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is calculated with the next term taken into account,

EZys' (2Ze~/SE)1PD —(5$/6) j. (9)

As seen in the Fig. 8, this correction is small ( 3%) in
this atom, and higher corrections within this first-order
perturbation theory are not needed here. The result
of the exact calculation is also shown in this figure. The
error introduced by use of these approximations is
about 10'Po, or less than 0.05 keV for 2.0 F(R(3.0 F,
and could be neglected considering the current experi-
mental error.

It has been shown that the vacuum-polarization

effect is quite important in mesonic atoms of the light
nuclei. '~ In analyses of future experiments, this e8'ect

should be examined more closely by taking into account
the effect of the Gnite size of the nucleus on the vacuum
polarization.

ACKNOWLEDGMENT

I would like to thank Professor Alan H. Cromer for
constant advice and encouragement during this work.

'7 D. D. Ivanenko and G. E. Pustovalov, Usp. Fiz. Nauk 61,
27 (1957) LEnglish transl. : Soviet Phys. —Usp. 63, 1043 (1961)j.

PH YSICAI REVIEW VOL UM E 182, NUM B ER 5 25 JUNE 1969

Veneziano Parametrization for Nonstrong Amplitndes*

R. C. BRowER mn M. B. HALpERN

Department of Physics and Lamrence Radiation Laboratory,

University of California, Berkeley, California 04780
(Received 24 February 1969)

Veneziano-like parametrizations are found for photoproduction, Compton scattering, and current algebra.

I. INTRODUCTION

KCENTI Y, Veneziano' gave a simple parametriza-
tion for hadronic amplitudes which is crossing-

symmetric, displays Regge behavior, and satisfies dual-
ity. It is our purpose in this paper to find a similar
parametrization for nonstrong amplitudes, for example,
photoproduction, Compton. scattering, and current
algebra —thus putting the nonstrong problem on an
equal footing with the strong. In general, we shall con-
centrate on the features that distinguish these ampli-
tudes from purely hadronic ones—namely, double poles
(gauge invariance, low-energy theorems, etc.) and 6xed
poles (in angular momentum, with nontrivial form fac-
tors). On the other hand, we shall not go into much de-
tail. about problems that our parametrization shares
with the purely hadronic problem —i.e., parity doubling,
isospin degeneracies, factorization, etc.

In Sec. II, we construct a Veneziano parametrization
for a photoproduction amplitude that has Regge asymp-
totic behavior in all channels and gives the correct Born
approximation (low-energy theorems) at low energies.
In Sec. III, the same technique is used to construct
the amplitudes for physical (chargeless photons)
Compton scattering (yn. ~ yn) Anat. u.ral solution
yields an 3'= 1 pion with a parity partner that decouples
at J=O. Moreover, we suggest a natural scheme for

*Research supported in part by the U. S. Atomic Energy Com-
mission and in part by the Air Force Once of Scientific Research,
OfEce of Aerospace Research, U. S. Air Force, under Grant No.
AF-AFOSR-68-1471.' G. Veneziano, Nuovo Cimento 57, 190 (1968).

introducing into the double-helicity-Rip amplitude a
Pomeranchukon which couples in the forward direction.
Section IV treats current-algebra amplitudes and Axed

poles in the t channel. We find solutions to current-
algebra sum rules with form factors parametrized by
p and p-satellite poles. In this parametrization, a corre-
lation exists between 6xed poles in the s channel and
asymptotic behavior of form factors. The correlation
may be taken to mean that form factors must fall faster
than any power of t.

The problem of combining the results of Secs. III
and IV into a good phenomenological description of
Compton scattering is presently under investigation.

II. PHOTOPRODUCTION

Here we investigate a Veneziano parametrization for
photoproduction amplitudes. In particular, we are in-
terested in those special features associated with the
zero mass of the photon and required by gauge invari-
ance. The pole terms for soft-photon couplings (called
Born terms in this paper) are in fact the main issue,
since gauge invariance requires them to have a particu-
lar form. ' As emphasized in Ref. 2, the photon, unlike
a massive vector particle, can couple to a nonsense pole
if the internal mass is the same as the external mass
(soft-photon coupling). On the other hand, the hard-
photon couplings (other poles to which the soft photon
does not couple) obey the usual selection rules of angular

' F. Arbab and R. C. Brower, Phys. Rev. 178, 2470 (1969};R.
C. Brower and J. Dash, i&d. 175, 2014 (1968).
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momentum conservation (no zero-to-zero transitions);
consequently, these terms will not be discussed in detail.
Indeed, only little attention will be given to the prob-
lems encountered in purely hadronic processes, such as
parity doubling, factorization, and isospin symmetry.

For convenience we consider pion photoproduction
from spinless nucleons (s-channel yl&t —+nlV). B.y re-
stricting ourselves to spinless hadrons with parities ap-
propriate for a nonzero coupling g=(z. ~ÃE), thereis
only one helicity amplitude 5R(X~=1)=5K(XY=—1),
with the kinematical singularity p'~', where @ is the
Kibble function

A& &(s,t)= P (2J+1)n (t)e» (z&), eip Ps (z,) (2.4)
J~l

and similarly for s- and I-channel poles.
(iv) The pion lies on a Regge trajectory with ap-

propriate signature and helicity Aip. That is, as s —+~,
for fixed t,

A~ &(s,t) piegI'( —n (t))(1+e ' "')s "& '. (2.5)

Similar Regge limits must exist for 6xed s and N.

It is remarkable that only a slight modi6cation of the
P function introduces the double pole for the Born term
without introducing any other J=0 poles or "ancestor"
trajectories. Moreover, this function B automatically
has one unit of helicity Rip:

B(—n. (t), —n&v(s))
= r(—.(t))1'(—.(s))~1'(1—.(t) —„(s))
= —[n.(t)+ n&p (s)7

—'B(—n.(t), —
n&p (s)) . (2.6)

y(s, t) =4tq, '(t)p„p(t) sinpt&, .

The standard decomposition for A =Oui/@'" into pure
isotopic spin in the t channel, yx ~

¹ E2, is

A.=r.A "&+-,'{rp,r.}A + + ,'[rp, r„7A '-, (2.2)

where AiP& (I& 1, G=+1—,—even in s-u) involves iso-
scalar photons, and both At+& (Ii= 0, G= —1, even in
s-u) and A& & (Ii=1, G= —1, odd in s-u) involve the
isovector photon.

For the time being, let us consider only the ampli-
tude A & ), which has the pion pole. We seek a function
A & '(s, t) with the following properties:

(i) It is odd under s ~ u crossing.
(ii) It has the correct Born term

A' '(s, t)= peg([(t ~-')( s~')7
—[(t—m ')(u —m')7 '}+background, (2.3)

where the background is regular at 1=m '. This will
guarantee the full content of the low-energy theorems
(Kroll-Ruderman for spin-zero nucleons).

(iii) The remainder of the amplitude (background) is
built out of poles with polynomial residues correspond-
ing to physical partial waves (J~ 1) in the expansion

Conditions (i)—(iv) are completely satisfied by

A'-'(s, t) = leb'(B(-n-(t), -n (s))
—B(—n-(t), —n~(u))+ } (2 7)

where b is the universal slope of the trajectories. The
odd symmetry under s ~ I crossing automatically gives
the correct signature. Having thus gotten the soft-
photon poles correctly, other terms ( ~ ) in general
involving other trajectories, can now be added in with
ordinary P functions. For example, a term B(1—nz, (t),
1—nN(s)) —B(1—n~, (t), 1—nN(u)) can be added to
A( ) without aAecting the Born terms. AB the trajec-
tories that do not contribute to the Born term should be
introduced with this standard form, just as in the origi-
nal paper~ on m'm —+ sr(d.

Similar expressions can be written for 2 ( ) and A &+):

A ~+&(s,t) = ,'egb'[-B( n~(s—), —n~(u))
+C+S(—n. (t), —n~(s), —n~(u))+

(2.8)
A "&{s,t) = -',egb'[B( —n~(s), —n&i (u))

+CpS( —n (t), nN(s), —
n&p

—(u))+ 7,
where we have introduced the symmetric function

S=B(—n (t), —n~(s))+B(—n„(t), —n~(u))
+B(—n~(s), —n~(u)) (2 9)

with arbitrary weight. It does not contribute to the
Born term because the identity n (t)+n&(s)+n&(u)
= b(s+t+u —m '—2m~') = 0 removes the apparent
double poles from S. We have checked that the Born
terms in these amplitudes are the most general ones
compatible with charge conservation for the various
physical processes (e.g., yp & pr+&t, etc.).

To develop amplitudes of phenomenological value,
one has to extend this analysis to the four invariant
amplitudes (A,B,C,D) for the spin--', nucleon and add on
the contribution from the lower trajectories. However,
some of the difhculties can be understood in this scalar
model. Clearly, C+ should be set to zero to avoid a tra-
jectory degenerate with the pion having I=0 and nega-
tive signature. However, if one calculates A(I, =z)
=A&+) —A( ), one discovers that this has introduced
an I=zP negative-signature trajectory (6) degenerate
with the nucleon. A nonzero Co may be reasonable
in order to introduce the exchange-degenerate 8
meson onto the pion trajectory; this, of course, will
affect the recurrence of the nucleon in A (I,= pi)

=A'+&+2A' —'+A &".

One can anticipate that spin for the nucleon will

bring in difFiculties with parity doublets similar to the
mE problem. ' We do not want to pursue further such
problems encountered already in the purely strong
problem. It seems to us, however, that with the 8 func-
tion, the formalism is suKciently Qexible to develop

' K. hagi, Phys. Letters 28B, 330 (1968); M. A. Virasoro, Uni-
versity of Wisconsin (report of work prior to publication).
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a reasonable phenomenological amplitude for photo-
production off nucleons.

III. COMPTON SCATTERING

The considerations presented here very closely paral-
lel those of Sec. II on photoproduction. Again, we pick
the simplest possible spin configuration: Compton scat-
tering on a spinless target. This restricts us to two
helicity amplitudes, with the following kinematical
factors4:

ORg &'(s, t) =BRg,&'(s,t) = (y/ —t)A. ..
(3.1)

1+1 ($)$) Ml,—1 ($)f) — AS+ A 1+1~

For purposes of isospin analysis, we pick the pion as
target and split the photon up into its isoscalar and
isovector parts. The G parity of the pion restricts
the transition to pure isoscalar-isoscalar amplitudes
(A &„&„&'&) and isovector-isovector amplitudes (A q, &„&r'&).

Again, we are primarily interested in the Born terms
(in this case, the pion pole terms) which, because of G
parity, contribute only to the isovector amplitudes
Aq, q, (~&', where we have chosen amplitudes with pure
isotopic spin in the t channel. The gauge-invariant
Born terms' for these amplitudes are given by

A 1+1{0&($f) 4e2/($ yg 2)(N ~ 2)

A&+q&'&= —2e'/(s —m~')(I —m ') (3 2)

A &~&
&'& = —(2/t) $e'/(s —m ') —e'/(u —m, ')].

The pion pole terms have been introduced so that they
are pure I,= 1 and I = 1 in the s and I channels, respec-
tively. The amplitude l&=1 has been introduced for
completeness at this point; it does not contribute at all
to Compton scattering for physical (chargeless) pho-
tons. In Sec. IV, the problem of fixed poles in the helic-
ity-Rip-2 isospin-1 t-channel amplitudes will be con-
sidered in detail.

For simplicity, we assume that the amplitudes con-
tributing to the chargeless-photon Compton scattering

[yy ~ m-+s.+~ —,'(A &'& —A &'&)+A &'& and

yy —+ s'n' ~ 3 (A &"+2A &'&)+A &'&]

have pure Regge asymptotic behavior. Amplitudes with
fixed poles are discussed in Sec. IV. Let us see how such
Reggeized poles can be introduced for the Born terms
in the I~=0, 2 amplitudes.

Since the kinematical factor p/t and t behave like one
power of s (or u) at fixed I (or s), we can use the same
function B introduced for photoproduction LZq. (2.6)].
The Reggeized amplitudes are therefore given by

A,~,«&=4e'b'La( —n.(s), —n.(N))+ ],
(3 3)

A&+&
"&=—2e'f&'Ã( —o. ($), —o. (I))+ ],

where again these satisfy the proper decomposition of

4 D. Horn, California Institute of Technology Report No.
CAL Z-68-131, 1967 (unpublished).

the amplitudes into Born terms plus background. This
decomposition and the proper kinematical singularities
are the content of the low-energy theorems. ' The dots
( ) indicate other trajectories (&0, p, A2, etc.) added on
in the standard way. These terms will certainly break
the helicity independence of the Born term. Similarly,
terms should be included in the isoscalar-isoscalar am
plitudes A~~~'~ to represent 8, p, etc. , in the s and I
channels.

It is interesting to note that this solution' is an M= 1
parity-doublet pion trajectory (i.e., the leading Lorentz
pole is &=1).The introduction of parity doublets is
a common feature of the Veneziano model, but here the
solution may be physically interesting, since the parity
partner to the pion has no pole at J=O: Defining the
s-channel parity-conserving amplitudes

F'~(s, t) =-', (sA& gal 'Ag&), (3.4)

we observe that only the pion has a pole at J=O, since

P'+ -,'e'(sam ')O' F(—n. (s))(—bu)"'& ' (3 5)

for I-+~ at fixed s. Note that the zero at s= —re '
in the y vertex is the zero considered in its to photo-
production (see Ref. 2). The odd-signature pole has the
interesting interpretation as an A~ (at J= 1) exchange-
degenerate with the pion, but again there may be dif6-
culty with parity doubling. There may also be I=O, 2
particles at the A~ mass. This, of course, cannot be
decided until models for A &'& are included (see Sec. IV).

It is amusing that there is a natural way of introduc-
ing the Pomeranchuk trajectory that couples at t=O
in the double-helicity-Qip amplitude A»' ). Provided
that 1 nz(t)+—n„(s)+n (u)=0 Li.e., n»(0)=1, where
np is the Pomeranchukon], the symmetric function de-
fined in Sec. II may be added to A»( ~ in the form
Cos(1 nz(t), ——n (s), —n. (u)) without changing the
Born terms. This model for the Pomeranchuk trajectory
closely resembles the model of Abarbanel et al.~ except
that we have as yet no determination of Co. Finally, let
us emphasize that we have not yet solved the problem
of obtaining a sensible particle spectrum in all channels,
but further work is proceeding on this problem and there
is indication that bootstrap conditionss will emerge to
fix the value of Co, as well as other parameters.

' H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. 165,
1594 (1968); F. Arbab and R. C. Srower, Phys. Rev. 181, 2124
(1969).

R. C. Brower and J. Weis, University of California Radiation
Laboratory Report No. UCRL-19222 (unpublished). The solution
presented here yields an 3f=0 pion.' H. D. I. Abarbanel, F. E. Low, I. J. Muzinich, S. Nussinov,
and J. H. Schwarz, Phys. Rev. 160, 1329 (1967). Our model has
the additive axed pole in the t channel at J=1 in A1 1(') which
comes from the term (I+C0)B(—n (s), —a, (I)),where —C0 is the
strength of the Pomeranchuk coupling.

8For example, with the simplest parametrization of A1 1&»
LI~=O (Eq (33) plus C05) I~=1 (Eq. (4.5)), and I&=2 (Eq.
(3.3))j, the condition of no I=2 resonances on leading trajectories
leads to the determination C0 ———4. This predicts a reasonable
total cross section o ~ {~),with o.~'(0) =b=1. On the other hand,
this solution has an I=0 particle degenerate with the A1 on the
pion trajectory.
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T(t,si) = P e~p (si)(2J+1)F (t), em FJ"
J=2

(4.3)

while a pole of spin J in s or I carries a residue t~.

At erst it is convenient to specialize even further, to
the case of q&'= q2'=0. One might try to guess such a

9 K. Bardakci, M. B. Halpern, and G. Segrh, Phys. Rev. 158,
1544 (1967}.' J.B.Bronzan, L S. Gerstein, B.W. Lee, and F.E.Low, Phys.
Rev. Letters 18, 32 (1967); V. Singh, ibid. 18, 36 (1967)."Our normalization in this section is T(qi' ——q"=0)= —(t/2e )
&(AI 1(", where AI, I&') is the similar amplitude introduced in
Sec. III. At qi~ ——q2' ——0, then, our pion poles have unit residue."R. Dashen and M. Gell-Mann, in Proceedings of the Third
Coral Gables Conference on Symmetry Principles at High Energy,
edited by B. Kursunoglu, A. Perlmutter, and L Sakmar (W. H.
Freeman and Co., San Francisco, 1966);S. Fubini, Nuovo Cimento
4S, 1 (1966).

IV. CURRENT ALGEBRA AND FIXED POLES

In this section, we set ourselves the task of 6nding a
Veneziano parametrization for the amplitudes involved
in current-algebra sum rules, namely, helicity-Rip-2
isospin-1 t-channel helicity amplitudes for scattering of
massive charged photons from arbitrary targets. Ex-
plicitly, the s channel is y (qi)+T(J) ~&$(q2)+T(J'),
where a, b are the internal-symmetry indices of the cur-
rents of mass qP and q2', and J is the spin of the target T.
As in Secs. II and III, we shall pay relatively little
attention in this discussion to problems encountered
already at the purely hadronic level, that is, parity
doubling, etc. Instead, we shall concentrate on the char-
acteristic feature of these amplitudes —that they are
not purely Regge. ' In fact, they are usually assumed to
involve a fixed pole" at the nonsense point J~= 1, the
residue of which is a form factor.

We begin with the simplest case, namely, charged
photons scattering off pions (or spinless nucleons). We
seek, then, a function T(s, t,qi', q2') with the following
properties":

(i) It is odd under (s~u) crossing.
(ii) It satisfies the Fubini —Dashen —Gell-Mann sum

rule"
00

ds'A(s', t,qi2, q22) =F(t), (4.1)
27r

where 2 is the absorptive part of T in s. That is to say,
as s —+~,

T ~P(qi' q2', ~)(—e)""' '+2F(~)/e (42)

where we have suppressed the odd-signature factor for
the p trajectory, and F(t) is the pion form factor. More-
over, at q&' ——0, q'=t, and at q2'=0, q&2=/, only the
pion pole can contribute to the sum rule.

(iii) It is constructed entirely out of poles in s, t, and u
(and the q's), with the correct polynomial residues. In
particular, it must have no poles with spin less than 2 in
the t channel. The spin of t-channel poles can be read
from the partial-wave expansion (suppressing the q's)

function along the following line: If we were at qi~= q22

=m, ', that is, the purely hadronic process s+p~
x+p, a satisfactory functional form might be

B(2 al, (t—), —a.(s))—(s ~e). (4 4)

But we cannot use this function directly at qi'= q2'=0,
because (a) it has no fixed poles, and (b) much more
than the pion pole contributes at t=0. We could try
fixing these up by considering tB(2 —a(t), 1—a (s))
+1/a„(s), which eliminates objections (a) and (b), and
yields a constant form factor. On the other hand, adding
a term like F(t)/a„(s) would give pion "ancestors" for
any nontrivial form factor. The path we choose is
somewhat different. Consider (with obvious s &-+ I
symmetrization)

T(s,f) =b2
tl'(1 —a„(t))I'(—a„(s)) mp'

+
I'(2 —a, (t) —a (s)) a„(s)C1—a, (t)j

B(2—a, (t), a(—s))
Pt —m2

mp
B(1, —a.(s)) . (4.5)

7—mp

Relative to (4.4), we have simply inserted a p pole and
then subtracted it out. This T satisfies conditions
(i)—(iii) a,bove. " In particular, it has no double poles,
and contains no spin-1 poles in t at all, not even p satel-
lites. It is already normalized to unity at the pion poles,
and yields

F(~)= C1-a,(0)j/Cl-a, (~)j, (4.6)

which is the (normalized) p-dominance pion form factor.
Asymptotically, (4.5) has precisely the form of Kqs.
(19) and (20) in Bronzan et al."

What other functions can we add to (4.5)? Of course,
we can add pure Regge terms like

«(~—a.(&))1'(—a-(e)) (~-)'
~mn = +I'(I+1 a, (t) a—(s)) a—.(e)Cm —a, (&)$ (4 &)

"After symmetrization, the amplitude (4.5) has fixed poles at
all odd J& below and including J~——1. Notice that the pure Regge
part of (4,5) is the 8 function of Secs. II and III.

~r(2 —,(~))1'(I—.(e)) = tB(2—,(/), 1 — (s)), (4.7)
I'(3 ap(t) —a—(s))

which couples the pion trajectory except for the pion
itself. This form may also be used to incorporate other
s-channel trajectories, and such terms do not alter the.
form factor. Moreover, we can, in fact, write functions
with much more general form factors. Consider the set
of functions
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versa). One possible solution is

b 'T(s, t,qzz, qzz)

= T(s,t)+[1—F(q, ')F(q, ')]B(2—,(t), —.(s))

+Z f LP (q')P». (q") 1]—D-(s,t), (4»)
m 1zzz —n p(0)

P(t) =Z f-
zzz —n, (t)

(4.9)
where+ f =1, and

where p is the mass of the mth p satellite. Physically,
these functions are constructed by inserting, then sub-
tracting off, p satellites, just as we did for p itself in (4.5).
Any linear combination of these functions can be taken
for T, leading to a general form factor parametrized
with p and p-satellite poles,

The f must then be determined by factorization (see
below). Nor does this exhaust the set of interesting
functions. Consider (with zzz~ 1, zz~ 1)

F(zzz —a, (t))F(zz —n.(s))8 =t
F(za+zz+1 —n, (t) —n (s))

T(s,t)=b g f B 0(s,t), F(t)= P f P (t),
m-1 m~1

P„(t)=[~—n, (O)]/[~ —n„(t)],

D„(s,t) =B(2—n, (t), —n.(s))
—B(zzz+1 —n, (t), —n.(s)),

(4.14)

(4.10)
zzz —n, (t) n.(s) zz—

in which the pion trajectory does not couple but which
can be used to change P(t). The form factors associated
with each of these functions go like t'-at large t, but linear
combinations can easily be constructed with any desired
asymptotic behavior. The leading trajectory can also be
reinstated if desired. For example, instead of 8 1, take

-tF(zl —n, (t))F(1—n.(s))
+ . (4.11)

F(zzz+2 a, (t)—n.(s)—) zzz —n, (t) n.(s) —1

(p-)'

Such construction gives functions which aA'ect both the
leading couplings and the form factor, but are different
from (4.8).

q'WO and Pactorization

If there is to be hope of eventually ending restrictions
on form factors, we must extend our scheme both (a)
to qzz and qzz nonzero, and (b) to, say, the entire. zr tra-
jectory as target. Whether factorization will really de-
termine the F's is beyond the scope of this paper, but we
can suggest how one might begin to ask such questions.

Ke erst discuss the q'WO problem. Ke can easily
write a solution to the sum rule for nonzero q1', q2'
which has the p-dominance pion form factor F [Eq.
(4.6)] consistently. Consider, for example,

T(s, t,q, ',qz') = {T(s,t)+b[1—F(qz')F(qz')]
XB(2—a, (t), —n„(s)))—(s+-+ I), (4.12)

in which a pure Regge model for the hadronic amplitude
zrp -+ zrp has been added to the q'= 0 solution (4.5). The
residue at the pion pole is then F(qP)F(qz'), consistent
with F(t) in the fixed-pole term, and so on. The solution
for general F(t) [Eq. (4.9)] is somewhat more involved.
Correction terms (without the pion pole) are required to
eliminate ancestors for n (s)=J&0, and to satisfy the
gauge-invariance condition at qz'=0, qz'=t (and vice

and many other forms may be guessed (see below). A
more transparent form for this amplitude is

b 'T(s, t,q-zz, qzz)

=[P(t) —F(qz')F (qz')]B(2—n, (t), —n.(s))+F(t)/n. (s)

+E f-[P'-(q ')P-(q") P-(t)]D-—(s,t) (4»)
m=1

Our method of construction of these forms may be
interesting in its own right. Break T up into three
terms b 'T= Tn(s, t)+F(t)/n, (s)+ Tzr(s, t, qz', qz'), where
Tzl contains the hadronic scattering terms (p„,p„') and
is purely Regge. At q1'=q2'=0, assume that only the
erst two terms have the pion pole so that the pionic
residue of TIr must be F(qzz)F(qzz) —1 for factorization.
T~ is defined by T~(s, t)= Tzz(s,—t,0,t), thus —guarantee-
ing gauge invariance. This also guarantees no ancestors
as long as Tzl(s, t,0,t) has no singular residues above
n =0. Starting, then, with

Tzl(s, t,qz', qz') =[1—F(qz')F(qz')]B(2 —n, (t), —n (s))

+Q f F (qz')F (qz')D (s,t), (4.16)
m~1

we recover the above forms. Other terms may be added
to Ttr as long as (a) they have no pion pole, and (b)
their q1~=0, q2~= t form has no singular residues.

On the other hand, the function (4.15) does not yet
factorize at higher pion recurrences. This can be Axed
systematically by hand. Suppose we consider the erst
recurrence of the m, say, x', and we are given some Ii
Then we could add to (4.15) another term (t—qzz qzz)—
Xf(ql qz )Brl', where Bzl' is an (ordinary) P function
which couples zr' and higher, but not zr [e.g., Ba'
=B(2—a, (t), 1—n (s))]. Thus, we do not disturb the
pion pole. Now f(qzz, qzz) can be solved for trivially by
requiring that the z' residue is F .(qzz)F«(qzz). This
procedure can be continued to any finite number of par-
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tic1.es, for any given set of form factors. Of course, we
have not yet used m', etc., as targets.

Another interesting feature of (4.15) is that, even with
F(t) rapidly falling, the large q' dependence of the p-
trajectory residue is independent of q'; that is, it does
not behave as a form factor. "It is not clear how seri-
ously to take this; it may change if complete factoriza-
tion is required. In order to muse further over factori-
zation, we need models for the whole trajectory as
target.

Going back to q&'= q2'= 0, we can imagine construct-
ing such models just as we did above. Suppose we have
the helicity-Aip-2 isospin-1 part of the six-point func-
tion" for a (hadronic) process like p+rr+o ~ p+n+o,
say, B&(2—n„~ ).Then we could construct our model

by going to the poles in the mfT channels of the function

Ci
t mp

-B(1, ) . (4.17)
mp

a,(2—n )—
t—m2

The second term is a "Axed pole" for the six-point func-
tion proportional to (no

~
J,„~7ro). This procedure will

yield p-dominance form-factor models for all form fac-
tors F~q in all the reactions 2'(J)+y, ~ T(J')+pa,
where J and J' are the angular momenta along the pion
trajectory. Now, of course, the parameter C~ will not be
enough even to normalize all the Jig~, and the factori-
zation problems begin. A set of 86 functions analogous
to the 8 can evidently be constructed, and one can
try to tackle the q'/0 problem. ""

'4 For the opposite view, see H. Harari, Weizmann Institute
Report (unpublished). Harari is led to conjecture that ordinary
trajectory residues (like p) fall off rapidly (like form factors) for
large q'. Thus he must introduce q'-dependent modifications of
various sum rules, including that of Fubini, Dashen, and Gell-
Mann."H. M. Chan, CERN Report (unpublished); C. Goebel and B.
Sakita, Phys. Rev. Letters 22, 257 (1969); K. Bardakci and H,
Ruegg, University of California, Berkeley, Report (unpublished).

"In particular, note that we cannot use the in 0 i J,„idol term
directly as we did in obtaining {4.12).The square of this 6xed-pole
term would only be expected as residue in a two-particle (7i-cr)

elastically unitary approximation to the six-point function. By the
same token, it may be useful in some more sophisticated (unitary)
model.

~7 The factorization scheme outlined around Eq. (4.15) changes
the purely hadronic amplitude mp —+~p (at the p poles when

Pjxed Poles in s Channel

One last comment is of interest. The functions con-
structed for the simplest example above have 6xed
poles in s (as well as t). For example (4.5) has a fixed
pole at J,= —1. Using the 8 „,it is a simple matter to
construct models with the fixed pole at J,= n(an—d
even to push n to infinity). In this model, there is a
curious correlation between this 6xed pole and the
asymptotic behavior of the form factor: If we push J,
back to —n, then the associated form factor falls oA

like t ".
Mandelstam" has given two separate arguments of

relevance to this situation, namely, (a) that there
should be no fixed poles in s for such processes, and (b)
that the form factor should fall faster than any power.
Here the two arguments are correlated. If we wanted to
take these arguments very seriously, we might insist
on. parametrizing the problem only with F(t) that de-
crease faster than any power. Even demanding that the
form-factor sums are absolutely convergent, an infinite
number of such functions can be constructed. "On the
other hand, we feel it would be nicer to see all this come
about through factorization.
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q&'= g2'=m, '), and does not seem to determine form factors very
well. We might imagine another scheme along the following lines.
Again we limit ourselves to the pion and its Qrst few recurrences
(say, m and 7i-'). Suppose now that the purely hadronic processes
~p~ 7l-p, mp~ 7r'p, and ~'p~ x'p are already known. Then we
cannot add further terms like f(q1', q22), and we would have three
equations like (4.15) with only E „, F ., and F,r„. unknown.
Factorization will then put severe restrictions on the f, of the form
factors. Such a scheme is like that of R. F. Dashen and S. C.
Frautschi I Phys. Rev. 145, 1287 (1966)j in assuming the hadronic
process known, but differs in that local current algebra wouM be
required (via the sum rules) as a constraint. In any case, we would
probably not want to use any satellites as target, considering them
as a mockup of continuum. With this philosophy, one might even
allow the satellites to have high isospin.

"S.Mandelstam, 1966 X'okyo Summer Lectures irI, Theoretical
Physics (W. A. Benjamin, Inc. , New York, 1967).

'9 D. Atkinson and M. B.Halpern, Phys. Rev. 163, 1611 (1967).


