
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and with the Clebsch-Gordan coefficients (1,S,m,»|J, M)
which resolve states |ImSv) into states of total angular
momentum |JM)

(1,8 | S(R) | ,S,v)
= X (kSIS m | T M)

Um!' I’ M imIM
XS T M| SR ISTMN,S m,v| T, M)
X(ImSv|k,Sv). (2.5)
From rotational invariance,
ST M| S(R) [ ISTM)=87, 583, Sv s 157 (), (2.6)

where Sy g7 is the S-matrix element in the LSTM

representation.
From Egs. (2.4)-(2.6) we have

<ﬁ/,S’,VI I S(k) l k:S:V>
X Ve (ENES s m | T M)Sy s 187 (k)
VmIMIM
X(L,S; mp| T MYV ()

=I’Z” Y= (cos®)V,%; v—v', VT )Susu’

It

. A1\ 12
X<l7§; O:Vljﬂ’)( 4 ) (27)

™
specifying the incident beam direction % as axis of
quantization; i.e.,
2041

1/2
m=0, M=y, Yl=<———~> , and cos®@=F-F;.
47

Inserting (2.7) into (2.3) gives

¢

= DT HD) - g ]
XSvyi ()Y p1* (cos®) |2, (2.8)

where we have dropped the summation over »=%, —1

since, for the chosen axis of quantization, do(v',»)

=do(—»', —»). The summation over / is superfluous

because 7 is uniquely determined by J and  and

]_‘_% 1/2
Zl+1> '

If the relative intrinsic parities of the initial- and
final-state particles are odd, then

04503178)= (=ye=cmin(

i\V
03:0317)= ()t-vmom (222 )"
2141

The total cross section is

5=§: 7r7i2(1+%)§l;151';.u’(k)|2» (2.9)
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TasLE II. Coefficients By s;ans" defined by Egs. (2.10) and (2.11) are given for all

possible combinations of I/, J, AX’, and J” up to spin %.

1787

27 AN 27

B2

B3

B4

BéS

SD1 SD1
PP1
PP3
PF3
DS3
DD3
DDS
DG5
FP5
FF5
FF7
FH7
GD7
GG7

PP1 PP1
PP3
PF3
DS3
DD3
DDS5
DGS
FPS
FF5

PP3 PP3
PF3
DS3
DD3
DD5
DG5S
FPS
FF5
FF7
FHT
GD7
GG7

PF3 PF3
DS3
DD3
DDS
DG5S
FP5
FF5
FF7
FHT
GD7
GG7

DS3 DS3
DD3
DD5
DG5
FP5
FF5
FF7
FHT
GD7
GGT

DD3 DD3
DD5
DGS
FPS5
FF5
FF7
FHT
GD7
GG7

DD5 DDS
DGS

0.25

0.25

—0.707
0.707

0.5

0.447
0.358
1.506

0.5

0.268
—0.215
1.757

0.5

1.643

0.5

—0.329
1.610

0.75

—0.707
0.707
—0.567
1.388

-0.316
0.949

—1.161
0.949

—0.400
—0.600

0.735
0.686
1.992

0.4

—0.105
0.515
—0.443
2474

.0
0.802

2.268

0.572
0.561

—0.648
2.173

0.306
—0.450

—1.161
0.949
—0.842
1.825

—0.567
1.388

—1.604
1.195

—0.805
—1.147
—0.878

1.014
1.007

—1.342
1.073
—0.861
0.878

—0.226
0.756

—1.342
1.155

—1.315
—0.268
0.770
0.861

-1.604
1.195

—0.842
1.825

—1.286
—1.476
—1.155

—-2.10
1.286

—1.106
0.990

—1.964

1.690

—1.375
1.403

—-1.620
—0.483

—0.735
—1.125

—1.764

—2.817
1.512

—2.582

—1.925
1.721
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TasLE IL. (Continued).
LU 27 AN 27 Bo Bt B2 B3 B4 Bs Bs BT
FP5 0.263 1.054
FF5 0.246 0.813 —2.134
FF7 2.381 0.308 —1.763
FH7 —0.690 —1.380
GD7 0.519 1.299
GG7 0.516 1.003 2.875
DG5 DGS 0.750 0.765 0.413
FPS5 —0.239 —2.988
FF35 0.188 0.878 1.568
FF7 —0.162 —0.756 —1.350
FH7 2.535 1.6905 0.846
GD7 —0.035 —0.482 —3.936
GGT 0.395 1.164 1.7605
FP5 FPS 0.750 0.600
FFs ~0.630 ~1.575
FF7 0.542 1.355
FH7 —0.385 —3.857
GD7 2.485 1.242
GG7 —0.926 —1.852
FF5 FF5 0.750 0472 —0.322
FF7 0.480 0.905 —2.934
FHT 0.412 1.215 1.837
GD7 —0.217 —1.014 —1.811
GGT 2.430 0.756 —0.907
FF7 FFT 1.000 0.794 —0.117 —1.010
FHT —0.355 —~1.045 —1.581
GD7 0.187 0.873 1.559
GG7 0.186 0.798 0.965 —3.901
FHT7 FH7 1.000 1.111 0.818 0.404
GD7 —0.089 —0.751 —5.016
GG7 0.714 1.511 1.994
GD7 GD7 1.000 1.021 0.551
GG7 —0.456 —1.344 —2.033
GG7 GGT 1.000 0.884 0.150 —0.606
The maximum value of Sys,” is unity, so that the where
maximum inelastic cross section for a single partial- (2n+1)
. . s 1 A4,= — —~P (cos®)dQ2
wave amplitude is 7A2(J+4%). More generally, 4rxe a9
¢=2 A (J+H2|Sss,57 (k) = e, b0 ,05,5] %, =2 2 Re(Sv/S\"*)Buwsavrm.  (2.11)
J v U,J 3N,J

and the maximum & in the elastic channel for a single
amplitude is, therefore, 47A (J43).

The S-matrix element in the preceding equations is
in general a linear combination of two isotopic-spin
amplitudes. Denoting the isotopic spin of the initial-
(final-) state meson and baryon by 7 and 7" (I” and 1),
respectively, we have for reactions (1.1)

S=(I,T; I3,T3|3,Is+T3)Ss(I',T"; Iy, Ty’ |§,15+T3)
+{,T; I5,Ts| 3,15+ T5)S12{l, T I, T5' | 3,15+ Ts),
and for reactions (1.2)

S= (I,T, Ia,Tal 1,]3+T3>S1<I’,T,; I3’,T3’[ 1,[3+T3>
A1, T; 15, T3] 0,5+ T3)So(I’, T’ 15/, T5' | 0,15+ Ts).

The right-hand side of Eq. (2.8) can be written as an
expansion in the Legendre polynomials P, (cos®)

d—
Z XS 4,P(cosO), (2.10)
aQ n

The coefficients B", evaluated by inserting (2.8) in
(2.11), are listed in Table II.

The scattering angle cos®=£-£; is not umquely
defined. In elastic scattering the convention is that £
and &; refer to the same particle. Then the amplitude
S7 always lies in the upper half of the complex plane
(ImS>0). Ininelastic scattering such as#+N — KA,
where the outgoing baryon and boson belong to the
same SU(3) octets as the initial-state particles, the
same convention is maintained by invoking SU(3)
symmetry. However, the amplitude S” can now lie
anywhere in the complex plane because of the sign of
the SU (3) Clebsch-Gordan coefficients.

In the reaction 74N — 744, in which N and A
belong to different SU (3) multiplets, a higher symmetry
is needed to make a correspondence between N and A.
Instead, we make the simple convention that £ and £,
are the directions of the initial- and final-state bosons.
The formalism in Sec. II is mdependent of the definition
of scattering angle. If ; is replaced by (—£), then
S goes to (—)VSpi’.
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III. DECAY ANGULAR DISTRIBUTION

For clarity we specify reaction (1.1). The notation is
as follows. 9 and ¢ are the polar and azimuthal decay
angles of the nucleon in the A rest frame, p(®) is the
spin density matrix of A, and fp(6,4) is the amplitude
for the decay (1.1b).

The differential decay distribution W (0,6,¢) can be
expressed as a function of the partial-wave amplitudes.
This is most conveniently done through the density-
matrix formalism

p(©)=ff1/Tr(f1"), 3.1)

where f is the scattering amplitude for reaction (1.1a),
defined in Eq. (2.2b). Here p is the wA spin-state
density matrix in the over-all c.m. system. However,
since the pion has zero spin, p is simply the A density
matrix in the same system. The spin state of a particle
is invariant under a transformation from the rest frame
of the particle to a moving frame®; hence p is also the
density matrix of A in its rest frame. Then

W (8,8,6)=Tr(fppfo")=Tr(fpff"fo")/Tr(ff1). (3.2)

The decay amplitude for the p-wave decay A— N+
is given by Eq. (2.7):

@'| fol3v) = V' (cost,8) (1,55 v—v', v/ [§v).  (3.3)

We ignore the energy-dependent part of the amplitude,
since it does not affect the angular distributions. With
this definition of fp, the decay distribution (3.2) is
normalized to unity.

The decay angles 6, ¢ refer to the coordinate frame
in which the Z axis is the axis of quantization. The
amplitude f has been calculated in Sec. II for Z=k&,
the c.m. incident beam direction:

&' f13v) =% LT+ (=) ITIRY " (cos @)
vy

X3 v—=v, v | ISvsu’. (34)

Defining a coordinate system Z=Fk, y=kXk; [Fig.
1(a)] the term V" (cos®) above becomes (1/4m)"?
XL@UAD) = [v=o" )Y U+ v—'|) I ]7Pr~" (cos8),
since the production azimuthal angle is always zero in
this frame. This form of f, inserted in Eq. (3.2), gives
the decay angular distribution in the coordinate system
of Fig. 1(a).

The decay distribution in another frame of reference
is obtained by rotation of the axis of quantization of
the density matrix p. The rotation matrices which take
the quantization axis from the beam direction to the
helicity direction or to the production normal are given
in the Appendix.

The form of the decay distribution depends on the
choice of quantization axis. For axis of quantization in

9 G. C. Wick, in High Energy Physics, edited by C. M. Dewitt

and M. Jacob (Gordon and Breach, Science Publishers, Inc.,
New York, 1965).
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7!

z (k)

v:(ix@,)

2 (kakp

(c)

. F1c. 1. Coordinate frames for decay angle of A. The vectors
k and kf are the c.m. incident and final pion directions in the
reaction 74N — A+x. (a) Incident beam direction in c.m. is
the Z axis, production normal is the ¥ axis. (b) Axis Z’ is —£&;
(see Appendix). (c) Axis Z" is the production normal %Xk,
(see Appendix), X" is the beam direction.

the production plane [Fig. 1(a) or 1(b)], the general
form for the density matrix is 1°

P33 P31 P3—1 P33

par* p11 pio1 p3—i¥ 35

po—1® —p11 o1 —par* @.5)
P33 P3—1 P31 P33

Hermiticity requires that all diagonal elements are real
and that ps_; and p;_; are purely imaginary. For a single
amplitude all elements of the density matrix are real.

From Egs. (3.2), (3.3), and (3.5), the decay distribu-
tion for the 2 axis in the production plane is

W(®)0:¢)= (3/47") [%+%P33+ (%" 2p33)COS20
—3V3 Reps_1 sin’f cos2¢

—3V3 Reps1 sin26 cosp].  (3.6)

_ For axis of quantization along the production normal
kX kf, the general form for the density matrix is!

P33 0 ps—1 O

0 pu O P13
p3—1* O p-1-1 O ’
0 pi-s* 0 P—3—3

and the corresponding decay distribution is

W¥(0,6,6)=(1/8m){3 sin26+2(p11¥+p_11V)
X (2—3 sin%0)— 2V3 sin2
X[Re(ps—1¥+p1—3¥) cos2¢
—Im(ps—1V4p1—s?) sin2¢ ]} .

10 See, e.g., N. Schmitz, in CERN Report No. 65-24 (un-
published).

It R, H. Capps, Phys. Rev. 122, 929 (1961).

(3.7)
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FF7

Fic. 2. Correlation between the FF7 production angular
distribution and the normalized decay distribution W (6¥,6")
integrated over ¢¥. [Coordinate system as in Fig. 1(c).]

1IV. POLARIZATION OF SPIN-} BARYON

Whereas A can be polarized only along the production
normal, the spin-3 baryon can be polarized in any
direction. The density matrix of a spin-} particle in its
rest system can be written

1+P,
P,+iP,

P,—iP,

: (4.1)
1-P,

P1/2=7%

where P,, P,, and P, are the three components of the
polarization vector. The polarization can be expressed
as a function of the partial-wave amplitudes through

FF7

Fie. 3. Correlation between the FF7 production angular
distribution and the normalized W (6B,¢5) integrated over cosg?.
[Coordinate system as in Fig. 1(a).]
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the relation

Joofp' o, fo!

Tr(fp,fo") W(0O,0,¢)

p1/2=

where p is the density matrix of the A. Equation (4.2)
defines py» in the A rest frame with the same axis of
quantization as p. The density matrix p1/2 is unchanged
by a transformation of the A system to the nucleon
rest system. When the reaction goes by a single partial-
wave amplitude, both the A and the nucleon are
unpolarized.

For the sake of completeness, we reproduce here the
expressions for the nucleon polarization derived by
Jackson.”? (They are obtained by applying the appro-
priate rotation to pi» above.) It is conventional to
specify the polarization in terms of Py, the longitudinal
polarization parallel to the nucleon momentum p in
the A rest frame, and two transverse components
P.x and P,y; the positive x direction is (X)X p and
y is along §X p, where ¢ is the axis of quantization for
the density matrix p.

For axis of quantization in the production plane [Fig.
1(a) and 1(b)] the polarization components are

P(0,0,6)IV(0,6,6)
= (3/4w) sinf {[3V3 (3 cos?d—1) Imps;
—3(cos?0—%) Imp1—1 ] sing+2V3 sin260 Imps_; sin2¢
+sin?0 Imps 5 sin3¢p}, (4.3)
Px(0,0,6)W(0,0,¢)
=— (3/4m){[§ cosf(9 cos?—5) Impy_;
+2V3 sin®0 cosd Imps; ] sing—2V3 sind (3 cos?d— 1)
XImps_1 sin2¢p—sin cosf Imps_; sin3¢p}, (4.4)

Ply (®701¢)W(®JGI¢)
=— (3/4r)[— (3+cos%) Imp;_; sing
+3V3 sin®0 Imps; cosp+2V3 sin20 Imp;_; cos2¢p
—sin% Imps_3 cos3¢].

We note that measurement of one component of the
polarization, together with the determination of the
decay distribution W (©,0,¢), [Eq. (3.6)7], suffices in
principle to give all elements of the density matrix
p(0) [Eq. (3.5)]. Integration over ¢ causes all three
polarization components to vanish.

For axis of quantization along the production normal
the polarization is

PLN(®;0)¢)W(®’0;¢)
= (3/4m){[5 (p1:" —p_1-1") (3 cos?6—5/3)
+3 (033" — p_s—_s") sin?] cosd
- %\/3_ sinZﬁ[Re (p3Q1N'—p1__3N) COSZ(}S
- —_ Im (p;;_lN—‘ pl_sN) sm2¢])< sinﬂ} s (45)
2 J. D. Jackson, in High Energy Physics, edited by C. M.

Dewitt and M. Jacob (Gordon and Breach, Science Publishers,
Inc., New York, 1965).
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GD7

F16. 4. Same as Fig. 2 but for the GD7 amplitudes.

PNx(0,0,6)W (©,6,4)
= — (3/4m){[5 (p11¥ — p—1-17) (3 cos?0—13)
+ 3 (33— p_3_3") sin24] sinf
+1V3 sinf(3 cos?0— 1)[Re(ps_1¥ —p1-3") cos2¢
—Im(ps_1V—p1s") sin2¢ ]}, (4.6)
PLYy(©,0,6)7 (8,06)
=+ (V3/4r) sin20[ Re(p3—1¥ — p1_s¥) sin2¢
+Im(ps_1¥—p1_sV) cos2¢]. (4.7)
With the production normal as axis of quantization, the
¢ dependence takes the form A4 sin2¢-B cos2¢, and
upon averaging over ¢, the quantity P,¥y vanishes.

Upon integrating over 6, the quantity P1" also vanishes,
and we have

P Nx (@)= (3/64)[(5/3) (1" —p-1-1")
+3 (psaN—P—s—sN)] .
The magnitude of P,¥x(®) cannot exceed 149,

(4.8)

V. ANALYSIS OF EXPERIMENTAL DATA

The experimental data at a given momentum consist
of a joint distribution in four independent variables,
which may be 0, 6, and ¢ as defined in Sec. I, and the
polarization P. The distribution in the angular variables
is

1(0,6,6)=[ds(0)/d2]W (0,0,6)  (5.1a)
=5 Tr(f/W(0,0,6)
=% TrfoRff'R7fp!, (5.1b)

where d5/d2 is the differential cross section for reaction
(1.1a), and W(©,0,¢) is the decay angular distribution
for (1.1b); correspondingly, f and fp are the amplitudes
for reactions (1.1a) and (1.1b), respectively, and R
is a rotation matrix. The distribution 7(©,0,¢) can be
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GD7

F16. 5. Same as Fig. 3 but for the GD7 amplitudes.

written explicitly as a function of the partial-wave
amplitudes Su3,17 and the observables ©, 6, ¢ by
substituting in Eq. (5.1b)

1
@1 1) =— Ty
2k vy

XA V== | )Y (4 | p—v'| ) ]2

XPVV‘”I (COS@)(Z',%; V—V', V'l]V)Szl;,ng
and

@v|fp|3v )=V 1"~ (cos8d)(1,3; v'—», »|$¥'),

where the index » runs from % to —% and »’ from 2 to

DDS

] ] | | ] Ll | ]
-0 -8 -6°-4 -2 0 .2 4 6 .8 10
COS @ —=

T16. 6. Production angular distributions for FF7, GD7,
and DDS5 amplitudes.
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Fi1G. 7. The decay parameters defined in Sec. V are shown as a
function of the A production angle © for quantization axis of the
density matrix as (a) beam direction and (b) normal to the
production plane. For a single amplitude, as shown here, p;_,¥
=p1-3" and py ¥ =p_;_,¥.

—32. The angle © is always given by cos®@=£-£;.
When the decay angles are measured in the coordinate
system Z=F, y=kXk; [Fig. 1(a)], the matrix R is a
unit matrix. When the decay angles are expressed in
the coordinate systems of Fig. 1(b) or 1(c), the corre-
sponding rotation matrices are Ry and Ry as given in
the Appendix.

Angular distributions for the partial-wave amplitudes
FF7 and GD7 are shown in Figs. 2-5 for the coordinate
systems defined in Figs. 1(a) and 1(c). The correlations
between the production and decay angles of the A are
clearly sensitive to the spin and parity of the partial-
wave amplitudes.

The decay distribution W (0,0,¢) of A or = is com-
pletely specified at a given production angle by three
parameters which are functions of the elements of the
density matrix p=ffT/Tr(ff") of the spin-} particle:
p33(0), Reps_1(0), and Reps:1(®) for axis of quantiza-
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tion in the production plane, or [p1:¥ (®)+p_1_:1¥(0O)],
Re[ps1¥(0)+p1-5"(0) ], and Im[ps_1V(0)+p1-57(0) ]
for the quantization axis along the production normal.
Then, according to Eq. (5.1a) the experimental data
(excluding polarization) at a single momentum can be
summarized in the form of four distributions in cos®—
the differential cross section and the three decay param-
eters. These distributions are shown in Figs. 6 and 7
for the partial-wave amplitudes DD5, FF7, and GD7
for the coordinate systems defined in Fig. 1(a) (o®)
and Fig. 1(c) (po¥).

The experimental density-matrix elements are statis-
tically correlated. This correlation must be taken into
account if the comparison between the experimental
and calculated distributions is made in terms of density-
matrix elements.

The experimental data may be insufficient to deter-
mine all the correlations among 0, 6, and ¢. In that case
the question arises of how best to bin the data. Also the
choice of coordinate frame in which the decay angles
are measured may be important. There is no simple
prescription, but a study of the density-matrix elements
for the hypothesis being tested will usually indicate
the best procedure. For example, if one is trying to
distinguish between the amplitudes FF7 and GD7,
the correlations between ® and 6% or between ® and ¢2
are clearly very sensitive, as indicated by the plots of
pnN and Repg_lB in Fig. 7

=0.l
-0.2

0 +1.0
cos B

Fic. 8. The density-matrix elements p;_15, ps_3Z, Imps?,
Imp;_12 are shown as a function of the A production angle ©
together with the quantity P;¥x(®) for interference of (a) DDS
and GD7, and (b) DDS5 and FF7. The interfering amplitudes have
equal magnitude and are 90° out of phase.
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In reaction (1.2) the A polarization can readily be
measured through observation of the decay A — p+7—.
Knowledge of the polarization of the spin-} baryon
supplements the information on the elements of the
density matrix p(®) obtainable from the decay distribu-
tion W (0,0,¢). For example, in the coordinate system
of Fig. 1(a) or 1(b), the decay distribution W (©,6,4)
is a function of ps3, Reps_1, and Reps;; and the polariza-
tion depends on pi—1, ps—s, Imps;, and Imps ;. An
alternative way of distinguishing between FF7 and GD7
amplitudes is by observing the polarization produced by
their interference with the DDS5 amplitude. The
relevant density-matrix elements resulting from this
interference are shown in Fig. 8. However, the statis-
tical weight of the polarization data is down by an
order of magnitude from that of the decay distribution
data. Integration over the decay angles 8 and ¢ leaves
only P,¥x(®) as given in Eq. (4.8). This quantity is
also shown in Fig. 8.
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APPENDIX: ROTATION OF THE AXIS
OF QUANTIZATION

If p denotes the density matrix for axis of quantization
z, and p’ the same state for axis of quantization 2/, p
and p’ are related by the unitary transformation

p'=RpR™!.

The change of axis of quantization is simply a change of
basis states from |JM) to | JM'), where M’ is an eigen-
value of J.

Below we give the transformation matrixes Ry and
Ry corresponding to a rotation of the axis of quantiza-
tion from the incident beam direction [Fig. 1(a)] to
(1) spin-§ particle direction (helicity direction) [Fig.
1(b)] and to (2) the production normal [Fig. 1(c)],
respectively.

(1) Rotation to the helicity direction. In the right-
handed (#,y,2) coordinate frame z=% and y=EXE,
[Fig. 1(a)]. The Euler angles for the rotation which
takes z into the helicity direction are a=0, f=0p,
and y=0.1 (@y=180°—0.) The corresponding rota-
tion matrix Ry is

f(— cos2Oy+cosiOy) —sind®Oy+3siniOy
3sinf@y—siniOx V3 (—cosi®y+cosi®Op)
3 cosiO®g+cos3Op V3 (sinf @ yz+sini O)
—V3(sin§@y+sini@p) cosi®py+3 cosiOy

(2) Rotation to production normal [see Fig. 1(c) ].The Euler angles which take z into the production

normal and x into the beam direction [Fig. 1(c)] are a=90° $=90° and y=180°. The density matrix p¥,
with axis of quantization along the production normal, is RypRy"!, where

61’31:'/4 \/3'61'7?/4 \/Ze—iw/‘i e—i31r/4
1 __\/3—8'&311’/4 _ehr//l e~—i1rl4 \/36——1'31/4
Ry=— .
,\/8 \/3'6173#/4 —eiTl4 ——iT4 \/ge—~i31r/4
_ei31r/4 \/3' —ir/4 -\/3' —im/4 e——i31rl4

(Ry is the rotation matrix for @=90° 8=90°, y=0. From parity conservation the density matrix is invariant
under the rotation y=180°.)

1 The Euler angles are as defined by M. E. Rose, Elementary T heory of Angular Momentum (John Wiley & Sons, Inc., New
York, 1957) a rotation « about the original z axis, followed by a rotation 8 about the new ¥ axis, followed by a rotation v about the
new z axis. The rotation is performed in the positive sense in a right-handed coordinate system.



