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The formalism for making a partial-wave analysis of the reactions ~+S —+ d, (1236)+~ and E+E-+
Z (1385)+m is outlined. From such an analysis, the coupling of baryon resonances to these inelastic channels
can be determined. The differential cross section, decay distribution for 6 —+ E+x, and nucleon polariza-
tion are expressed as functions of the S-matrix elements Sgq, q (k), which connect the initial xE state with
orbital angular momentum l, spin J, and c.m. momentum k to the Dm state with orbital angular momentum l'.

I. INTRODUCTION

K give the formulas for making a partial-wave
~

~

analysis of the reaction sequence

and

sr+X ~ 6(1236)+sr
L x+.

K+X Z(1385)+

L~+..

(1.1a)

(1.1b)

(1.2a)

(1.2b)

The decay sequence (1.1) is described by five indepen-
dent variables, which may be chosen as h, 0, e, P, P,
where k is the momentum in the ~E c.m. system,
cosa~=~; k, „& in the c.m. system, 8 and @ are the
polar and azimuthal angles of the decay nucleon in the
6 rest frame, and P is the nucleon polarization. By
"partial-wave" analysis we mean that the experimental
distributions are used to infer the quantities St.1,tys(k)
which are the S-matrix elements connecting the initial
vrX state with orbital angular momentums and spin J
to the hm. state with orbital angular momentum /' and
spin J.The S&.~ &~~ are complex scalar quantities which
are functions only of k.

Partial-wave analyses of reactions (1.1) and (1.2) can
be used to determine the decay rates of Ã* and I'*
resonances into h(1236)+sr and Z(1385)+sr, respec-
tively, and to check the (IJ~) values inferred from
analyses of elastic-scattering data. Considerable data
on these reactions are being amassed in current bubble-
chamber experiments at incident momentum below
3 GeV/ cPartial-wave analyses of the reactions
K+X-+ Z(1385)+sr, and E+X~A(1520)+sr have
already been made for the special case that the cross
section is dominated by a single amplitude. ' ' These
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Schneider, R. Barloutaud, P. Granet, J. Meyer, and J.-P. Porte,
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analyses led to a determination of the (IJ~) quantum
numbers for Z(1770) and A(1815), and their decay rate
into A(1520)+sr and Z(1385)+sr, respectively.

In this paper we relate the distributions in the
variables k, 0", 8, P, and P, which can be measured
experimentally to the S~g ~~~ amplitudes. Previous
authors have studied certain aspects of this problem
(mainly the relation between the cos0 distribution and
the St.~, t.*,.s amplitudes), but have not enumerated a
complete set of equations which utilizes all the experi-
mental information on the production and decay of
h(Z) to determine the St 1, tts. s '

In general, the reaction ~$ —+xxX is a coherent
sum of such amplitudes as A (sr' —+ sr'*), A (srX—+ psV),
A(st —+ srsrX), etc. The formalism outlined below is
applicable only to a subset of events corresponding to
the reaction xX —+md. In most experiments it is
possible to isolate a sample of these events which are
relatively free from interference of other amplitudes (in
some cases the complete range of variables 0, 8, Q will
not be accessible due to experimental cuts).

Models which take into account all possible two-
particle interactions in. the ~mX final state have been
worked out. 6 ~ However, the application of these models
poses practical diKculties because of their mathemat-
ical

'

complexitv and the large number of variables
involved. We believe that the formalism outlined here
is a useful tool for the preliminary analysis of the
three-body final states (1.1) and (1.2).

II. PRODUCTION ANGULAR DISTMBUTION

In this section the differential cross section for the
reaction

o +-'+~ -'+0 (2 1)
Particles, Athens, Ohio, D65 edited by B. A. Munir (University
of Ohio Press, Athens, 1965), p. 296.' R. B.Sell, R. W. Birge, Y. L. Pan, and R. T. Pu, Phys. Rev.
Letters 16, 203 (1966).

4 R. G. Roberts, Ann. Phys. (N. Y.) 44, 325 (1967).' M. G. Olsson and G. B. Yodh, Phys. Rev. 145, 1309 (1966);
145, 1327 (1966).

6 B. Deler and G. Valladas, Xuovo Cimento 4SA, 559 (1966).' J. M. Namyslowski, M. S. K. Rasmi, and R. G. Roberts,
Phys. Rev., 157, 1328 (1967).
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1786 A. D. BROD Y AND A, KERNAN

TABLE I. Notation for two-body scattering reaction.

Entrance
channel

C

Exit
channel

C

Momentum in c.m. system'
Total spin
z component of spin
Orbital angular momentum
z component of orbital

angular momentum
Total angular momentum
z component of total

angular momentum

k
sp)

a We use a system of units in which 5 = 1, k = 1 X.

is expressed as a function of the matrix elements
S/. ; /;~ LEq. (2.8)]. We follow the treatment of two-
body scattering reactions by Goldberger and %atson,
with their notation, as given in Table I.

The differential cross section in the c.m. system for
the reaction (2.1) with initial state

I k,s,v) and 6nal state
le,s', v'& is

do- 2x '
I &c', kr, s', v'I S(k) I c; k,s,v) I

2 (2.2a)
dQ

= I(S',v'I f(ky, c',k, c) I S,v) I', (2.2b)

=(2S+1) 'T (ff') (2.3)

where &c'; kr, s', v'I S(k)
I c; k,S,v) is the unitary S-matrix

element in the barycentric subspace on the energy and
momentum shell; Eq. (2.2b) defines the scattering
amplitude f for the reaction. For an unpolarized target
the average cross section for any final spin orientation
is obtained by averaging over the initial spin orienta-
tions v and summing over the 6nal spin orientations r '.

dg I 80
P —(c'; k~,s',v', c; k,s,v)

dg 2S+1". dQ

and with the Clebsch-Gordan coeKcients (l,S,m, v
I J,M&

which resolve states
I lmSv) into states of total angular

momentum
I JM)

(ky, s', v'I S(k) Ik,s,v)

&kr,SV
I
l'm'S'v')(l', S'; m', v'I J',M')

X&l'S'J'M'Is(k) llSJM)(l, S,m, vl J,M&

X&imsv I k,Sv& (2. .5)
Fram rotational invariance,

(l'S'J'M'IS(k) llSJM)=4, J'4E, /i/'Svs'/s (,k) (2 6)

where Sl g. , lgJ is the S-matrix element in the lSJ3f
representation.

From Eqs. (2.4)—(2.6) we have

(ky, s', v'I S(k) I k,S,v&

I'i "'(k~)&i',S', m', "IJ,M&S, , „(k)
l'm'lM JM

X(l,S;m, vl JpM&I",-*(k)
= Z I'i " " (coso)&i',-'„v—v', v'I J,v&sv. , &

VlJ

2l+1
X&l,—', ; O, vl J,v) (2 7)

4~

specifying the incident beam direction k as axis of
quantization; i.e.,

(21+1 '»
m=0, M=v, F/0=I, and cosO'=k k~.

Inserting (2.7) into (2.3) gives

do—=—ZIZ(j+k)"'( —)' """&l'-'-' —""Ij-'&
Xsvy, /*,~(k) I/'v'/' "'(cosO)

I

' (2.8)
The S-matrix elements are used throughout rather

than the T-matrix elements, because there is no
unique convention for the normalization of the T
matrix. If the T-matrix elements are de6ned by

&c'; kx,s'v'Is(k) Ic; k,s,v)=s;, ,s, ,s„, „sg, g

+l(&'; kr, S',v'
I
2'(k)

I &; k,S,v; ),

where we have dropped the summation over ~= ~, —-',

since, for the chosen axis of quantization, do(v', v)
=do (—v', —v). The summation over l is superfluous
because / is uniquely determined by J and I' and

(J+i I/2

&l,-'„0,-,'I j,k&=(—) '-i —/ il

E2l+1
5 may be replaced everywhere by iT, since we are
dealing with an inelastic reaction. We will omit the
channel suf6x c from now on.

The S-matrix element in (2.2) is transformed to the
lSJM representation, using the transformation matrix

&k,S,vllmSv)=I'i (k)

If the relative intrinsic parities of the initial- and
6nal-state particles are odd, then

(J+i i/2

(l i.0 il J ') ( )v—iz—i/2iqi
I

&2l+1(2 4)
The total cross section is

0'=g Tilt (J+g)P IS/ g /y (k) IJ lv
(2 9)

which resolves plane-wave states into partial waves,

"M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley @ Sons, Inc. , ¹wYork, j.964).
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ll'2J XX'2J'

TAsrz II. CoeScients Egg g;M, g" deined by Eqs. (2.10) and (2.11) are given for all
possible combinations of l/', J, M, ', and J' up to spin ~~.

SDi SD1
PP1
PP3
PE3
DS3
DD3
DDS
DGS
FPS
FFS
FF7
FH7
GD/
GG7

PP1 PP1
PP3
PF3
DS3
DD3
DD5
DGS
FPS
FES
FF7
FH7
GD7
GG7

PP3 PP3
PE3
DS3
DD3
DDS
DGS
FPS
FES
FE7
EH7
GD/
GG7

PE3 PF3
DS3
DD3
DDS
DGS
FPS
FES
EF7
EH7
GD7
GG7

DS3 DS3
DD3
DDS
DGS
EBS
EES
EF/
EH7
GD7
GG7

DD3 DD3
DDS
DGS
FPS
EFS
FF7
FII7
GD7
GG/

DDS DDS
DGS

0.25

0.5

0.5

0.5

0.5

0.5-0.316
0.948

—0.707
0.707

0.447
0.358
1.506

0.268—0.215
1.757

—0.329
1.610

—0.707
0.707—0.567
1.388

—0.316
0.949

—1.161
0.949

—0.400—0.600

0.735
0.686
1 992

0.4

—0.105
0.515—0.443
2.474

-1.0
0.802

0.572
0.561

—0.648
2.173
0.306—0.450

—1.16i
0.949—0,842
1.825

—0.567
1388

—1.604
1.195

—0.805—1.147—0.878

1.014
1.007

—1.342
1.073—0.861
0.878

—1.342
1.155

-1.315—0.268
0.770
0.861

—1.604
1.195

—0.842
1.825

—1.286—1.476—1.155

—2.10
1.286—1.106
0.990

1.690

11375
1.403

1.620-0.483
—0.735—1.125

—2.817
1.512

—1.925
1./21
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TABLE II. {Comtzeled).

l I'2J XZ'2J'

FPS
FFS
FF7
FH7
GD7
GG7

DGS DG5
FES
FFS
FF7
FH7
GD7
GG7

FI'5 FE'5
FFS
FF7
FH7
GD7
GG7

FFS FFS
FF7
FH7
GD7
GG7

FF7 FF7
FH7
GD7
GG7

FH7 FH7
GD7
GG7

GD7 GD7
GG7

GG7 GG7

jg0

0.750

0.750

0.750

1.000

1.000

1.000

1.000

0.263
0.246
2.381

0.188—0.162
2.53S

2.485

—0.217
2.430

0.187
0.186

0.519
0.516
0.765

—0.035
0.395
0.600—0.630
0.542

0.472
0.480
0.412

0.794—0.355

1.02i—0.456
0.884

1.054
0.813
0.308—0.690

—0.239
0.878—0.756
1.6905

1.242—0.926

—1.014
0.756

0.873
0.798

—0.089
0.714

1.299
1.003
0,413

—0,482
1.164

—1.575
1.355—0.385

—0.322
0.905
1.215

—0.117—1.045

0.818

0.551—1.344
0.150

—2.134—1.763—1.380

—2.988
1.568—1.350
0.846

—1.852

—1.811—0.907

1.559
0.965

—0.751
1.511

2.875

—3.936
1.7605

—3.857

—2.934
1.837

—1.010—1.581

0.404

—2.033
—0.606

—3,901

—5.016
1.994

The maximum value of S& ~ E~ is unity, so that the
maximum inelastic cross section for a single partial-
wave amPlitude is ~As(I+s). More generally,

0 =g ~its(&+-', )Q ~ Ss;,s)'(&) —8",.b~, s4, 8~ ',

(2/s+1) do.
A„= —P„(cosO~)dQ

4' X' dQ

do'—=As P A P (cosa')
dQ

(2.10)

and the maximum 0. in the elastic channel for a single
amplitude is, therefore, 4~X(I+-,').

The S-matrix element in the preceding equations is
in general a linear combination of two isotopic-spin
amplitudes. Denoting the isotopic spin of the initial-
(6nal-) state meson and baryon by I and T (I' and T'),
respectively, we have for reactions (1.1)

S= (I,T; Is,Ts~ ,,Is+To)Ss/s(I', T'-; Is', Ts
~ s)Is+To)

+(I~Ti Is~To I s~Is+Ts)S&/s(I ~T ) Is «Ts I s ~Is+To) ~

and for reactions (1.2)

S= (I,T; Is,Ts
~
1,Is+To)Sg(I', T'; Is,Ts

~
1,Is+ Ts)

+(I)T ) Is,Ts
~
O,Is+ Ts)So(I', T'; I,',T,'

~
O,I,+T,).

The right-hand side of Kq. (2.8) can be written as an
expansion in the Legendre polynomials P„(cosO~)

The coeScients B", evaluated by inserting (2.8) in
(2.11), are listed in Table II.

The scattering angle coso~=k k~ is not uniquely
defined. In elastic scattering the convention is that k
and k~ refer to the same particle. Then the amplitude
SJ always lies in the upper half of the complex plane
(ImS) 0). In inelastic scattering such as sr+1V —+ %+A,
where the outgoing baryon and boson belong to the
same SU(3) octets as the initial-state particles, the
same convention is maintained by invoking SU(3)
symmetry. However, the amplitude SJ can now lie
anywhere in the complex plane because of the sign of
the SU(3) Clebsch-Gordan coefEcients.

In the reaction m+X —+m.+6, in which E and 6
belong to different SU(3) multiplets, a higher symmetry
is needed to make a correspondence between E and ~.
Instead, we make the simple convention that k and k~
are the directions of the initial- and final-state bosons.
The formalism in Sec. II is independent of the definition
of scattering angle. If k/ is replaced by (—k/), then
S~ s/ goes to (—)'Ss i/.
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III. DECAY ANGULAR DISTRIBUT'XO5'

For clarity we specify reaction (1.1).The notation is
as follows. 0 and @ are the polar and azimuthal decay
angles of the nucleon in the 6 rest frame, p(0~) is the
spin density matrix of 6, and fn (8,&) is the atnplitude
for the decay (1.1b).

The differential decay distribution W(O', 8,$) can be
expressed as a function of the partial-wave amplitudes.
This is most conveniently done through the density-
matrix formalism

X

x'

X" (k)
Ji

= v(v')

c (o)= ff'/Tr(ff') (3 1)
=Z ~(kx kt)

where f is the scattering amplitude for reaction (1.1a),
defined in Kq. (2.2b). Here p is the nA spin-state
density matrix in the over-all c.m. system. However,
since the pion has zero spin, p is simply the 6 density
matrix in the same system. The spin state of a partide
is invariant under a transformation from the rest frame
of the particle. to a moving frame'; hence p is also the
density matrix of 6 in its rest frame. Then

)/('(o 8A)=T (fwf ')=T (f ff'f ')/T (ff') (3 2)

The decay amplitude for the p-wave decay 6~ A'+n.
is given by Kq. (2.7):

(2l'I fnI 2l ) I"l"—"'(cos8,&)(1,—', ; l —v', l'I 2v). (3.3)

tA'e ignore the energy-depend. ent part of the amplitude,
since it does not affect the angular distributions. With
this definition of fg&, the decay distribution (3.2) is
normalized to unity.

The decay angles 8, Q refer to the coordinate frame
in which the Z axis is the axis of quantization. The
amplitude f has been calculated in Sec. II for Z=k,
the c.m. incident beam direction:

FIG. 1. Coordinate frames for decay angle of A. The vectors
k and kf are the c.m. incident and 6nal pion directions in the
reaction x+S—+ 6,+~. (a) Incident beam direction in c.m. is
the Z axis, production normal is the I" axis. (b) Axis Z is —ky
{see Appendix). (c) Axis Z" is the production normal k&(ky
(see Appendix), X" is the beam direction.

the production plane I Fig. 1(a) or 1(b)j, the general
form for the density matrix is "

p3i
pii

p3—1

pi—i
(3 5)

p3—z
—psi p33

Hermiticity requires that all diagonal elements are real
and that p3 3 and p» are purely imaginary. For a single
amplitude all elements of the density matrix are real.

From Kqs. (3.2), (3.3), and (3.5), the decay distribu-
tion for the s axis in the production plane is

)&(i',a, ; p —l', v'I Jv)sl t, l;~. (3.4)

Defining a coordinate system Z=—k, y=kXkr I Flg.
1(a)g the term I'P "'(cosO~) above becomes (1/4n)'"
xL(»'+1)(&'—I

-"I)/(I'+I -"I)'&'"& -"(- o. )
since the production azimuthal angle is always zero jn
this frame. This form of f, inserted in Kq. (3.2), gives
the decay angular distribution in the coordinate system
of Flg. 1 (a).

The decay distribution in another frame of reference
is obtained by rotation of the axis of quantization of
the density matrix p. The rotation matrices which tat.e
the quantization axis from the beam direction to the
helicity direction or to the production normal are given
ln the Appendix.

The form of the decay distribution depends on the
choice of quantization axis. For axis of quantization in

G. C. %ick, in ~;gh g~«gZ Ihx»&&, edited by C. M. Dewitt
and M. Jacob (Gordon and Breach, Science Publishers, Inc.,
New Vorl(;, 1965).

p33
0
ps—x

0

0

and the corresponding decay distribution is

W~(0, 8,&)= (1/8s){3 sin'8+2(plp+p l p)
X (2—3 sin'8) —24$ sin'8

XLRe(P3-l +Pl-3 ) cos24
—Im(pa l +pl 3") sln2y)). (3.7)

'0 See, e.g., N. Schmitz, in CERN Report Ão. 65-24 (un-
published).

"R.H. Capps, Phys. Rev. 122, 929 (196I).

)I'(o 8A) = (3/4 )Lk+ s~»+ (2 2I »)co—s'8
——,'V3 Rep3 i sin'8 cos2$

——,'&3 Repal sln28 cos$g. (3.6)

For axis of quantization along the production normal
k)&kf, the general form for the density matrix is"
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FF7 the relation

Dp D Dp D
plg2=

Tr(fn, fo') W(o",8A)
(4.2)

Fjo. 2. Correlation between the IiIi 7 production angular
distribution and the normalized decay distribution 8'(8~,@~')
integrated over p+. I Coordinate system as in Fig. 1(c).g

where p is the density matrix of the h. Equation (4.2)
de6nes py/~ ln the 6 rest frame with the same axis of
qllantlzRtlon Rs p. The density mRtrlx py/2 ls un{ hRnged
by a transformation of the 6 system to the nucleon
rest system. When the reaction goes by a single partial-
wave amplitude, both the 6 and the nucleon are
unpolarized.

For the sake of completeness, we reproduce here the
expressions for the nucleon polarization derived by
Jackson. " (They are obtained by applying the appro-
priate rotation to p&~2 above. ) It is conventional to
specify the polarization in terms of I'I., the longitudinal
polarization parallel to the nucleon momentum y in
the 5 rest frame, and two transverse components
I',z and I',y; the positive x direction is (EXP)Xp and
y is along EXP, where j is the axis of quantization for
the density matrix p.

For axis of quantization in the production plane LFig.
1(a) and 1(b)j the polarization components are

1+I', I', iE„—=1plj2 2 I',+iP„1 I', —(4.1)

where I'„ I'„, and I', are the three components of the
polarization vector. The polarization can be expressed
as a function of the partial-wave amplitudes through

FF7

Whereas 6 can be polarized only along the production
normal, the spin-~ baryon can be polarized in any
direction. The density matrix of a spin-~ particle in its
rest system can be written

I'&(0,8,y)W(0, 8,y)
= (3/4m) sin8 {L:',V3(3 cos28—1) Imp„

—3 (cos 8—9) Impi zg sinp+2v3 sin28 Imp, , sjn2y
+sill 8 Impy 3 sln3$}, (4.3)

&"(8,8,~)W(e, 8,~)
= —(3/4x) {Ps cos8 (9 cos'8—5) Imp, ,

+2v3 sm'8 cos8 Impar) sing ——,'v3 sin8(3 cos28 —1)
XImp3 q sin2|t —sin'8 cos8 Impa z sin3p}, (4.4)

&a (0,8,~)W(0,8,~)
(3/4%)t. (3+cos 8) Impl I sm$

+3v3»n 8 Impai co++3V3 sin28 Imp3 ~ cos2$
—sin'8 Impa g cos3pj.

%'e note that measurement of one component of the
polarization, together with the determination of the
decay distribution W(0,8,$), LEq. (3.6)j, suKces in
principle to give all elements of the density matrix
p(0~) LEq. (3.5)j. Integration over g causes all three
polarization components to vanish.

For axis of quantization along the production. normal
the polarization is

FIG, 3. Correlation between the FIi 7 production angular
distribution and the normalized 8"I'8~,&~) integrated over cosg~.
LCoordinate system as in Fig. 1(a).g

Pr,~(0,8,$)W(O", 8,$)
= (3/4x) {L-',(pn~ —p g g") (3 cos'8 —5/3)

+g(pgg p—3—g ) sm 8j cos8
——',v3 sin28LRe(p3 q~—

pq 3~) cos2p
—Im(p3 P—px 3~) sin2yjXsin8}, (4.5)

~2 J. D. Jackson, in High Energy I'hysjgs, edited by C. M.
Dewitt and M. Jacob (Gordon and Breach, Science Publishers,
Inc. , New York, 1965).
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GD7 GD7

FIG. 4. Same as Fig. 2 but for the GD7 amplitudes. Fro. 5. Same as Fig. 3 but for the GD7 amplitudes.

P,~x (e,e,qt )W (O,e,y)
= —(3/kr)([-, (pIP —p g g~) (3 cos'8 ——,')

+-', (p3P—p 3 P) sin28jsin8

+-,'%3 sine(3 cos'8 —1)[Re(ps P—p~ P) cos2$
—Im(p3 P—pg P) sin2&]}, (4.6)

p, y(O ey)w(O ey)
=+(v3/4n. ) sin28[Re(p3 P—

pq 3 ) sin2$

+1m(pa-P —pi-P) cos24 j (4 7)

With the production normal as axis of quantization, the
P dependence takes the form A sin2&+8 cos2&, and
upon averaging over @, the quantity I'& y vanishes.
Upon integrating over 8, the quantity El,~ also vanishes,
and we have

P,~x(O')= (3/64)[(5/3)(pgP —p & g )
+3(p»"—p-~~")j (4 g)

The magnitude of P,~x{0)cannot exceed 14%.

written explicitly as a function of the partial-wave
amplitudes Svy &i~ and the observables 0', 8, P by
substituting in Kq. (5.1b)

&2"Iflkv&= Z(~+2)"'(—)' """
2k ~'~

X[(22'+1)(i'—
I v —v'I )!/(1'+ I

v —v'I)!j"'
XPv " (cosO')(l', -', ; v —v', v'I Jv)Si,*,)g~

(k v
I f& I s v') = I q"' "(cose,p) (1,—,'; v' —v, v

I ~ v'),

where the index ~ runs from 2 to ——,'and v' from ~~ to

I I I I I I I

V. ANALYSIS OF EXPERIMENTAL DATA

The experimental data at a given momentum consist
of a joint distribution in four independent variables,
which may be 0~, 8, and& as dered in Sec. I, and the
polarization P. The distribution in the angular variables
1S

(5.1a)I(0 e y) = [de(O)/dn5W(O, e,y)

'Tr(ff')W(o 8 0)-
=-', Trfl)RfftR &fot, (5.1b)-

where do/dQ is the differential cross section for reaction
(1.1a), and W(0~, 8,&) is the decay angular distribution
for (1.1b); correspondingly, f and f& are the amplitudes
for reactions (1.1a) and (1.1b), respectively, and E
is a rotation matrix. The distribution I(0',8,$) can be

I I:I I I I ! I I

—I.O —.S ".6 ".4 -.2 0 .2 .4 .6 .8 I.O
COS OH~

FIG. 6. Production angular distributions for FP7, GD7,
and DD5 amplitudes.
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tion in the production plane, or Q~P(8)+p ~ i (e)],
Re+3 & (0)+pi P(e)j, and &m[@3-i"(O)+u -3"(e)l
for the quantization axis along the production normal.
Then, according to Eq. (5.1a) the experimental data
(excluding polarization) at a single momentum can be
summarized in the form of four distributions in cosO~-
the diA'erential cross section and the three decay param-
eters. These distributions are shown in Figs. 6 and 7
for the partial-wave amplitudes DD5, IiIi 7, and GD7
for the coordinate systems defined in Fig. 1(a) (ps)
and Fig. 1(c) (p~).

The experimental density-matrix elements are statis-
tically correlated. This correlation must be taken into
account if the comparison between the experimental
and calculated distributions is made in terms of density-
matrix elements.

The experimental data may be insufhcient to deter-
mine all the correlations among 0+, 0, and p. In that case
the question arises of how best to bin the data. Also the
choice of coordinate frame in which the decay angles
are measured may be important. There is no simple
prescription, but a study of the density-matrix elements
for the hypothesis being tested will usually indicate
the best procedure. For example, if one is trying to
distinguish between the amplitudes IiF7 and GD7,
the correlations between 0~ and 0~ or between 0" and p~
are clearly very sensitive, as indicated by the plots of
plj and Reps ] ln Fig. 7.
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—l.o 0
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(b)

I.O
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8
P I-I

i 0.4—
0.2

B

I

(b)

I'IG. 7. The decay parameters de6ned in Sec. V are shown as a
function of the 6 production angle 0 for quantization axis of the
density matrix as (a) beam direction and (b) normal to the
production plane. For a single amplitude, as shown here, p3 1~
=p1 P and p1P=p 1 P.
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ImP3)
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—0.4—
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0.2
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(a)

e
I mP3 l
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—a~. The angle O~ is always given by cosO'=k kr.
When the decay angles are measured in the coordinate
system Z=k, y=k)&kr I Fig. 1(a)j, the matrix 8 is a
unit matrix. When the decay angles are expressed in
the coordinate systems of Fig. 1(b) or 1(c), the corre-
sponding rotation matrices are XII and E~ as given in
the Appendix.

Angular distributions for the partial-wave amplitudes
FF7 and GD7 are shown in Figs. 2—5 for the coordinate
systems defined in Figs. 1(a) and 1(c).The correlations
between the production and decay angles of the 6 are
clearly sensitive to the spin and parity of the partial-
wave amplitudes.

The decay distribution W(O', 8&P) of 6 or Z is com-
pletely specified at a given production angle by three
parameters which are functions of the elements of the
density matrix p= fft/Tr(fft) of the spin-2 particle:
p3&(O'), Reps z(O), and Repz&(O') for axis of quantiza-

-O. I

-0.2—

—1.0
I

0
cos 0"

0.1—

+ 1.0

—O.I

-0.2
—1,0

p,'& (OH)

l

)

0
cos 0"

+1,0

-OI—

-1.0 0 +10
COS QH

FIG. 8. The density-matrix elements p1 1, ps 3, Imp»,
Imp3 j~ are shown as a function of the A, production angle 8
together with the quantity EL~x(O) for interference of (a) DD5
and GD7, and (b) DD5 and IiIi 7. The interfering amplitudes have
equal magnitude and are 90' out of phase.
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In reaction (1.2) the A polarization can readily be
measured through observation of the decay A ~ P+m .
Knowledge of the polarization of the spin- —', baryon
supplements the information on the elements of the
density matrix p (0') obtainable from the decay distribu-
tion P"(O~, e,&). For example, in the coordinate system
of Fig. 1(a) or 1(b), the decay distribution W(O', 0,&)
is a function of p33, Rep3 ~, and Rep3~, and the polariza-
tion depends on p~ ~, p3 3, Imp3~, and Imp3 I. An
alternative way of distinguishing between IiIi 7 and GD7
amplitudes is by observing the polarization produced by
their interference with the DD5 amplitude. The
relevant density-matrix elements resulting from this
interference are shown in Fig. 8. However, the statis-
tical weight of the polarization data is down by an
order of magnitude from that of the decay distribution
data. Integration over the decay angles t/ and P leaves
only E&~x(O~) as given in Kq. (4.8). This quantity is
also shown ln Fig. 8.
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APPENDIX: ROTATION OF THE AXIS
OF QUANTIZATION

If p denotes the density matrix for axis of quantization
s, and p' the same state for axis of quantization s', p
and p' are related by the unitary transformation

p'=Ape. '.
The change of axis of quantization is simply a change of
basis states from

~
JM) to

~

JM'), where M' is an eigen-
value of J, .

Below we give the transformation matrixes E~ and
RN corresponding to a rotation of the axis of quantiza-
tion from the incident beam direction [Fig. 1(a)] to
(1) spin-2 particle direction (helicity direction) [Fig.
1(b)] and to (2) the production normal [Fig. 1(c)],
respectively.

(1) Rotation to the helicity direction. In the right-
handed (x,y,s) coordinate frame s=k and y=k)&kf
[Fig. 1(a)]. The Euler angles for the rotation which
takes s into the helicity direction are n=0, p=O~ri,
and y=0." (O'er=180' —O.) The corresponding rota-
tion matrix XII is

cosq 0~ii+3 cosy O~ri

—v3 (sins~ 0" Ir+ sin~20~ii)
i K3(—cos320ri+cos-,'O~ri)

sin-O&~ —3 sin2 0" 0

%3(sm)O~ri+ sm —'O~ri)
3 cos 0'ri+cos20'ri
—3 sinasOri+sin~~Ori
VS (—cos-',0'ri+ cos-', 0'ir)

v3 (—cos~~ Ori+ cos-', O~ri)

3 sin~~O~ri —sin~~O~rr

3 cos32 0'rr+ cos'&0'ri
—%3(sin~ O'H+ sin~ O'Ir)

—sina20~ri+3 sin~ 0" ri
v3 (—cos$ 0~Ii+ cos-', 0~ri)
V3 (sinai' 0'ri+ sin~~ 0'ri)
cosa20'Ii+3 cos-', Orr

(2) Rotation to production normal [see Fig. 1(c) ].The Euler angles which take z into the production
normal and x into the beam direction [Fig. 1(c)] are m=90', P=90', and &=180'. The density matrix p~,
with axis of quantization along the production normal, is ENpEN, where

gi3+/4

~3gi3+/4

+N
+8 ~//i 8m /4

gi3~/4

~3~i~/4

gin/4

~3~—A /4

g
—ix/4

~i+/4

i3s /4-
~pe—i3m/4

g
—i3m/4

(Rs/ is the rotation matrix for n =90', p= 90', &=0. From parity conservation the density matrix is invariant
under the rotation y = 180'.)

~The Euler angles are as dered by M. E. Rose, E/emeetury Theory of Arlgulur Momentlm (John Wiley & Sons, Inc., New
York, 1957):a rotation e about the original s axis, followed by a rotation P about the new y axis, followed by a rotation y about the
new z axis. The rotation is performed in the positive sense in a right-handed coordinate system.


